纤维力学性能

合集下载

纤维复合材料的力学性能与损伤分析

纤维复合材料的力学性能与损伤分析

纤维复合材料的力学性能与损伤分析纤维复合材料是一种由纤维和基体共同构成的材料,具有轻质、高强度和优异的耐腐蚀性能。

在不同的应用领域中,纤维复合材料的力学性能和损伤分析是非常重要的研究方向。

本文将对纤维复合材料的力学性能和损伤分析进行讨论。

一、纤维复合材料的力学性能1. 弹性模量纤维复合材料的弹性模量是衡量其刚度的重要指标。

由于其内部纤维与基体之间的相互作用,纤维复合材料的弹性模量通常高于传统金属材料。

弹性模量的高低决定了纤维复合材料的应用范围和承载能力。

2. 屈服强度和抗拉强度纤维复合材料的屈服强度和抗拉强度是其抗拉性能的重要指标。

纤维复合材料的屈服强度通常取决于纤维和基体的性质以及它们之间的结合方式。

在不同应力下,纤维复合材料的抗拉性能可以通过实验测试来评估。

3. 疲劳性能纤维复合材料的疲劳性能是其在长期循环加载下的耐久性能。

由于纤维和基体之间的界面不稳定性,纤维复合材料在循环加载下容易产生微裂纹和损伤,从而影响其疲劳寿命。

因此,疲劳性能的评估对于纤维复合材料在实际应用中的可靠性至关重要。

二、纤维复合材料的损伤分析1. 断裂行为纤维复合材料的断裂行为是产生损伤的重要因素。

纤维复合材料的断裂机制通常可分为纤维断裂、基体断裂和界面断裂三种类型。

通过分析纤维复合材料的断裂行为,可以了解材料在拉伸、剪切和弯曲等不同加载情况下的损伤机制。

2. 微观损伤纤维复合材料在受力时,会产生一些微观级别的损伤,如纤维断裂、基体裂纹和界面剥离等。

通过检测和观察这些微观损伤,可以了解材料在不同加载状态下的损伤演化过程,并为材料的优化提供指导。

3. 损伤识别与监测纤维复合材料的损伤识别与监测是为了实时监测材料的损伤状态,以及提前预警材料的损伤发展情况。

通过使用各种非破坏性检测技术,如声发射、热成像和超声波等,可以实现对纤维复合材料损伤的精确定位和实时监测。

总结:纤维复合材料的力学性能和损伤分析是其性能评估和工程应用中的重要内容。

纤维材料的微观结构与力学性能

纤维材料的微观结构与力学性能

纤维材料的微观结构与力学性能纤维材料是一类具有高强度、高模量和轻质的材料。

在现代工业中,纤维材料广泛应用于各种领域,如航空航天、船舶、汽车、体育用品等。

纤维材料的力学性能对其应用效果至关重要。

因此,研究纤维材料的微观结构与力学性能是相当必要的。

本文将从纤维材料的微观结构以及其对力学性能的影响两个方面进行探讨。

一、纤维材料的微观结构纤维材料是由纤维和基体组成的复合材料。

纤维是主要承受拉伸应力的部分,而基体则负责防止纤维的滑移和断裂。

纤维材料可以分为无定形纤维材料和结晶纤维材料两类。

无定形纤维材料是指没有明显结晶形态的纤维材料,如玻璃纤维、碳纤维等;结晶纤维材料则是指具有明显结晶形态的纤维材料,如金属纤维、陶瓷纤维等。

纤维材料的微观结构影响着其宏观性能。

在无定形纤维材料中,纤维的结构呈现为杂乱无章的状态,纤维之间的结合力也比较弱。

因此,无定形纤维材料的强度和模量相对较低。

而在结晶纤维材料中,纤维的结构呈现出规则的结晶形态,纤维之间的结合力比较强。

因此,结晶纤维材料的强度和模量相对较高。

二、纤维材料的力学性能纤维材料的力学性能主要表现为其拉伸强度、弹性模量、断裂延伸率、疲劳寿命等指标。

这些指标直接影响着纤维材料的应用效果。

高强度、高模量和良好的延展性是纤维材料的重要性能指标,下面将讲解一些影响这些指标的微观结构因素。

1. 纤维形态对力学性能的影响纤维的形态是影响纤维材料力学性能的一个重要因素。

在一定条件下,纵横拉伸的纤维力学性能是不同的。

当纤维的截面积相同时,细长的纤维在纵向拉伸时会发生细小的曲率,从而增加了纤维内部的表面能和蠕变能。

因此,纵向拉伸的纤维更容易发生局部破坏。

而横向拉伸的纤维由于其形态特征,会比纵向拉伸的纤维具有更高的强度和更好的延展性。

2. 纤维取向对力学性能的影响纤维的取向也是影响力学性能的重要因素。

纤维多为无序或随意取向,但在一些现代工业领域,例如碳纤维复合材料的制备过程中,纤维的排列方向是可以控制的。

纤维增强复合材料的力学性能

纤维增强复合材料的力学性能

纤维增强复合材料的力学性能纤维增强复合材料(Fiber-reinforced composites,简称FRC)是一种重要的工程材料,其具有高强度、高刚度和低密度的特点,被广泛应用于航空航天、汽车和建筑等领域。

本文将重点探讨纤维增强复合材料的力学性能及其对材料性能的影响。

首先,纤维增强复合材料的力学性能主要包括强度、刚度和韧性。

其中,强度是指材料在外力作用下抵抗破坏的能力,通常以拉伸强度来衡量。

纤维增强复合材料的强度主要由其中的纤维决定,而纤维的强度一般远大于基体。

这是因为纤维具有长而细的形状,使其能够有效地承受外力并转移到周围的基体上。

另外,纤维之间的相互作用也会增强整体的强度。

与强度相伴随的是刚度,即材料对外力的抵抗能力。

纤维增强复合材料的刚度主要取决于纤维的刚度和其含量。

由于纤维的高刚度,纤维增强复合材料通常具有较高的刚度,这使得材料在受到外力时能够保持形状的稳定性,并减小变形程度。

这对于一些要求高精度的工程结构来说非常重要。

然而,纤维增强复合材料的脆性也导致其在遇到冲击负载时易发生断裂。

为了提高纤维增强复合材料的韧性,可以采取增加纤维与基体的粘结强度、增加基体的韧性和改变纤维的排列方式等措施。

此外,通过添加填充剂、纤维交替布置等方式也可以提高复合材料的韧性。

除了综合性质,还应该关注纤维增强复合材料的疲劳性能。

由于现实工程环境中的材料往往会受到循环载荷的作用,疲劳性能对于材料的可靠性也是一个重要的考虑因素。

纤维增强复合材料的疲劳性能受到纤维和基体的性质、纤维体积分数、制备工艺等多种因素的影响。

通过优化这些因素,可以提高材料的疲劳寿命。

最后,要提到纤维增强复合材料的温度效应。

在高温环境中,纤维增强复合材料的力学性能会发生变化,甚至会引起材料的失效。

这是因为纤维和基体的材料性质在高温下可能会发生改变,例如纤维的脆化和基体的软化。

因此,在应用纤维增强复合材料时,需要考虑材料在不同温度条件下的性能和稳定性。

纤维材料力学性能测试与模拟优化

纤维材料力学性能测试与模拟优化

纤维材料力学性能测试与模拟优化纤维材料是一类具有高强度、低密度和良好耐热性能的材料,广泛应用于航空航天、汽车工业、建筑和医疗领域。

为了确保纤维材料的可靠性和性能,对其力学性能进行测试与模拟优化是必不可少的。

本文将探讨纤维材料力学性能测试的方法以及如何通过模拟优化来提高其性能。

首先,纤维材料的力学性能测试是评估其材料特性和性能的关键步骤。

常用的力学性能测试方法包括拉伸测试、弯曲测试、压缩测试和剪切测试等。

这些测试可以帮助确定纤维材料的强度、刚度、断裂韧性和变形能力等重要性能指标。

拉伸测试是最常用的纤维材料力学性能测试方法之一。

它通过施加恒定的拉伸力来测量材料的应力-应变行为,从而评估材料的强度和延伸性能。

弯曲测试则是评估材料的抗弯性能,通过施加弯曲力使纤维材料发生弯曲,测量其变形和破坏情况,以评估其抗弯能力。

压缩测试是用来评估材料的抗压性能的方法。

它通过施加压缩力来测量纤维材料在压缩加载下的应力-应变行为。

通过这种测试,可以确定材料的抗压强度和峰值应变等参数,从而评估其抗压性能。

剪切测试是评估纤维材料抗剪性能的方法。

在剪切测试中,施加剪切力使材料发生剪切变形,并测量剪切应力和剪切应变,从而评估材料的剪切强度和刚度。

此外,模拟优化在纤维材料力学性能研究中也起着重要的作用。

通过数值模拟方法,可以对纤维材料的力学行为进行预测和优化。

有限元分析(FEA)是最常用的数值模拟方法之一,可以模拟纤维材料在不同加载条件下的应力分布和变形情况。

模拟优化能够为纤维材料的设计和制造提供重要的指导。

通过模拟优化,可以改变材料的结构和组织,从而调整其力学性能。

例如,可以通过改变纤维材料的层压顺序或纤维取向来提高其力学性能。

通过模拟优化,可以找到最优的纤维材料组合和结构设计,以提高其强度、刚度和韧性等性能。

总而言之,纤维材料的力学性能测试与模拟优化是确保其可靠性和性能的必要步骤。

通过准确测试纤维材料的力学性能,可以评估其强度、刚度和延展性等关键性能指标。

三种弹性纤维的力学性能及应用特点

三种弹性纤维的力学性能及应用特点


的弹 性恢复 性 能 率为 9 5
% 99 %


如 氨 纶 伸长
5 0 0 % 时 的弹 性 回 复
并介 绍 了 它们 的使 用 范 围 及 特 点

为 工 厂 选用

弹 性纤维 提供技术 依 据

根 据弹 性 机 理 差异
弹性 纤 维可 分为软
如 氨纶


硬链
段 镶嵌 的本 征 弹性 纤 维
聚 酯弹性体 (T P E E )
研 究 论 文

种 弹性 纤 维 的 力学性 能 及 应 用 特 点

(1

肖海 英 t 东华 大 学 纺 织 学 院 上 海

肖 红


2 0 16 2 0 ;
施楣梧 。 王 府梅 ’ 2 总 后 军 需 装 备研 究 所



北京
10 0 0 8 2
)
弹 性 纤 维 是 指具 有高 断 裂伸 长


橡胶 丝

热 塑性 如 通过
1
1 1

实验部分
原料
以及 形 态 弹 性 纤 维

后 道 机 械加 工 或 由于 自身收 缩性 能 差 异 而 获得 的卷
试 验 所 用 的氨 纶 (4 4 分 复合 纤 维 (4 4
公 司提 供



4 dt e
x
P ) 和 PE T / r
I’ 组 双
曲结构的聚对 苯 二 甲 酸 乙 二 酯/ 对 苯 二 甲 酸 丙 二 聚
2 0 %)
各种织 物上 去

纤维材料微观结构对力学性能影响机制探究

纤维材料微观结构对力学性能影响机制探究

纤维材料微观结构对力学性能影响机制探究摘要:纤维材料是一种重要的工程材料,其力学性能在许多领域中都有广泛应用。

纤维材料的力学性能与其微观结构之间存在着密切的关联。

本文通过对纤维材料微观结构对力学性能影响的机制进行深入探究,旨在加深对纤维材料力学性能的认识,并为纤维材料的应用和设计提供理论依据。

1. 引言纤维材料是一类具有很高强度和刚度的材料,其在航空航天、汽车工业、建筑领域等许多领域中都有着广泛的应用。

纤维材料的力学性能主要通过其微观结构进行调控和优化。

纤维材料的微观结构由纤维的组织、取向以及纤维与基体之间的界面结构等因素决定。

本文将分析这些关键因素对力学性能的影响机制。

2. 纤维的组织结构纤维的组织结构是指纤维材料中纤维的排列方式和分布规律。

纤维的组织结构对力学性能的影响主要通过增加纤维的相对取向度和形成连续的纤维体系来实现。

相对取向度的增加可以提高材料的强度和刚度,并降低材料的断裂韧性。

而连续的纤维体系可以有效地抵抗载荷的传递,提高材料的耐疲劳性能。

3. 纤维的取向纤维的取向指的是纤维在材料中的排列方向。

纤维的取向对材料的力学性能具有重要影响。

一般来说,纤维的长轴与载荷方向保持一致时,材料的强度和刚度最大化。

此外,纤维的取向还与材料的各向异性相关,不同取向下的力学性能也有所不同。

4. 纤维与基体的界面结构纤维与基体的界面结构是指纤维与基体之间的粘结情况和相互作用情况。

纤维与基体之间的界面结构对力学性能具有重要影响。

良好的界面结构可以增强纤维与基体之间的相互作用,提高材料的强度和韧性,同时降低界面的应力集中程度。

因此,界面结构的设计和优化对于提高纤维材料的力学性能至关重要。

5. 纤维材料的力学性能测试为了对纤维材料的力学性能进行准确评估,需要进行一系列的测试。

常见的测试方法包括拉伸测试、压缩测试、弯曲测试等。

通过这些测试可以得到材料的强度、刚度、断裂韧性等力学性能参数,有助于了解纤维材料的力学行为和响应。

第5章 纤维的力学性质

 第5章 纤维的力学性质

纤维的力学性质
纤维的拉伸性质
拉伸性能指标 拉伸曲线 拉伸断裂机理及其影响因素 拉伸性质的测量
纤维力学性能的时间依赖性
应力松弛与蠕变 动态力学性能 纤维的弹性 纤维的疲劳
纤维的弯曲、扭转与压缩 纤维的表面力学性质
应力松弛(stress relaxation)
定义:在一定变形条件下,纤维内力随时间 增加而逐渐衰减的现象
纤维的力学性质
纤维的拉伸性质
拉伸性能指标 拉伸曲线 拉伸断裂机理及其影响因素 拉伸性质的测量
纤维力学性能的时间依赖性
应力松弛与蠕变 纤维的弹性 纤维的疲劳
纤维的弯曲、扭转与压缩
支点
重锤杆 L
上夹头
指针 标尺
纤维 G1
下夹头
G 转动机构
摆锤式强力仪
种类:Y161型单纤维强力机,Y162束纤维强力机, Y371型缕纱强力机和Y361型单纱强力机等
力传感器
上夹头 试样 v
下夹头

显示

单 元
打印绘图仪
换算单元 △l=vt
电子强力仪
Instron材料试验机(万能材料试验机),属于等速伸长型。 备有不同负荷容量的传感器,可以分别测定纤维、纱线、织 物或绳索的拉伸性能。 配有不同形式的夹头装置和附件,可以作拉伸、压缩、剪切、 弯曲和摩擦等性能。 可以进行定负荷或定伸长反复拉伸疲劳实验。 配有专门小气候,可在不同湿度条件下进行力学性能测定。
羊毛纤维在不同温度下的蠕变
伸长 (%)
负荷 (cN)
时间 (s)
羊毛纤维在不同负荷下的蠕变
提高温度和相对湿度可使纤维中大分子链间的次 价键力减弱,促使蠕变和应力松弛过程加速完成。
生产上可用高温高湿来消除纤维材料的内应力。

纺织物理 第三章 纤维的力学性质

纺织物理  第三章 纤维的力学性质

亚麻 苎麻 棉 涤纶 锦纶 锦纶 蚕丝 腈纶 粘胶 醋酯 羊毛 应变 醋酯
以纤维的断裂强力和断裂伸长率的对比关系来分,拉伸曲线可分为三类: 1. 强力高、伸长率很小的拉伸曲线,如棉、麻等天然纤维。 2. 强力不高、伸长率很大的拉伸曲线,如羊毛、醋酯等。 3. 强力与伸长率介于一、二类之间的拉伸曲线,如蚕丝、锦纶、涤纶等。
• 断裂功指标 a. 断裂功W:是指拉伸纤维至断裂时外力所作的功,即负荷-伸长曲线下 的面积,表示材料抵抗外力破坏所具有的能量 。 b.断裂比功:是指拉断单位体积纤维或单位重量纤维所需作的功。实际应 用中,断裂比功用拉断单位线密度,1cm长纤维所需的功(N· cm)表示, 即断裂比功=断裂功/(线密度×夹持长度),其中断裂比功单位: N/tex; 断裂功单位: N· cm;线密度单位:tex;夹持长度单位:cm
聚乙烯(Polyethylene,PE)结晶度和性能的关系
结晶度% 密度kg· -3 软化点k 断伸率% m 65 75 85 95 0.92 0.94 0.96 0.97 373 383 393 403 500 300 100 20 冲击强度J· -1 抗张强度MPa m 854 427 214 160 137 157 245 392
五、纤维的结构不匀对拉伸性能的影响
• 纺织纤维存在不均匀性,如纤维与纤维之间,以及在同一纤维的 长度方向上,其大分子链排列的聚集态结构和横截面面积的变异 很大,纤维内部的结晶和无定形区的尺寸大小,结晶的完整程度 千差万别。 • 单纤维的断裂强力是由这根纤维的最弱截面处的强力决定的,试 样长度越长,最弱截面(弱环)出现的概率越大,纤维的强力也 越低。 • 1926年皮尔斯提出“弱环定律”:试样长度与断裂强力的理论关 系。
(3)分子链堆砌的紧密程度、结晶度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章纺织纤维和纱线的
力学性质
讨论纺织纤维与纱线的拉伸性质及其对时间依赖性、纤维基本力学模型,纤维弹性、动态力学性质及疲劳,以及纤维的弯曲、扭转、压缩等力学性能。

第一节纤维的拉伸性质
一、纤维的拉伸曲线与性能指标
1.拉伸曲线
纤维的拉伸曲线有两种形式,即负荷p-伸长△l 曲线和应力σ-应变ε曲线。

2.拉伸性能指标
(1)强伸性能指标
强伸性能是指纤维断裂时的强力或相对强度和伸长(率)或应变。

图7-1 纺织纤维的拉伸曲线
a.强力P
:又称绝对强力、断裂强
b
力。

它是指纤维能承受的最大拉伸外
力,或单根纤维受外力拉伸到断裂时所需要的力,单位为牛顿(N)。

b.断裂强度(相对强度) Pb:简称比强度或比应力,它是指每特(或每旦)纤维能承受的最大拉力,单位为N/tex,常用cN/dtex(或cN/d)。

c.断裂应力σb:为单位截面积上纤维能承受的最大拉力,标准单位为
N/m2(即帕)常用N/mm2(即兆帕Mpa)表示。

:纤维重力等于其断d.断裂长度L
b
裂强力时的纤维长度,单位为km。

(2)初始模量
初始模量是指纤维拉伸曲线的起始部分直线段的应力与应变的比值,即σ- ε曲线在起始段的斜率。

(5-10)
初始模量的大小表示纤维在小负荷作用下变形的难易程度,即纤维的刚性。

(3)屈服应力与屈服伸长率
图7-2 纤维屈服点的确定
纤维在屈服以前产生的变形主要是纤维大分子链本身的键长、键角的伸长和分子链间次价键的剪切,所以基本上是可恢复的急弹性变形。

而屈服点以后产生的变形中,有一部分是大分子链段间相互滑移而产生的不可恢复的塑性
变形。

(4)断裂功指标
a.断裂功W:是指拉伸纤维至断
裂时外力所作的功,是纤维材料抵抗外力破坏所具有的能量。

b.断裂比功Wv :一是拉断单位体积纤维所需作的功Wv,单位为N/mm2。

另一定义是重量断裂比功Ww,是指拉断单位线密度与单位长度纤维材料所需做的功。

c.功系数η:指纤维的断裂功与断裂强力(Pb)和断裂伸长(Δlb)的乘积之比。

断裂功是强力和伸长的综合指标,它可以有效地评定纤维材料的坚牢度和耐用性能。

二、常见纤维的拉伸曲线
图7-3 不同纤维的应力-应变曲线三.拉伸断裂机理及影响因素
1. 纤维的拉伸破坏机理
纤维开始受力时,其变形主要是纤维大分子链本身的拉伸,即键长、键角的变形。

拉伸曲线接近直线,基本符合虎克定律。

当外力进一步增加,无定型区中大分子链克服分子链间次价键力而进一步伸展和取向,这时一部分大分子链伸直,紧张的可能被拉断,也有可能从不规则的结晶部分中抽拔出来。


价键的断裂使非结晶区中的大分子逐渐产生错位滑移,纤维变形比较显著,模量相应逐渐减小,纤维进入屈服区。

当错位滑移的纤维大分子链基本伸直平行时,大分子间距就靠近,分子链间可能形成新的次价键。

这时继续拉伸纤维,产生的变形主要又是分子链的键长、键角的改变和次价键的破坏,进入强化区,表现为纤维模量再次提高,直至达到纤维大分子主链和大多次价键的断裂,致使纤维解体。

2. 影响纺织纤维拉伸性质的因素
(1) 纤维的内部结构
a.聚合度:提高聚合度是保证高强度的首要条件。

b.纤维大分子的取向度:取向度增大,纤维断裂强度增加,断裂伸长率降低。

c.结晶度:纤维的结晶度愈高,纤维的断裂强度、屈服应力和初始模量表现得较高。

(2) 试验条件的影响
a.温度和相对湿度:
b.试样长度:试样越长,弱环出现的概率越大,测得的断裂强度越低。

c.试样根数:由束纤维试验所得的平均单纤维强力比单纤维试验时的平均强力为低。

d.拉伸速度:拉伸速度对纤维断裂强力与伸长率的影响较大。

e.拉伸试验机类型:
第二节纤维力学性能的时间依
赖性
力学性能具有显著的粘弹性特征或称时间依赖性(time dependent)。

典型的粘弹性表现有应力松弛、蠕变以及在交变载荷作用下应变落后应力的滞后性即动态力学性能。

一、应力松弛和蠕变的定义
纤维在拉伸变形恒定条件下,应力随时间的延长而逐渐减小的现象称为应力松弛。

纤维在一恒定拉伸外力作用下,变形随受力时间的延长而逐渐增加的现象称为蠕变。

图7-4 纤维的应力松弛曲线
图7-5 纤维的蠕变及蠕变回复曲线
纤维的应力松弛和蠕变是一个性质的两种表现。

其主要原因是由于在外力
作用下纤维中大分子链的构象变化和大分子链之间的相互滑移,即大分子链的重新排列所引起。

二、几种形变
1.急弹性变形
2.缓弹性变形
3.塑性变形
三、纤维的弹性
1.弹性的指标
图7-6 等速伸长和等加负荷试验机拉伸图2.影响纤维弹性的因素
四、纤维的动态力学性质
纤维在交变负荷作用下的应力与应变关系及由此表现出来的力学性能特征称为动态力学性质。

式中E′为动态弹性模量;E'' 为动态损耗模量。

图7-7 动态拉伸性能应力、应变和模量关系图
五、基本力学模型
1.力学模型的基本元件
描述粘弹性力学性能的基本元件有二个,在线性粘弹性理论中,一个是虎克弹簧,另一个是牛顿粘壶。

(a) 虎克弹簧模型(b) 牛顿粘壶模型图7-8 虎克弹簧及牛顿粘壶应力-应变模型2.描述纤维粘弹性的几个力学模型
(1) 马克思威尔(Maxwell)模型
将虎克弹簧和牛顿粘壶串联,可以用来模拟应力松弛现象,图5-25(a)即为麦克斯威尔模型。

图7-9 马克思威尔模型及其应力松弛曲线
(2) 伏欧脱(Voigt)模型
虎克弹簧和牛顿粘壶并联就是伏欧脱模型,它可以用来描述纤维高聚物的蠕变和蠕变回复性能(即缓弹性变形)。

如图5-26 所示。

图7-10 Voigt 模型及其蠕变和蠕变回复曲
线
(3) 标准线性固体力学模型(三元件模型)
三元件模型由两个虎克弹簧和一个牛顿粘壶组成,有两种排列方式,但它们是互为等效的,如图5-27 所示。

图7-11 三元件模型及其蠕变和蠕变回复曲
线
(4) 四元件模型
六、纤维的疲劳
1.疲劳破坏形式
疲劳破坏有两种形式。

一种是指纤维材料在一不大的恒定拉伸力作用下,开始时纤维材料迅速伸长,然后伸长逐步缓慢,最后趋于不明显,到达一定时间后,材料在最虚弱的地方发生断裂。

这是由于蠕变过程中,外力对材料不断作功,直至材料被破坏,也称为静态疲劳或蠕变疲劳。

另一种是多次拉伸(或动态)疲劳,它是指纤维材料经受多次加负荷、减负荷的反复循环作用,因为塑性变形的逐渐积累,纤维内部的局部损伤,形成裂痕,最后被破坏的现象。

图7-12 纤维的多次拉伸循环
图7-13 纤维的重复拉伸疲劳图
2. 纤维疲劳破坏的影响因素
表示材料疲劳特征的指标常采用耐久度或疲劳寿命。

它是指纤维材料能承受的加负荷、减负荷的反复循环的次数。

图7-14 重复拉伸的疲劳曲线
第三节纤维的弯曲、扭转与压缩
一、纤维的弯曲
1. 纤维的弯曲刚度
2.纤维弯曲时的破坏
(1) 最小曲率半径
(2)勾接和打结强度
图7-15 纤维弯曲时的变形与破坏
图7-16 勾接强度和
打结强度试验原理
二、纤维的
扭转
1.扭转刚度
2.纤维扭转时的破坏
纤维的剪切。

图7-17 扭转变形示意图
三、纤维的压缩
1. 纤维及其集合体的压缩性质
图7-18 纤维集合体的压力与容重间关系
2.纤维及其集合体在压缩中的破坏
纤维受横向拉力。

相关文档
最新文档