复杂网络的基础知识

合集下载

复杂网络基础理论

复杂网络基础理论

无标度网络
定义:无标度网络是指节点的度分布遵循幂律分布的网络即少数节点拥有大量连接大部分节点 只有少数连接。
特性:无标度网络具有高度的异质性其结构可以抵抗随机攻击但容易受到定向攻击。
构建方法:无标度网络的构建通常采用优先连接机制即新节点更倾向于与已经具有大量连接的 节点相连。
应用场景:无标度网络在现实世界中广泛存在如社交网络、互联网、蛋白质相互作用网络等。
07
复杂网络的未来研究方向和挑战
跨领域交叉研究
复杂网络与计算机 科学的交叉:研究 网络算法、网络安 全和网络流量控制 等。
复杂网络与生物学 的交叉:研究生物 系统的网络结构和 功能如蛋白质相互 作用网络和基因调 控网络等。
复杂网络与物理学 的交叉:研究网络 的拓扑结构和动力 学行为如复杂系统 、自组织系统和非 线性系统等。
复杂网络的演化过程中节点和边 的动态变化会导致网络的拓扑结 构和性质发生改变。
添加标题
添加标题
添加标题
添加标题
复杂网络具有非线性和自组织的 特性能够涌现出复杂的结构和行 为。
复杂网络在现实世界中广泛存在 如社交网络、生物网络、交通网 络等。
复杂网络的特征
节点数量巨大且具有自组织、 自相似、小世界等特性
03
复杂网络的基本理论
网络拓扑结构
节点:复杂网络中的基本单元
连通性:网络中节点之间是否存 在路径
添加标题
添加标题
添加标题
添加标题
边:连接节点的线段表示节点之 间的关系
聚类系数:衡量网络中节点聚类 的程度
网络演化模型
节点增长模型:节点按照一定概 率在网络中加入形成无标度网络
节点属性演化模型:节点属性随 时间发生变化影响网络的演化

网络科学中的复杂网络理论

网络科学中的复杂网络理论

网络科学中的复杂网络理论网络科学是一门涵盖计算机科学、数学、物理学等多个学科的交叉学科,其研究的对象是网络,包括社交网络、物流网络、电力网络、金融网络等。

在网络科学的研究中,复杂网络理论是一个重要的分支,它能够帮助我们理解网络的特性和行为。

本文将从复杂网络的概念、网络拓扑结构、网络动力学、网络优化等方面介绍复杂网络理论。

一、复杂网络的概念复杂网络是由许多节点和边组成的网络,节点和边之间的关系可以是同性的或异性的,也可以是有向的或无向的。

复杂网络中的节点可以是人、公司、电力系统中的发电站等,边可以表示这些节点之间的联系,如社交网络中的朋友关系、电力系统中的输电线路等。

由于网络中的节点和边是多种多样的,所以复杂网络具有超过简单网络的复杂性和多样性。

复杂网络理论研究的是网络的结构和行为,通过分析网络节点和边之间的关系,可以揭示网络中的规律和特性。

复杂网络理论已被应用于许多领域,如社交网络分析、流行病模型、交通优化、生物信息学等。

二、网络拓扑结构网络的拓扑结构是指节点和边之间关系的模式,包括邻接矩阵、度分布、聚类系数、路径长度等几个方面。

1. 邻接矩阵邻接矩阵是一个方阵,其中的行和列分别对应网络的节点,矩阵中的元素为1表示对应节点之间有一条边,为0则表示没有边相连。

邻接矩阵是表示网络拓扑结构最简单的方式,但对于大规模网络,其密集的矩阵往往需要大量的存储空间,使得计算和分析变得困难。

2. 度分布节点的度是指该节点连接的边数。

度分布是一个度数与节点数量或概率的关系图,可以揭示网络节点之间关系的多样性。

常见的度分布包括泊松分布、幂律分布等。

幂律分布是指在一个网络中存在很少的高度连接的节点,多数节点的度数较低,这称为“无标度网络”。

无标度网络中的少数节点有着重要的作用,称为“超级节点”,它们是网络中的枢纽或关键节点。

3. 聚类系数聚类系数是指一个节点的邻居之间相互之间已经连接的比例。

聚类系数越高表示该节点的邻居之间越紧密。

复杂网络的基础知识

复杂网络的基础知识

第二章复杂网络的基础知识2.1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。

如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。

如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。

图2-1 网络类型示例(a) 无权无向网络(b) 加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。

如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。

如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。

图2-2 规则网络示例(a) 一维有限规则网络(b) 二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length )、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。

2.2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。

定义网络的直径(diameter )为网络中任意两个节点之间距离的最大值。

即}{max ,ij ji l D = (2-1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值。

即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 为网络节点数,不考虑节点自身的距离。

复杂网络理论基础题

复杂网络理论基础题

复杂网络理论基础题复杂网络理论作为计算机科学和网络科学领域的重要分支,旨在研究复杂系统中的网络拓扑结构及其动态演化规律。

本文将介绍复杂网络理论的基础知识,包括网络拓扑结构、节点度分布、小世界网络和无标度网络等内容。

一、网络拓扑结构网络拓扑结构是指网络中各节点之间连接关系的模式。

最简单的网络拓扑结构是随机网络,其中每个节点以等概率与其他节点相连。

然而,在许多实际网络中,节点的连接并不是完全随机的,而是具有某种特定的模式或结构。

二、节点度分布节点度是指节点连接的边的数量,节点度分布描述了网络中不同节点度值的节点数量。

在随机网络中,节点度分布通常呈现泊松分布,即节点度相差不大。

而在复杂网络中,节点度分布往往呈现幂律分布,即存在少数高度连接的节点(大度节点),大部分节点的度较低。

这也是复杂网络与随机网络的一个显著区别。

三、小世界网络小世界网络是指同时具有较高聚集性和较短平均路径长度的网络。

在小世界网络中,节点之间的平均距离较短,通过少数的中心节点即可实现较快的信息传递。

同时,小世界网络中也存在着高度的聚集性,即节点之间存在较多的局部连接。

四、无标度网络无标度网络是指网络中节点度分布呈现幂律分布的网络。

在无标度网络中,只有少数节点具有极高的度,而大部分节点的度较低。

这些高度连接的节点被称为“超级节点”或“中心节点”,它们在网络中起到关键的作用。

五、复杂网络的动态演化复杂网络的动态演化是指网络随时间发展过程中结构和拓扑特性的变化。

常见的复杂网络动态演化模型包括BA 模型和WS 模型。

BA 模型通过优先连接原则,使具有较高度的节点更容易吸引连接,从而形成无标度网络。

WS 模型则通过随机重连机制,在保持网络聚集性的同时,增加了节点之间的短距离连接。

六、复杂网络的应用复杂网络理论在许多领域都有广泛的应用。

例如,在社交网络中,研究人们之间的联系方式和信息传播规律;在生物学领域中,研究蛋白质相互作用网络和基因调控网络;在物流和供应链中,研究供应商和客户之间的联系。

复杂网络动力学分析

复杂网络动力学分析

复杂网络动力学分析一、引言复杂网络动力学分析是一种用于研究复杂网络结构和网络动力学特征的分析方法。

随着信息技术的发展和应用场景的不断扩大,复杂网络动力学分析逐渐成为网络科学领域的热门研究方向。

本文将从基础概念、网络结构分析、网络动力学分析等方面进行探讨,旨在深入了解复杂网络动力学分析的相关知识。

二、基础概念1. 复杂网络复杂网络是指由大量节点和相互连接的边构成的网络,具有随机性、动态性、节点异构性和拓扑结构复杂性等特点。

常见的复杂网络包括社交网络、生物网络、交通网络、互联网等。

2. 节点度节点度是指节点在网络中的相邻节点数,与节点相连的边数称为节点的度。

节点度越大,代表节点在网络中的重要程度越高。

3. 小世界效应小世界效应是指在大规模的随机网络中,任意两个节点之间的距离很短,具有“六度分隔理论”的特点。

即任意两个节点之间的距离最多只需要经过六个中间节点。

4. 群体聚类系数群体聚类系数是指网络中任意一个节点的邻居节点之间存在联系的概率。

群体聚类系数越高,代表网络中存在更多的紧密联系的节点群体。

三、网络结构分析1. 度分布度分布描述网络中各个节点的度数分布情况,可以用横坐标表示节点的度,纵坐标表示该度出现的节点数目。

通过度分布可以发现网络的度分布是否呈现幂律分布的特点。

2. 网络中心性网络中心性是指节点在复杂网络中的重要性程度,包括介数中心性、接近中心性和度中心性等。

介数中心性表示一个节点与其他节点之间的最短路径数目之和,接近中心性表示一个节点到其他节点的平均路径长度,度中心性表示节点的度。

3. 网络聚类系数网络聚类系数是指复杂网络中群体聚集性的量化指标,反映了网络中节点间联系的紧密程度。

常见的网络聚类系数包括全局聚类系数和局部聚类系数,全局聚类系数是指网络中所有节点的聚类系数均值,局部聚类系数是指每个节点的聚类系数均值。

4. 强连通分量强连通分量是指在有向图中,所有节点之间均可相互到达的最大节点集合。

(完整版)复杂网络的基础知识

(完整版)复杂网络的基础知识

第二章复杂网络的基础知识2。

1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。

如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。

如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。

图2—1 网络类型示例(a) 无权无向网络 (b)加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。

如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。

如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。

图2—2 规则网络示例(a)一维有限规则网络 (b)二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length)、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。

2。

2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。

定义网络的直径(diameter)为网络中任意两个节点之间距离的最大值.即}{max ,ij ji l D = (2—1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值.即 ∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2) 其中N 为网络节点数,不考虑节点自身的距离.网络的平均路径长度L 又称为特征路径长度(characteristic path length)。

复杂网络的建模和分析

复杂网络的建模和分析

复杂网络的建模和分析复杂网络研究是当今科学领域中的热点之一,它涉及到社会、生物、物理、信息等多个领域。

复杂网络模型能够帮助我们更好地理解网络结构和演化规律。

本文主要讨论复杂网络的建模和分析方法。

一、复杂网络的基本概念复杂网络是由大量节点和连接所组成的网络,它的确切定义是一个非常复杂的问题,因此我们需要对其进行具体的描述和定义。

一般来说,复杂网络具有以下特点:1. 大规模性:复杂网络中节点数目非常庞大,通常超过数百甚至上万个。

2. 非线性性:复杂网络的演化过程存在非线性的关系,而这种非线性关系是复杂网络分析中的一个重要问题。

3. 动态性:复杂网络不断地产生新的连接,整个网络在不断地演化,形成更为复杂的结构。

4. 自相似性:复杂网络的局部结构和整体结构之间存在自相似性,即某些局部结构在整体结构中重复出现。

5. 非均质性:复杂网络中不同节点和连接的权重、度数、邻居数等参数都存在一定程度的不均质性。

基于以上特点,我们可以将复杂网络建模成为一个包含大量节点和连接的网络结构,通过分析网络的演化过程以及节点和连接之间的关系,来研究其运作机制和规律。

二、复杂网络的建模方法为了研究复杂网络的特性和演化过程,需要对其进行建模。

复杂网络的建模方法主要可以分为两类:统计模型和物理模型。

1. 统计模型统计模型是利用大量的数据进行拟合,而得到的数学模型。

统计模型通常把复杂网络建模成一个随机图,其中节点、连边、度数等概率都是随机的。

根据这些概率可以推出整个网络的拓扑结构。

统计模型中比较常见的是随机图模型和小世界模型。

随机图模型是一种最简单的复杂网络模型,该模型中所有节点的度分布都是相同的,没有统计规律可言。

随机图模型不仅适合描述现实中的网络,而且可以作为一种基准,评估现实中复杂网络的性质和特点。

相比随机图模型,小世界模型更加符合现实中复杂网络的分布规律。

小世界模型主要基于「小世界效应」,即复杂网络中任意两个节点之间距离较短,由少数中心节点所控制。

面向大数据的复杂网络理论与应用

面向大数据的复杂网络理论与应用

面向大数据的复杂网络理论与应用一、背景介绍随着信息技术的快速发展,数据已成为当今社会的一大资源。

大数据时代的到来,使得数据量呈现指数级增长。

在这种背景下,网络分析方法被广泛应用于复杂数据的分析。

复杂网络是由大量节点和连接组成的网络结构,例如社交网络、交通网络和互联网等。

复杂网络的理论和应用对于解决大规模数据的问题具有重要意义。

二、复杂网络的基本理论1. 复杂网络的表示方法复杂网络可以用图形和矩阵表示。

在图形表示中,节点表示复杂体系中的元素,边表示这些元素之间的关系。

矩阵表示法则是将复杂体系转化为一个矩阵,该矩阵中的数值表示节点与节点之间的距离或者相似程度。

2. 复杂网络的属性复杂网络的属性包括度、聚类系数和介数中心性等。

节点的度指的是连接该节点的边数,聚类系数表示相邻节点之间的联系程度,介数中心性反映一个节点在网络中的重要程度。

3. 复杂网络的模型常见的复杂网络模型包括随机网络模型、小世界网络模型和无标度网络模型等。

随机网络模型是指连接节点的方式随机分布的网络,小世界网络模型则是在随机网络的基础上,使得节点之间具备一定的距离,无标度网络模型则是建立在度分布律的基础上,节点的度数呈现幂律分布。

三、复杂网络在大数据分析中的应用1. 社交网络分析社交网络是人们在社交关系中形成的互联网络,例如微博、微信等。

社交网络分析可以对用户行为进行建模和预测,对于社交媒体的商业应用,例如用户关注度分析和用户行为分析等方面带来了巨大的商业价值。

2. 交通网络分析交通网络是人们在交通出行中形成的互联网络,例如地铁、公交、高速公路等。

交通网络分析可以预测车流量、拥堵情况和出行方案,对于城市交通管理和规划方面带来了重要的应用支持。

3. 互联网搜索引擎互联网搜索引擎是人们搜索网络信息的重要工具,例如百度、谷歌等。

在海量的数据搜索和排名方面,复杂网络分析技术可以提高搜索结果的准确性和效率。

四、面向大数据的复杂网络的未来展望复杂网络的发展已经走到了一个全面应用的时代,大数据在此背景下推进网络技术的创新和升级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章复杂网络的基础知识2.1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。

如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。

如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。

图2-1 网络类型示例(a) 无权无向网络(b) 加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。

如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。

如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。

图2-2 规则网络示例(a) 一维有限规则网络(b) 二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length )、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。

2.2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。

定义网络的直径(diameter )为网络中任意两个节点之间距离的最大值。

即}{max ,ij ji l D = (2-1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值。

即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 为网络节点数,不考虑节点自身的距离。

网络的平均路径长度L 又称为特征路径长度(characteristic path length )。

网络的平均路径长度L 和直径D 主要用来衡量网络的传输效率。

2.2.2 簇系数(clustering efficient )假设网络中的一个节点i 有k i 条边将它与其它节点相连,这k i 个节点称为节点i 的邻居节点,在这k i 个邻居节点之间最多可能有k i (k i -1)/2条边。

节点i 的k i 个邻居节点之间实际存在的边数N i 和最多可能有的边数k i (k i -1)/2之比就定义为节点i 的簇系数,记为C i 。

即)1(2-=i i i i k k N C (2-3) 整个网络的聚类系数定义为网络中所有节点i 的聚类系数C i 的平均值,记为C 。

即∑==Ni iC N C 11 (2-4) 显然,0 ≤ C ≤ 1之间。

当C =0时,说明网络中所有节点均为孤立节点,即没有任何连边。

当C =1时,说明网络中任意两个节点都直接相连,即网络是全局耦合网络。

2.2.3 度分布(degree distribution )网络中某个节点i 的度k i 定义为与该节点相连接的其它节点的数目,也就是该节点的邻居数。

通常情况下,网络中不同节点的度并不相同,所有节点i 的度k i 的的平均值称为网络的(节点)平均度,记为<k >。

即∑==〉〈N i i kN k 11 (2-5)网络中节点的分布情况一般用度分布函数P (k )来描述。

度分布函数P (k )表示在网络中任意选取一节点,该节点的度恰好为k 的概率。

即∑=-=Ni ik k N k P 1)(1)(δ (2-6) 通常,一个节点的度越大,意味着这个节点属于网络中的关键节点,在某种意义上也越“重要”。

2.2.4 介数(betweenness )节点i 的介数定义为网络中所有的最短路径中,经过节点i 的数量。

用B i 表示。

即n m i n m,g g B n m n m n i m i ≠≠=∑ ,, (2-7)式中g mn 为节点m 与节点n 之间的最短路径数,g min 为节点m 与节点n 之间经过节点i的最短路径数。

节点的介数反映了该节点在网络中的影响力。

描述网络结构的特征量还有很多,这里就不一一介绍,在使用到它们的地方再给出详细的说明。

2.3 复杂网络的基本模型人们在对不同领域内的大量实际网络进行广泛的实证研究后发现:真实网络系统往往表现出小世界特性、无标度特性和高聚集特性。

为了解释这些现象,人们构造了各种各样的网络模型,以便从理论上揭示网络行为与网络结构之间的关系,进而考虑改善网络的行为。

下面介绍几类基本的网络模型。

2.3.1 规则网络(regular network)常见的规则网络有三种:全局耦合网络(globally coupled network)、最近邻耦合网络(nearest-neighbor coupled network)和星型网络模型(star coupled network),如图2-3所示。

图2-3 三种典型的规则网络(a) 全局耦合网络(b) 最近邻耦合网络(c) 星型网络图2-3(a)所示为一个含有N个节点的全局耦合网络。

网络中共有N(N-1)/2条边,其平均路径长度L=1(最小),簇系数C=1(最大)。

度分布P(k)为以N-1为中心的δ函数。

模型的优点:能反映实际网络的小世界特性和大聚类特性。

模型的缺点:不能反映实际网络的稀疏特性。

因为一个具有N个节点的全局耦合网络的边的数目为O (N 2),而实际网络的边的数目一般是O (N )。

图2-3(b )所示为一个含有N 个节点的最近邻耦合网络。

网络中的每个节点只和它周围的邻居节点相连,其中每个节点都与它左右各K /2个邻居节点相连(K 为偶数)。

对于固定的K 值,网络的平均路径长度为:)(2∞→∞→≈N K N L (2-8) 对于较大的K 值,最近邻耦合网络的簇系数为:43)1(4)2(3≈--=K K C (2-9) 度分布P (k )为以K 为中心的δ函数。

模型的优点:能反映实际网络的大聚类特性和稀疏特性。

模型的缺点:不能反映实际网络的小世界特性。

图2-3(c )所示为一个具有N 个节点的星型网络。

网络有一个中心节点,其余N -1个节点都只与这个中心节点相连,且它们彼此之间不连接。

网络的平均路径长度:)(2)1()1(22∞→→---=N N N N L (2-10) 网络的簇系数为:)(11∞→→-=N NN C (2-11) 网络的度分布为:⎪⎪⎩⎪⎪⎨⎧-==-=其它 0)1()1(1)(11N K K K P N N (2-12) 规定:如果一个节点只有一个邻居,那么该节点的簇系数为1。

也有些文献规定只有一个邻居的节点的簇系数为0,若依此定义,则星型网络的簇系数为0。

模型的优点:能反映实际网络的小世界特性和稀疏特性。

模型的缺点:不能反映实际网络的大聚类特性。

2.3.2 ER 随机网络(random network )该模型由匈牙利数学家Ed ös 和Rényi 在上世纪50年代最先提出,所以被人们称为ER 随机网络模型。

ER 随机网络的构造有两种方法。

第一种方法:定义有标记的N 个节(网络中的节点总数),并且给出整个网络的边数n ,这些边的选取采用从所有可能的N (N -1)/2种情况中随机选取。

第二种方法:给定有标记的N 个节点,以一定的随机概率p 连接所有可能出现的N (N -1)/2种连接,假设最初有N 个孤立的节点,每对节点以随机概率p 进行连接。

如图2-4所示。

图2-4 ER 随机网络的演化示意图(a )p =0时,给定10个孤立节点;(b )~(c )p =0.1,0.15时,生成的随机图 ER 随机网络模型具有如下基本特性:(1)涌现或相变如果当N →∞时产生一个具有性质Q 的ER 随机图的概率为1,那么几乎每一个ER 随机图都具有性质Q 。

以连通性为例,若当连接概率p 达到某个临界值p c ∝(ln N )/N 时,整个网络连通起来,那么以概率p 生成的每一个网络几乎都是连通的,否则,当p 小于该临界值时,几乎每一个网络都是非连通的。

(2)度分布对于一个给定连接概率为p 的随机网络,若网络的节点数N 充分大,则网络的度分布接近泊松(Poission )分布,如图2-5所示。

〉〈----〉〈≈-=k k k N k k N e k k p p C k P !)1()(11 (2-13) 式中<k >=p (N -1)≈PN 表示ER 随机网络的平均度。

图2-5 ER 随机网络的度分布(取自文献[ ])(3)平均路径长度假定网络的平均路径长度为L ,从网络的一端走到网络的另一端,总步数大概为L 。

由于ER 随机网络的平均度为﹤k ﹥,对于任意一个节点,其一阶邻居的数目为﹤k ﹥,二阶邻居的数目为﹤k ﹥2,以此类推,当经过L 步后遍历了网络的所有节点,因此对于规模为N 的随机网络,有﹤k ﹥L =N 。

由此可以得到网络的平均路径长度为:〉〈==k N pN N L ln ln )ln(ln (2-14)由于ln N 的值随N 增长较慢,所以规模很大的ER 随机网络具有很小的平均路径长度,如图2-6所示。

图2-6 ER 随机网络的平均路径长度与网络规模的关系(取自文献[ ])(4)簇系数在ER 随机网络中,由于任何两个节点之间的连接概率p 都相等,所以ER 随机网络的聚类系数为:Nk p C 〉〈== (2-15) 可见,当网络规模N 固定时,簇系数随着网络节点平均度<k >的增加而增加,如图2-7所示。

当网络节点平均度<k >固定时,簇系数随着网络规模N 的增加而下降,如图2-8和所示。

显然,当N 较大时,ER 随机网络的簇系数很小。

图2-7 (N=104)ER随机网络的簇系数与连接概率的关系(取自文献[ ])图2-8 (p=0.0015)ER随机网络的簇系数与网络规模的关系(取自文献[ ])模型的优点:能反映实际网络的小世界特性。

模型的缺点:不能反映实际网络的大聚类特性。

2.3.3 小世界网络(small-world network)作为从完全规则网络向完全随机网络的过渡,美国学者Watts和Strogatz于1998年设计了一个具有小的平均路径长度和大的聚类系数的小世界网络模型(small-world network),简称WS小世界网络模型。

WS小世界网络模型的构造算法:(1)从规则网络开始:考虑一个含有N个节点的最近邻耦合网络,它们围成一个环,其中每一个节点都与它左右相邻的各K/2个节点相连,K是偶数。

相关文档
最新文档