复杂网络的基础知识
网络科学中的复杂网络研究

网络科学中的复杂网络研究随着互联网技术的不断发展,人们的生活方式和工作方式也在发生着巨大的变化。
同时,人们对于互联网的极度依赖也使得网络科学变得越来越重要。
网络科学是一门研究网络结构、行为和演化的学科,其中复杂网络研究是网络科学中的重要方向之一。
本文将探讨网络科学中的复杂网络研究。
一、复杂网络的定义复杂网络是指由大量节点(node)和连接(link)构成的一种网络结构。
在复杂网络中,节点可以代表不同的事物,如人、公司、物品等,而连接则代表节点之间的关系,如交互、联系、传递等。
复杂网络的结构往往是非常复杂的,节点和连接数量很大,而且连接关系存在着很多的变化和不确定性。
二、复杂网络的特征复杂网络具有许多独特的特征,其中比较重要的特征包括:1.小世界性:复杂网络的节点之间往往会形成一些短路径,这些短路径将整个网络连接在了一起。
这种现象称为小世界性。
小世界性意味着网络的信息传递能力很强。
2.无标度性:复杂网络中的节点往往分布不均匀,只有少数节点连接了大量的其他节点,而大多数节点只连接了少量的节点。
这种现象称为无标度性。
无标度性意味着网络的节点之间存在着重要的枢纽节点。
3.聚集性:复杂网络中的节点往往呈现出聚集集中的现象,这些节点之间存在着很多的三角形连接关系。
这种现象称为聚集性。
聚集性意味着网络的节点之间存在着很多的社区结构。
三、复杂网络的研究方法复杂网络的研究方法主要包括两类,一类是基于统计物理学的方法,另一类是基于图论的方法。
基于统计物理学的方法通常用于描述网络中的相变现象,如网络的阈值、相等温转变等。
而基于图论的方法通常用于描述网络中节点之间的联系和关系,如节点之间的距离、聚集系数等。
四、复杂网络的应用复杂网络的应用非常广泛,其中比较重要的应用包括:1.社交网络分析:通过对社交网络进行复杂网络分析,可以深入了解社交网络中的节点之间的关系、信息传播和社区结构等。
2.互联网搜索引擎:搜索引擎可以通过对互联网进行复杂网络分析,提高搜索的效果和精度。
复杂网络基础2(M.Chang)

复杂网络基础理论第二章网络拓扑结构与静态特征第二章网络拓扑结构与静态特征l2.1 引言l2.2 网络的基本静态几何特征l2.3 无向网络的静态特征l2.4 有向网络的静态特征l2.5 加权网络的静态特征l2.6 网络的其他静态特征l2.7 复杂网络分析软件22.1 引言与图论的研究有所不同,复杂网络的研究更侧重于从各种实际网络的现象之上抽象出一般的网络几何量,并用这些一般性质指导更多实际网络的研究,进而通过讨论实际网络上的具体现象发展网络模型的一般方法,最后讨论网络本身的形成机制。
统计物理学在模型研究、演化机制与结构稳定性方面的丰富的研究经验是统计物理学在复杂网络研究领域得到广泛应用的原因;而图论与社会网络分析提供的网络静态几何量及其分析方法是复杂网络研究的基础。
32.1 引言静态特征指给定网络的微观量的统计分布或宏观统计平均值。
在本章中我们将对网络的各种静态特征做一小结。
由于有向网络与加权网络有其特有的特征量,我们将分开讨论无向、有向与加权网络。
4返回目录2.2 网络的基本静态几何特征¢2.2.1 平均距离¢2.2.2 集聚系数¢2.2.3 度分布¢2.2.4 实际网络的统计特征52.2.1 平均距离1.网络的直径与平均距离网络中的两节点v i和v j之间经历边数最少的一条简单路径(经历的边各不相同),称为测地线。
测地线的边数d ij称为两节点v i和v j之间的距离(或叫测地线距离)。
1/d ij称为节点v i和v j之间的效率,记为εij。
通常效率用来度量节点间的信息传递速度。
当v i和v j之间没有路径连通时,d ij=∞,而εij=0,所以效率更适合度量非全通网络。
网络的直径D定义为所有距离d ij中的最大值62.2.1 平均距离平均距离(特征路径长度)L定义为所有节点对之间距离的平均值,它描述了网络中节点间的平均分离程度,即网络有多小,计算公式为对于无向简单图来说,d ij=d ji且d ii=0,则上式可简化为很多实际网络虽然节点数巨大,但平均距离却小得惊人,这就是所谓的小世界效应。
复杂网络-总结的还可以

要表现在以下几个方面:
15
1.3 复杂网络的主要表现方面
• 结构复杂:表现在节点数目巨大,网络结构呈现多种不同
特征。
Figure 6.Internet 在自治系统层次上的拓扑图
16
1.3 复杂网络的主要表现方面
• 网络进化:表现在节点或连接的产生与消失。例如World
Wide Web,网页或链接随时可能出现或断开,导致网络 结构不断发生变化。
29
3.2 如何区分复杂网络中的一般连接和随机连接
• k-means • 谱聚类 • 模块Q函数
30
3.3 影响复杂网络拓扑结构的性能的因素是什么
• T. Hossmann, T. Spyropoulos, and F. Legendre,
"Know Thy Neighbor: Towards Optimal Mapping of Contacts to Social Graphs for DTN Routing", in Proc. INFOCOM, 2010, pp.866-874.
4
1.1 复杂网络的概念
• 自组织:如果一个系统靠外部指令而形成组织,就是他组
织;如果不存在外部指令,系统按照相互默契的某种规则, 各尽其责而又协调地自动地形织
5
1.1 复杂网络的概念
• 自相似:一种形状的每一部分在几何上相似于整体,一般
复杂网络基础理论

无标度网络
定义:无标度网络是指节点的度分布遵循幂律分布的网络即少数节点拥有大量连接大部分节点 只有少数连接。
特性:无标度网络具有高度的异质性其结构可以抵抗随机攻击但容易受到定向攻击。
构建方法:无标度网络的构建通常采用优先连接机制即新节点更倾向于与已经具有大量连接的 节点相连。
应用场景:无标度网络在现实世界中广泛存在如社交网络、互联网、蛋白质相互作用网络等。
07
复杂网络的未来研究方向和挑战
跨领域交叉研究
复杂网络与计算机 科学的交叉:研究 网络算法、网络安 全和网络流量控制 等。
复杂网络与生物学 的交叉:研究生物 系统的网络结构和 功能如蛋白质相互 作用网络和基因调 控网络等。
复杂网络与物理学 的交叉:研究网络 的拓扑结构和动力 学行为如复杂系统 、自组织系统和非 线性系统等。
复杂网络的演化过程中节点和边 的动态变化会导致网络的拓扑结 构和性质发生改变。
添加标题
添加标题
添加标题
添加标题
复杂网络具有非线性和自组织的 特性能够涌现出复杂的结构和行 为。
复杂网络在现实世界中广泛存在 如社交网络、生物网络、交通网 络等。
复杂网络的特征
节点数量巨大且具有自组织、 自相似、小世界等特性
03
复杂网络的基本理论
网络拓扑结构
节点:复杂网络中的基本单元
连通性:网络中节点之间是否存 在路径
添加标题
添加标题
添加标题
添加标题
边:连接节点的线段表示节点之 间的关系
聚类系数:衡量网络中节点聚类 的程度
网络演化模型
节点增长模型:节点按照一定概 率在网络中加入形成无标度网络
节点属性演化模型:节点属性随 时间发生变化影响网络的演化
复杂网络介绍(NetworkAnalysis)

复杂⽹络介绍(NetworkAnalysis)⼀、复杂⽹络的进化史⽹络,数学上称为图,最早研究始于1736年欧拉的哥尼斯堡七桥问题,但是之后关于图的研究发展缓慢,直到1936年,才有了第⼀本关于图论研究的著作。
1960年,数学家Erdos和Renyi建⽴了随机图理论,为构造⽹络提供了⼀种新的⽅法。
在这种⽅法中,两个节点之间是否有边连接不再是确定的事情,⽽是根据⼀个概率决定,这样⽣成的⽹络称作随机⽹络。
随机图的思想主宰复杂⽹络研究长达四⼗年之久,然⽽,直到近⼏年,科学家们对⼤量的现实⽹络的实际数据进⾏计算研究后得到的许多结果,绝⼤多数的实际⽹络并不是完全随机的,既不是规则⽹络,也不是随机⽹络,⽽是具有与前两者皆不同的统计特征的⽹络。
这样的⼀·些⽹络称为复杂⽹络,对于复杂⽹络的研究标志着⽹络研究的第三阶段的到来。
1998年,Watts及其导师Strogatz在Nature上的⽂章《Collective Dynamics of Small-world Networks》,刻画了现实世界中的⽹络所具有的⼤的凝聚系数和短的平均路径长度的⼩世界特性。
随后,1999年,Barabasi及其博⼠⽣Albert在Science上的⽂章《Emergence of Scaling in Random Networks》提出⽆尺度⽹络模型(度分布为幂律分布),,刻画了实际⽹络中普遍存在的“富者更富”的现象,从此开启了复杂⽹络研究的新纪元。
随着研究的深⼊,越来越多关于复杂⽹络的性质被发掘出来,其中很重要的⼀项研究是2002年Girvan和Newman在PNAS上的⼀篇⽂章《Community structure in social and biological networks》,指出复杂⽹络中普遍存在着聚类特性,每⼀个类称之为⼀个社团(community),并提出了⼀个发现这些社团的算法。
从此,热门对复杂⽹络中的社团发现问题进⾏了⼤量研究,产⽣了⼤量的算法。
复杂网络的基础知识

第二章复杂网络的基础知识2.1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。
如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。
如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。
图2-1 网络类型示例(a) 无权无向网络(b) 加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。
如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。
如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。
图2-2 规则网络示例(a) 一维有限规则网络(b) 二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length )、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。
2.2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。
定义网络的直径(diameter )为网络中任意两个节点之间距离的最大值。
即}{max ,ij ji l D = (2-1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值。
即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 为网络节点数,不考虑节点自身的距离。
(完整版)复杂网络的基础知识

第二章复杂网络的基础知识2。
1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。
如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。
如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。
图2—1 网络类型示例(a) 无权无向网络 (b)加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。
如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。
如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。
图2—2 规则网络示例(a)一维有限规则网络 (b)二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length)、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。
2。
2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。
定义网络的直径(diameter)为网络中任意两个节点之间距离的最大值.即}{max ,ij ji l D = (2—1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值.即 ∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2) 其中N 为网络节点数,不考虑节点自身的距离.网络的平均路径长度L 又称为特征路径长度(characteristic path length)。
复杂网络中的信息传播与控制分析

复杂网络中的信息传播与控制分析复杂网络是由许多节点和连接线构成的网络结构,如社交网络、物流网络和电力网络等。
这些网络的特性使得信息传播和控制变得更加复杂和困难。
因此,为了有效地利用网络,需要理解复杂网络中的信息传播和控制。
本文将介绍复杂网络的基本特点、信息传播的过程、以及如何控制信息传播。
一、复杂网络的基本特点复杂网络的节点数量很大,连接线非常复杂,同时还有许多环路和分支。
这种结构导致信息传播和控制变得更加困难。
为了更好地理解网络,研究者们提出了许多重要的特征量。
例如,首先需要小心地研究网络的拓扑结构,也就是节点之间连接的方式。
这些结构可以是完全连通、星型、环状或高度分散。
高度分散的连接可以提高网络的弹性和稳定性。
其次,网络的度分布也是一个重要的特征。
该分布告诉我们节点被相互关联的频率,从而可以了解节点之间联系的密度。
在一些网络中,例如社交网络或者生物网络,节点的度分布是幂律分布。
这表明少量的节点连接具有高度的中心性。
最后,网络中的聚类系数也是非常重要的。
聚类系数告诉我们在网络中节点与其邻居之间的连通性程度。
这是网络中信息传播和控制的重要影响因素。
二、信息传播的过程信息传播是网络中一个极其重要的过程,它发生在各种网络中。
例如,在社交网络中,传递最快的信息可能是人们的情感状态。
在物流网络中,信息可能是关于产品的信息,例如产品的价值、生产量和销售情况。
信息在网络中以不同形式传播,例如,传感器信息、控制信息、传输信息等。
在网络中,信息传播可以通过两种方式实现:广泛传播和定向传播。
广泛传播意味着将信息发送到网络的所有节点。
这种广泛传播的策略在信息安全和大型分布式系统中广泛使用。
在广泛传播的情况下,信息必须在网络中有一个高度传递的速率。
与广泛传播不同,定向传播通常是指将信息发送到特定的节点。
定向传播可以让我们更加高效地传递信息,特别是在通信密度较高或需要加密保护的情况下。
三、如何控制信息传播在许多情况下,我们希望控制信息在复杂网络中的传播。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章复杂网络的基础知识2.1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。
如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。
如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。
图2-1 网络类型示例(a) 无权无向网络(b) 加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。
如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。
如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。
图2-2 规则网络示例(a) 一维有限规则网络(b) 二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length )、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。
2.2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。
定义网络的直径(diameter )为网络中任意两个节点之间距离的最大值。
即}{max ,ij ji l D = (2-1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值。
即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 为网络节点数,不考虑节点自身的距离。
网络的平均路径长度L 又称为特征路径长度(characteristic path length )。
网络的平均路径长度L 和直径D 主要用来衡量网络的传输效率。
2.2.2 簇系数(clustering efficient )假设网络中的一个节点i 有k i 条边将它与其它节点相连,这k i 个节点称为节点i 的邻居节点,在这k i 个邻居节点之间最多可能有k i (k i -1)/2条边。
节点i 的k i 个邻居节点之间实际存在的边数N i 和最多可能有的边数k i (k i -1)/2之比就定义为节点i 的簇系数,记为C i 。
即)1(2-=i i i i k k N C (2-3) 整个网络的聚类系数定义为网络中所有节点i 的聚类系数C i 的平均值,记为C 。
即∑==Ni iC N C 11 (2-4) 显然,0 ≤ C ≤ 1之间。
当C =0时,说明网络中所有节点均为孤立节点,即没有任何连边。
当C =1时,说明网络中任意两个节点都直接相连,即网络是全局耦合网络。
2.2.3 度分布(degree distribution )网络中某个节点i 的度k i 定义为与该节点相连接的其它节点的数目,也就是该节点的邻居数。
通常情况下,网络中不同节点的度并不相同,所有节点i 的度k i 的的平均值称为网络的(节点)平均度,记为<k >。
即∑==〉〈N i i kN k 11 (2-5)网络中节点的分布情况一般用度分布函数P (k )来描述。
度分布函数P (k )表示在网络中任意选取一节点,该节点的度恰好为k 的概率。
即∑=-=Ni ik k N k P 1)(1)(δ (2-6) 通常,一个节点的度越大,意味着这个节点属于网络中的关键节点,在某种意义上也越“重要”。
2.2.4 介数(betweenness )节点i 的介数定义为网络中所有的最短路径中,经过节点i 的数量。
用B i 表示。
即n m i n m,g g B n m n m n i m i ≠≠=∑ ,, (2-7)式中g mn 为节点m 与节点n 之间的最短路径数,g min 为节点m 与节点n 之间经过节点i的最短路径数。
节点的介数反映了该节点在网络中的影响力。
描述网络结构的特征量还有很多,这里就不一一介绍,在使用到它们的地方再给出详细的说明。
2.3 复杂网络的基本模型人们在对不同领域内的大量实际网络进行广泛的实证研究后发现:真实网络系统往往表现出小世界特性、无标度特性和高聚集特性。
为了解释这些现象,人们构造了各种各样的网络模型,以便从理论上揭示网络行为与网络结构之间的关系,进而考虑改善网络的行为。
下面介绍几类基本的网络模型。
2.3.1 规则网络(regular network)常见的规则网络有三种:全局耦合网络(globally coupled network)、最近邻耦合网络(nearest-neighbor coupled network)和星型网络模型(star coupled network),如图2-3所示。
图2-3 三种典型的规则网络(a) 全局耦合网络(b) 最近邻耦合网络(c) 星型网络图2-3(a)所示为一个含有N个节点的全局耦合网络。
网络中共有N(N-1)/2条边,其平均路径长度L=1(最小),簇系数C=1(最大)。
度分布P(k)为以N-1为中心的δ函数。
模型的优点:能反映实际网络的小世界特性和大聚类特性。
模型的缺点:不能反映实际网络的稀疏特性。
因为一个具有N个节点的全局耦合网络的边的数目为O (N 2),而实际网络的边的数目一般是O (N )。
图2-3(b )所示为一个含有N 个节点的最近邻耦合网络。
网络中的每个节点只和它周围的邻居节点相连,其中每个节点都与它左右各K /2个邻居节点相连(K 为偶数)。
对于固定的K 值,网络的平均路径长度为:)(2∞→∞→≈N K N L (2-8) 对于较大的K 值,最近邻耦合网络的簇系数为:43)1(4)2(3≈--=K K C (2-9) 度分布P (k )为以K 为中心的δ函数。
模型的优点:能反映实际网络的大聚类特性和稀疏特性。
模型的缺点:不能反映实际网络的小世界特性。
图2-3(c )所示为一个具有N 个节点的星型网络。
网络有一个中心节点,其余N -1个节点都只与这个中心节点相连,且它们彼此之间不连接。
网络的平均路径长度:)(2)1()1(22∞→→---=N N N N L (2-10) 网络的簇系数为:)(11∞→→-=N NN C (2-11) 网络的度分布为:⎪⎪⎩⎪⎪⎨⎧-==-=其它 0)1()1(1)(11N K K K P N N (2-12) 规定:如果一个节点只有一个邻居,那么该节点的簇系数为1。
也有些文献规定只有一个邻居的节点的簇系数为0,若依此定义,则星型网络的簇系数为0。
模型的优点:能反映实际网络的小世界特性和稀疏特性。
模型的缺点:不能反映实际网络的大聚类特性。
2.3.2 ER 随机网络(random network )该模型由匈牙利数学家Ed ös 和Rényi 在上世纪50年代最先提出,所以被人们称为ER 随机网络模型。
ER 随机网络的构造有两种方法。
第一种方法:定义有标记的N 个节(网络中的节点总数),并且给出整个网络的边数n ,这些边的选取采用从所有可能的N (N -1)/2种情况中随机选取。
第二种方法:给定有标记的N 个节点,以一定的随机概率p 连接所有可能出现的N (N -1)/2种连接,假设最初有N 个孤立的节点,每对节点以随机概率p 进行连接。
如图2-4所示。
图2-4 ER 随机网络的演化示意图(a )p =0时,给定10个孤立节点;(b )~(c )p =0.1,0.15时,生成的随机图 ER 随机网络模型具有如下基本特性:(1)涌现或相变如果当N →∞时产生一个具有性质Q 的ER 随机图的概率为1,那么几乎每一个ER 随机图都具有性质Q 。
以连通性为例,若当连接概率p 达到某个临界值p c ∝(ln N )/N 时,整个网络连通起来,那么以概率p 生成的每一个网络几乎都是连通的,否则,当p 小于该临界值时,几乎每一个网络都是非连通的。
(2)度分布对于一个给定连接概率为p 的随机网络,若网络的节点数N 充分大,则网络的度分布接近泊松(Poission )分布,如图2-5所示。
〉〈----〉〈≈-=k k k N k k N e k k p p C k P !)1()(11 (2-13) 式中<k >=p (N -1)≈PN 表示ER 随机网络的平均度。
图2-5 ER 随机网络的度分布(取自文献[ ])(3)平均路径长度假定网络的平均路径长度为L ,从网络的一端走到网络的另一端,总步数大概为L 。
由于ER 随机网络的平均度为﹤k ﹥,对于任意一个节点,其一阶邻居的数目为﹤k ﹥,二阶邻居的数目为﹤k ﹥2,以此类推,当经过L 步后遍历了网络的所有节点,因此对于规模为N 的随机网络,有﹤k ﹥L =N 。
由此可以得到网络的平均路径长度为:〉〈==k N pN N L ln ln )ln(ln (2-14)由于ln N 的值随N 增长较慢,所以规模很大的ER 随机网络具有很小的平均路径长度,如图2-6所示。
图2-6 ER 随机网络的平均路径长度与网络规模的关系(取自文献[ ])(4)簇系数在ER 随机网络中,由于任何两个节点之间的连接概率p 都相等,所以ER 随机网络的聚类系数为:Nk p C 〉〈== (2-15) 可见,当网络规模N 固定时,簇系数随着网络节点平均度<k >的增加而增加,如图2-7所示。
当网络节点平均度<k >固定时,簇系数随着网络规模N 的增加而下降,如图2-8和所示。
显然,当N 较大时,ER 随机网络的簇系数很小。
图2-7 (N=104)ER随机网络的簇系数与连接概率的关系(取自文献[ ])图2-8 (p=0.0015)ER随机网络的簇系数与网络规模的关系(取自文献[ ])模型的优点:能反映实际网络的小世界特性。
模型的缺点:不能反映实际网络的大聚类特性。
2.3.3 小世界网络(small-world network)作为从完全规则网络向完全随机网络的过渡,美国学者Watts和Strogatz于1998年设计了一个具有小的平均路径长度和大的聚类系数的小世界网络模型(small-world network),简称WS小世界网络模型。
WS小世界网络模型的构造算法:(1)从规则网络开始:考虑一个含有N个节点的最近邻耦合网络,它们围成一个环,其中每一个节点都与它左右相邻的各K/2个节点相连,K是偶数。