高中物理选修3-5物理学史[001]
高中物理人教版选修3-5-知识点总结材料

选修3-5知识梳理一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。
2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。
②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。
3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。
②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。
③到1925年左右,量子力学最终建立。
4.量子论的意义①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。
②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。
③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。
量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。
(二)黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。
这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
①.物体在任何温度下都会辐射能量。
②.物体既会辐射能量,也会吸收能量。
物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。
辐射和吸收的能量恰相等时称为热平衡。
此时温度恒定不变。
实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。
2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。
物理选修3-5知识点总结

物理选修3-5知识点总结
物理选修3-5知识点总结
物理选修3-5主要涵盖了电磁学和光学方面的知识。
下面是该部
分的主要内容。
1. 电磁感应定律:法拉第电磁感应定律描述了磁场变化产生的
感应电动势。
磁通量的改变可以产生感应电流。
2. 洛仑兹力和洛仑兹力密度:洛仑兹力是带电粒子在磁场中受
到的力,其大小与电荷、速度和磁场强度有关。
洛仑兹力密度描述了
电流在磁场中所受的力。
3. 涡旋电场和磁场:涡旋电场是由磁场随时间变化时产生的电场。
涡旋磁场是由电荷随时间变化时产生的磁场。
4. 波动光学:包括干涉和衍射两个主要部分。
干涉是光波相互
叠加而形成明暗条纹的现象。
衍射是光波经过小孔或绕过物体时产生
弯曲或扩散的现象。
5. 偏振光:偏振光是指振动方向限制在特定方向上的光波。
通
过偏振片可以将非偏振光转化为偏振光。
6. 光的多普勒效应:当光源和观察者相对运动时,光的频率和
波长会发生变化。
对于光源接近观察者,频率增大,波长缩短;对于
光源远离观察者,频率减小,波长增加。
7. 雅克比行列式:雅克比行列式用来计算坐标变换时的雅克比
矩阵的行列式。
在电动力学和光学中经常用到。
8. 光的干涉衍射仪:光的干涉衍射仪包括双缝干涉、单缝衍射、光栅衍射等装置。
利用这些装置,可以观察到光波的干涉和衍射现象。
以上是物理选修3-5的主要知识点总结,涵盖了电磁学和光学的
相关内容。
高中物理学史资料、3-3、3-5知识总结

物理学史资料16.图为研究光电效应实验电路图。
①图中加的正向电压,K 为阴极,发生光电效应时,逸出光电子在KA 之间做加速运动,电流计有读数,为光电流,增大U ,电流计读数增大,最后达到一个饱和最大值,叫饱和光电流。
②如果把图中电源正负极反接,则加的反向电压,发生光电效应时,逸出光电子在KA 之间做减速运动,只能要到A ,电流计就有读数,如果增大反向电压,电流计读数会减小,当电流计读数为0时,反向电压叫做遏止电压,一般用c U 表示。
③对应方程:20012c eU mv hv w ==-, 可知:遏止电压c U 与照射光频率成正相关。
④相关三个重要图像17.波尔氢原子跃迁能级图①基态能级值:1E =-13.6V e ②激发态能级值:1n 2=E E n③跃迁规律:,()m n hv E E m n =->低能级→高能级:吸收光子,电子动能减小,势能增加,原子总能量增加 高能级→低能级:辐射光子,电子动能增加,势能减小,原子总能量减小 ④电离公式:=-n n hv E E E ∞≥-⑤一群氢原子处于第n 激发态,则向基态跃迁,最大能辐射出几种频率光:2(1)N=2n n n C -=18.比结合能越大,原子核越稳定。
轻核聚变、重核裂变都属于比结合能小向比结合能大转变,反应过程有质量亏损,需要向外释放核能。
且反应后生成物原子核的平均核子质量减小。
19.固体、液体分子看作球体,气体分子看作立方体 20.基本公式①分子直径的估算用单分子油膜法:分子直径数量级:1010m -即V d S=。
(其中V 是一滴纯油酸的体积,S 是水面上形成的单分子油膜的面积. ②密度molm M V V ρ== ③一个分子的质量:0AM m N =④一个分子所占的体积:0molAV V N =,在固体、液体中可近似为一个分子的体积,但是气体分子不能近似为一个分子体积,只表示一个气体分子所占立方体空间体积。
21.分子力与分子势能(1)r =r 0时,F 引=F 斥,F =0;(2)当r <r 0时,F 引和F 斥都随距离的减小而增大,但F 引<F 斥,F 表现为斥力; (3)当r >r 0时,F 引和F 斥都随距离的增大而减小,但F 引>F 斥,F 表现为引力;(4)当r >10r 0(10-9 m)时,F 引和F 斥都已经十分微弱,可以认为分子间没有相互作用力(F =0).22.分子势能分子势能是由分子间相对位置而决定的势能,它随着物体体积的变化而变化,与分子间距离的关系为:(1)当r >r 0时,分子力表现为引力,随着r 的增大,分子引力做负功,分子势能增大;(2)当r <r 0时,分子力表现为斥力,随着r 的减小,分子斥力做负功,分子势能增大;(3)当r =r 0时,分子势能最小,但不为零,为负值.23. 摄氏温标和热力学温标关系:T =t +273.15 K24.决定内能的因素(1)微观上:分子动能、分子势能、分子个数. (2)宏观上:温度、体积、物质的量(摩尔数)特别注意:理想气体忽略了分子势能,所以内能只由分子平均动能决定,即只由温度决定。
高中物理选修35学习知识点梳理

高中物理选修 3-5 知识点梳理1、普朗克量子假说1.创办标记: 1900年普朗克在德国的《物理年刊》发布《论正常光谱能量散布定律》的论文,标记着量子论的出生。
2.量子论的主要内容:①普朗克以为物质的辐射能量其实不是无穷可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说构成能量的单元是量子。
②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。
3.量子论的发展① 1905 年,爱因斯坦将量子观点推行到光的流传中,提出了光量子论。
② 1913 年,英国物理学家玻尔把量子观点推行到原子内部的能量状态,提出了一种量子化的原子构造模型,丰富了量子论。
③到1925 年左右,量子力学最后成立。
4 .实验规律: 1)跟着温度的高升,黑体的辐射强度都有增添;2)跟着温度的高升,辐射强度的极大值向波长较短方向挪动。
2、光电效应1、光电效应⑴光电效应在光(包含不行见光)的照耀下,从物体发射出电子的现象称为光电效应。
⑵光电效应的实验规律:装置:如右图。
①任何一种金属都有一个极限频率,入射光的频次一定大于这个极限频次才能发生光电效应,低于极限频次的光不可以发生光电效应。
②光电子的最大初动能与入射光的强度没关,光随入射光频次的增大而增大。
③大于极限频次的光照耀金属时,光电流强度(反应单位时间发射出的光电子数的多少),与入射光强度成正比。
④金属遇到光照,光电子的发射一般不超出10 -9秒。
2 、光子说⑴量子论: 1900 年德国物理学家普朗克提出:电磁波的发射和汲取是不连续的,而是一份一份的,每一份电磁波的能量h.⑵光子论: 1905 年爱因斯坦提出:空间流传的光也是不连续的,而是一份一份的,每一份称为一个光子,光子拥有的能量与光的频次成正比。
即:h. (此中是电磁波的频次,h为普朗克恒量:h=6.63 ×10 -34J s 3 、光子论对光电效应的解说金属中的自由电子,获取光子后其动能增大,当功能大于脱出功时,电子即可离开金属表面,入射光的频次越大,光子能量越大,电子获取的能量才能越大,飞出时最大初功能也越大。
高中物理人教版选修3-5-知识点总结说课材料

高中物理人教版选修3-5-知识点总结选修3-5知识梳理一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。
2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。
②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。
3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。
②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。
③到1925年左右,量子力学最终建立。
4.量子论的意义①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。
②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。
③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。
量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。
(二)黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。
这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
①.物体在任何温度下都会辐射能量。
②.物体既会辐射能量,也会吸收能量。
物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。
辐射和吸收的能量恰相等时称为热平衡。
此时温度恒定不变。
实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。
2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。
物理人教版高中选修3-5新课程高考高中物理学史

新课程高考高中物理学史一、力学1、伽利略探究物体下落规律的过程用的科学方法是:问题→猜想→数学推理→实验验证→合理外推→得出结论2、伽利略认为自由落体运动是速度随时间均匀变化的运动3、伽利略通过理想斜面实验,提出了”力不是维持物体运动状态的原因”4、开普勒揭示了行星的运动规律,提出开普勒三大定律,为牛顿发现万有引力定律奠定了基础5、牛顿于1687年正式发表万有引力定律,他在寻找万有引力的过程中,利用了牛顿第二、第三定律和开普勒三大定律6、卡文迪许在实验室通过扭秤实验装置比较准确的测出了万有引力常量7、牛顿第一定律不是实验定律,因此是不可以通过实验来验证的二、热学1、英国物理学家焦耳在热学、电磁学等方面做出了杰出贡献,成功地发现了焦耳定律三、电磁学1、奥斯特发现了电流的磁效应;法拉第发现了电磁感应现象,提出场的概念;安培发现了磁场对运动电流的作用规律;洛仑兹发现了磁场对电荷的作用规律2、库仑通过研究带电体间的相互作用,建立了库仑定律3、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。
(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)4、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
5、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
四、选修3-41、麦克斯韦提出了电磁场理论并预言了电磁波的存在,赫兹用实验证实了电磁波的存在2、1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。
3、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。
周期是2s的单摆叫秒摆1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。
4、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。
高中物理选修3-5-1

(4)验证:一维碰撞中的动量守恒.
工具
选考部分 选修3-5
动量守恒定律 波粒二象性 原子结构与原子核
栏目导引
方案二:利用等长悬线悬挂等大小球完成一维碰撞实验
(1)测质量:用天平测出两小球的质量m1、m2. (2)安装:把两个等大小球用等长悬线悬挂起来. (3)实验:一个小球静止,拉起另一个小球,放下时它们相碰. (4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小 球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度. (5)改变条件:改变碰撞条件,重复实验.
工具
选考部分 选修3-5
动量守恒定律 波粒二象性 原子结构与原子核
栏目导引
三、碰撞现象
1.碰撞:两个或两个以上的物体在相遇的极短时间内产生非常大
的相互作用力,而其他的相互作用力相对来说显得微不足道的过程. 2.弹性碰撞:如果碰撞过程中机械能 守恒 性碰撞. 3.非弹性碰撞:如果碰撞过程中机械能 叫做非弹性碰撞. 4.完全非弹性碰撞:碰撞过程中物体的形变完全不能恢复,以致 不守恒 ,这样的碰撞 ,这样的碰撞叫做弹
放射性同位素 Ⅰ
工具
选考部分 选修3-5
动量守恒定律 波粒二象性 原子结构与原子核
栏目导引
核力、核反应方程 Ⅰ
结合能、质量亏损 Ⅰ
裂变反应和聚变反应、裂变反应堆 Ⅰ 放射性的危害和防护 Ⅰ 光电效应 Ⅰ 爱因斯坦光电效应方程 Ⅰ 实验:验证动量守恒定律
工具
选考部分 选修3-5
动量守恒定律 波粒二象性 原子结构与原子核
工具
选考部分 选修3-5
动量守恒定律 波粒二象性 原子结构与原子核
栏目导引
四、实验:验证动量守恒定律
1.实验原理
人教版高中物理选修3-5:知识点归纳(图文并茂)

物理选修3-5知识点总结一、量子理论的建立黑体和黑体辐射、1、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。
2、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。
(普朗克的能量子理论很好的解释了这一现象)3、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hνh为普朗克常数(6.63×10-34J.S)二、光电效应光子说光电效应方程1、光电效应(表明光子具有能量)(1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。
在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。
(2)光电效应的研究结果:①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压:当所加电压U为0时,电流I并不为0。
只有施加反向电压,也就是阴极接电源正极阳极接电源负极,在光电管两级形成使电子减速的电场,电流才可能为0。
使光电流减小到0的反向电压Uc 称为遏止电压E k=eU c。
遏止电压的存在意味着光电子具有一定的初速度;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率高于截止频率时才能发生光电效应v c=w0/h;④光电效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。
规律:①任何一种金属,都有一个极限频率,入射光的频...........,才能产生光电效应;低于这个频率的光不能产生光电效应;.....率必须大于这个极限频率②光电子的最大初动能与入射光的强度无关............,一般..;③入射光照到金属上时,光电子的发射几乎是瞬时的..................,只随着入射光频率的增大..而增大不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指出动量和动能两种量度的同样有效性
动量(momentum)、动能(kinetic energy)
1920
英籍物理学家卢瑟福
猜测原子中可能还有一种电中性的粒子
原子(atom)
1932
英国物理学家查德威克
发现了卢瑟福所预言的粒子——中子
中子(neutron)
1896
德国物理学家维恩
提出了辐射强度按波长分布的理论公式维恩公式
提出了核式结构的原子结构模型
核式结构模型(nuclear structure model)
1814
德国物理学家夫琅和费
通过光谱分析发现了钠的谱线
光谱(spectrum)、谱线(line)
1859
德国物理学家基尔霍夫
解释了太阳光谱中暗线的含义
太阳光谱(the solar spectrum)
1913
丹麦物理学家玻尔
1898
波兰裔科学家玛丽·居里和法国物理学家皮埃尔·居里
发
1919
英籍物理学家卢瑟福
发现了质子
质子(proton)
1928
德国物理学家盖革和米勒
研制成盖革—米勒计数器
盖革—米勒计数器(Geiger-müller counter)
1967
美国物理学家温伯格、英国物理学家萨拉姆和美国物理学家格拉肖
证实阴极射线的本质是带负电的粒子流并求出这种粒子的比荷,发现了电子
阴极射线(cathode ray)、电子(electron)
1909-1913
美国物理学家密立根
通过油滴实验精确测定电子电荷
电子(electron)
1903
德国物理学家勒纳德
发现原子不是实心球体
原子(atom)
1911
英籍物理学家卢瑟福
1907
美国物理学家密立根
测量光电效应中几个重要的物理量,检验了爱因斯坦光电效应方程的正确性
爱因斯坦光电效应方程(Einsteinphotoelectric equation)、光电效应(photoelectric effect)
1923
美国物理学家康普顿
发现康普顿效应
康普顿效应(Compton effect)
建立了波动力学
波动力学(wave mechanics)
1876
德国物理学家戈德斯坦
发现阴极射线
阴极射线(cathode ray)
1890
舒斯特
测出了阴极射线微粒的比荷
阴极射线(cathode ray)
1897
考夫曼
测出了阴极射线微粒的比荷
阴极射线(cathode ray)
1897
英国物理学家J·J·汤姆孙
在格拉肖电弱统一模型的基础上提出了电弱统一的完善理论
格拉肖电弱统一模型(unified electro-weak theory)
1938
德国物理学家哈恩和他的助手特拉斯曼
在用中子轰击铀核的实验中发现生成物中有元素钡
中子(neutron)、铀(Uranium)、钡(Barium)
奥地利物理学家迈特纳和弗里施
辐射(radiation)、波长(wavelength)
1900
英国物理学家瑞利
提出了辐射强度按波长分布的理论公式瑞利公式
辐射(radiation)、波长(wavelength)
1900
德国物理学家普朗克
提出能量子假说,正确地破除了“能量连续变化”的传统观念并得出了黑体辐射的度按波长分布的公式
黑体(lbackbody)、黑体辐射(blackbody radiation)、能量子(energy quantum)、普朗克常数(Planck consant)
定义了核裂变
核裂变(nuclear fission)
1942
美国物理学家费米
主持建立了世界上第一个称为“核反应堆”的装置
核反应堆(nuclear reactor)
证实了电子的波动性
电子(electron)、波动性(volatility)
1926
德国物理学家玻恩
指出光波是一种概念波
光波(visible light)、概念波(probability wave)
1925
德国物理学家海森伯
发展了矩阵力学
矩阵力学(matrix mechanics)
1926
奥地利物理学家薛定谔
19世纪初
英国物理学家托马斯·杨
观察到了光的干涉现象
干涉(interference)
19世纪初
法国物理学家菲涅耳
观察到了光的衍射现象
衍射(diffraction)
19世纪初
法国物理学家马吕斯
观察到了光的偏振现象
偏振(polarization)
19世纪60年代
英国物理学家麦克斯韦
从理论上确认了光的电磁波本质
电磁波(electromagnetic wave)
1887
德国物理学家赫兹
发现了光电现象
光电现象(photoelectric effect)
1905
犹太裔物理学家爱因斯坦
提出爱因斯坦光电效应方程
爱因斯坦光电效应方程(Einstein photoelectric equation)、光子(photon)
通过弗兰克-赫兹实验证明原子能量的量子化现象
量子化(quantization)
1896
法国物理学家贝可勒尔
发现铀和含铀的矿物能够发出看不见的射线,这种射线可以穿透黑纸使照相底板感光
铀(Uranium)、射线(ray)、放射性(radioactivity)、天然放射现象(natural radioactivity)
1924
法国物理学德布罗意
提出假设:实物粒子也具有波动性
德布罗意波(de Broglie wave)、物质波(matter wave)
1912
德国物理学家劳厄
证实伦琴射线就是电磁波
伦琴射线(X-ray)、电磁波(electromagnetic wave)
1927
美国物理学戴维孙和英国物理学家G·P·汤姆孙
时间
人物
事件
相关专有名词
17世纪中叶
法国科学家笛卡尔
提出动量概念
动量(momentum)
1668
荷兰物理学家惠更斯
明确指出了动量的方向性和守恒性
动量(momentum)
1687
英国科学家牛顿
修改笛卡尔对动量的定义,明确地用质量与速度的乘积定义动量
动量(momentum)、速度(velocity)
1743
提出了玻尔原子理论
电子轨道(electronic orbit)、能级(energy level)、定态(stable state)、基态(ground state)、激发态(excited state)、跃迁(transition)、电子云(electron cloud)
1914
美国物理学家弗兰克和德国物理学家赫兹