第八章聚合物的屈服与断裂

合集下载

第八章聚合物的屈服和断裂

第八章聚合物的屈服和断裂
(玻璃态)
8
第8章聚合物的屈服和断裂 Yield and Fracture of Polymers
强迫高弹形变的定义
处于玻璃态的非晶聚合物在拉伸过程中屈服点后产生
的较大应变,移去外力后形变不能回复。若将试样温度
升到其Tg附近,该形变则可完全回复,因此它在本质上
仍属高弹形变,并非粘流形变,是由高分子的链段运动
8.1.1 非晶态聚合物
Point of elastic limit
弹性极限点
Strain softening 应变软化
B
Y
A
A
E

A
O
Breaking point
断裂点
Yielding point 屈服点
B
Y
N
A
A y
D
plastic deformation
塑性形变
使材料屈服需要更大的外力,材料的屈服强度提高,材料在断裂
前不发生屈服,表现为脆性断裂
所以,降低温度与提高外力作用速率有同样的效果,
这是时-温等效原理在高分子力学行为中的体现。
23
第8章聚合物的屈服和断裂 Yield and Fracture of Polymers
Brittle-ductile Transformation脆韧转变
第8章
聚合物的屈服和断裂
Yield and Fracture of Polymers
1
第8章聚合物的屈服和断裂 Yield and Fracture 应,如形变大小、形变的
可逆性及抗破损性能等。
在不同条件下聚合物表现出的力学行为:
高弹性、粘弹性和流动性
产生大的形变,可见增加应

第八章聚合物的屈服和断裂

第八章聚合物的屈服和断裂

第八章聚合物的屈服和断裂一、基本概念1、韧性破坏;脆性破坏;脆化温度2、强迫高弹形变;冷流;细颈3、银纹;屈服;银纹屈服;剪切屈服4、拉伸强度;抗弯强度;弯曲模量;冲击强度;硬度5、应变诱发塑料─橡胶转变6、应变软化现象;应变变硬化现象7、银纹;裂缝;应力集中二、选择题1、下列高聚物中,拉伸强度最高的是( )A,低密度聚乙烯B,聚苯醚C,聚甲醛2、非晶态聚合物作为塑料使用的最佳温度区间为( )A,Tb---Tg B,Tg---Tf C,Tg以下3、甲乙两种聚合物材料的应力---应变曲线如图所示, 其力学性能类型和聚合物实例分别为( )A,甲聚合物:硬而强,硬聚氯乙稀;乙聚合物:软而韧,聚异戊二稀B,甲聚合物:硬而脆,聚甲基丙稀酸甲酯;乙聚合物:软而弱,聚丁二稀C,甲聚合物:硬而强,固化酚醛树酯;乙聚合物:软而韧 ,聚合物凝胶D,甲聚合物:硬而脆,硬聚氯乙稀;乙聚合物:软而弱,聚酰胺4、韧性聚合物单轴拉伸至屈服点时,可看到剪切带现象,下列说法错误的是()。

A、与拉伸方向平行B、有明显的双折射现象C、分子链高度取向D、每个剪切带又由若干个细小的不规则微纤构成5、拉伸实验中,应力-应变曲线初始部分的斜率和曲线下的面积分别反映材料的()。

A、拉伸强度、断裂伸长率B、杨氏模量、断裂能C、屈服强度、屈服应力D、冲击强度、冲击能6、在聚甲基丙烯酸甲酯的拉伸试验中,温度升高则()。

A、σB升高、εB降低,B、σB降低、εB升高,C、σB升高、εB升高,D、σB降低、εB降低,7、聚苯乙烯在张应力作用下,可产生大量银纹,下列说法错误的是()。

A、银纹是高度取向的高分子微纤构成。

B、银纹处密度为0,与本体密度不同。

C、银纹具有应力发白现象。

D、银纹具有强度,与裂纹不同。

8、杨氏模量、冲击强度、应变、切变速率的量纲分别是()。

A、N/m2, J/m2, 无量纲, S-1,B、N, J/m, 无量纲, 无量纲C、N/m2, J, 无量纲, 无量纲D、N/m2, J, m, S-19、可较好解释高抗冲聚苯乙烯(HIPS)增韧原因的为()。

高分子物理-第八章解析

高分子物理-第八章解析
关系符合虎克定律,代表普 弹形变。到达y点后,试样 的截面积变的不均匀,出现 一个或几个细颈,由此开始 拉伸的第二阶段,出现细颈 后,细颈部分试样的宽、厚 减小,故负荷读数可能稍下 降。由于细颈部分分子排列 规整,可以承受更大的力, 因而细颈不再变形,而是细 颈两端发展,使细颈部分不 断扩展,非细颈部分逐渐缩 短,直至整个试样完全变为 细颈为止。
b . 分子量
M降低,分子堆砌紧 密,Tb与Tg靠近; M升高,ΔT=Tg—Tb 升高。
(二) 晶态高聚物的应 力-应变曲线
晶态高聚物一般包括含有 晶区和非晶区两部分,因 此晶态高聚物的冷拉也包 括晶区和非晶区部分。
整个曲线可视为三条直线 组成。
第一段:拉伸初期、应力 增加较快, 应变增加较小,
实验证明,链段运动的松弛时间与应力之间有如下关系
E
0e RT
E :活化能
:与材料相关的常

由上式可知,随应力增加,链段运动的松
弛时间将缩短。当应力增大到屈服应力时,
链段运动的松弛时间减小至与拉伸速度相适
应的数值,高聚物可产生大形变。所以加大 外力对松弛过程的影响与升高温度相似。
无定形聚合物的冷拉
重 点
重点掌握强迫高弹形变的概念,非晶和结晶
高聚物的应力-应变曲线、银纹屈服和剪切屈 服机理。影响聚合物拉伸强度和冲击强度的 因素。
难 点
正确理解和掌握强迫高弹形变和高弹形变的 异同之处。区别和理解银纹屈服和剪切屈服 机理。
第一节 高聚物的塑性和屈服
一、应力-应变曲线
先介绍几个概念
强度:在较大外力持续作用或强大外力的 短期作用下,材料将发生大形变直至宏观 破坏或断裂,对这种破坏或断裂的抵抗能 力称为强度。材料破坏方式的不同,强度 又可分为拉伸强度、冲击强度和弯曲强度 等。

第八章聚合物的力学性能

第八章聚合物的力学性能

3)聚合物的屈服应力对应变速率有依赖性,随应 变速率增加屈服应力增加;
4)聚合物的屈服应力随温度的增加而降低,到达 玻璃化温度时屈服应力降低为零; 5)聚合物可以产生两种形式屈服:银纹屈服和剪 切屈服;
一、银纹屈服——Craze 聚合物受到张应力作用后,
由于应力集中产生分子链局部取向和塑性变形,在材料表 面或内部垂直于应力方向上形成的长100、宽10、厚为微米 左右的微细凹槽或裂纹的现象。
可以向真应力—应 变曲线作出两条切 线,说明试样受力 会屈服并稳定发展, 直至所有试样都细 颈化。
§8-3 聚合物的屈服
1)聚合物材料的屈服应变比一般材料的屈服应变 大的多。金属材料的屈服应变一般为0.01或更小, 而高分子材料的屈服应变可达0.1~0.2左右;
2)许多聚合物屈服后随应变增加应力反而有一定 的下降——应变软化现象;
σ
在高拉伸速度下 σY >σB,导致试样在未发生屈 服就断裂。因此只有在较慢的拉伸速度下,玻璃态 聚合物的强迫高弹形变才可以发生。
3)分子结构 分子链柔性好的聚合物不容易在玻璃态下发生 强迫高弹形变,而刚性链聚合物却相对容易发生强 迫高弹形变。 1)柔性链聚合物形成玻璃态时分子链堆砌非常紧 密,链段活动空间很小,在玻璃态下链段运动非 常困难,需要很大外力才能使链段发生运动。所 以柔性链聚合物在玻璃态下难以发生强迫高弹形 变———Tb较高。 2)刚性链聚合物冷却成玻璃态时分子链之间堆砌 的比较松散,链段活动余地很大,施加不太大的 外力作用链段的运动就可以发生,容易出现强迫 高弹形变——Tb较低。
三、聚合物应力— 应变曲线的类型
五种应力-应变曲线的特征
类型
硬而脆 硬而强 强而韧 软而韧 软而弱
模量

第八章屈服与强度 课后习题

第八章屈服与强度 课后习题

第八章屈服与强度一、思考题1.玻璃态高聚物及结晶高聚物的拉伸应力—应变曲线一般可分为哪几个形变特征区段?强迫高弹性变为何又称为表现塑性形变?2.高聚物的屈服点有哪些特征?3.什么是银纹化?银纹和裂纹有何不同?4.高聚物的宏观断裂形式有哪些?从哪些方面可以区分脆性断裂和韧性断裂?实验条件如何影响这两种断裂形式的相互转变?5.何谓高聚物的强度?说出几种强度的名称及其所代表的含义?6.影响高聚物拉伸强度的因素有哪些?它们对强度有什么样的影响?7.常用的高聚物冲击性能实验及冲击试样有哪些?8.橡胶增韧塑料的增韧机理是什么?9.影响高聚物及增韧塑料冲击强度的因素有哪些?你认为可以通过哪些途径来提高高聚物的冲击强度?10.高聚物的理论强度与实际强度相差巨大,试分析其原因。

二、选择题1.关于聚合物中的银纹,以下哪条不正确?()①使透明性增加②使抗冲击强度增加③加速环境应力开裂2.下列高聚物中拉伸强度较低的是( )①线形聚乙烯②支化聚乙烯③聚酰胺63.当聚合物的相对分子质量增加时,以下哪种性能减小或下降?()①抗张强度②可加工性③熔点4.对于橡胶,拉伸模量是剪切模量的()倍。

① 2 ② 3 ③ 45.聚碳酸酯的应力—应变曲线属于以下哪一种?()①硬而脆②软而韧③硬而韧6.高聚物的拉伸应力—应变曲线中哪个阶段表现出强迫高弹性?( )①大形变②应变硬化断裂7.高聚物的结晶度增加,以下哪种性能增加?()①透明性②抗张强度③冲击强度8.随着聚合物结晶度的增加()①抗张强度增加②抗冲强度增加③抗张强度减小④抗冲强度减小9.非结晶性高聚物的应力—应变曲线一般不存在以下哪个阶段?()①屈服②细颈化③应变软化10.在什么温度范围内,非晶线型高聚物才有典型的拉伸应力—应变曲线?()①T b<T<T g ②T g<T<T f③T g<T<T m11.有3种ABS,每一种都有两个Tg值,试估计这三种ABS在-20时的韧性最大的为()①T g1=-80℃,T g2=100℃②T g1=-40℃,T g2=100℃③T g1=0℃,T g2=100℃三、判断题(正确的划“√”,错误的划“×”)1.同一高聚物在不同的温度下,测定的断裂强度相同。

高分子物理知识重点(第八章)

高分子物理知识重点(第八章)

第八章 聚合物的屈服和断裂1.概念①.强度:在较大外力的持续作用或强大外力的短期作用下,材料将发生大形变直至宏观破坏或断裂,对这种破坏或断裂的抵抗能力称为强度。

②.脆性断裂:与材料的弹性响应相联系,在断裂前试样断裂均匀,断裂时,裂纹迅速垂直于应力方向,断裂面不显出明显的推迟形变,σ-ε曲线是线性的,ε<5%,断裂能小,由张应力引起的-是键长变化的结果。

③.韧性断裂:屈服点以后的断裂,产生大形变,断面显示外延形变(缩颈的结果),σ-ε曲线是非线性的,ε>5%,由剪切应力引起的-链段运动的结果。

* 材料断裂的方式与其形变性质有着密切的联系。

例如,脆性断裂是缺陷快速扩展的结果,而韧性断裂是屈服后的断裂。

高分子材料的屈服实际上是材料在外力作用下产生的塑料形变。

2.图—应力-应变曲线图非结晶聚合物形变经历了普弹形变、应变软化(屈服)、塑性形变(强迫高弹形变)、应变硬化四个阶段材料在屈服点之前发生的断裂称为脆性断裂;在屈服点后发生的断裂称为韧性断裂A.从曲线上可得评价聚合物性能的力学参数:Y :屈服点 σy :屈服强度 εy :屈服伸长率 B ::断裂点 σb :断裂强度 ε:断裂伸长率拉伸强度σi ( σy ,σb ) 杨氏模量 断裂能:OYB 面积B.从分子运动解释非结晶聚合物应力-应变曲线I: 普弹形变小尺寸运动单元的运动引起键长键角变化。

形变小可回复 A YB A σY σB σ应变软化塑性形变N DII :强迫高弹形变在大外力作用下冻结的链段沿外力方向取向III :粘流形变在分子链伸展后继续拉伸整链取向排列,使材料的强度进一步提高。

形变不可回复C.强迫高弹形变的定义处于玻璃态的非晶聚合物在拉伸过程中屈服点后产生的较大应变,移去外力后形变不能回复。

若将试样温度升到其Tg 附近,该形变则可完全回复,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。

这种形变称为强迫高弹形变D.晶态聚合物在单向拉伸时典型的应力-应变曲线如下图:OA-普弹形变YN-屈服,缩颈(应变变大,应力下降)ND -强迫高弹形变DB-细颈化试样重新被均匀拉伸, 应变随应力增加-应变硬化3.图:----温度的影响非晶聚合物在不同温度下的σ-ε曲线如图8:T <T b ,硬玻璃态,脆性断裂--1T b<T <T g ,软玻璃态,韧性断裂--2、3T g<T <T f ,高弹态--4T >T f ,粘流态--5分析:曲线1:在玻璃态(T 《T b ):直线关系,形变小,高模量,原因是由侧基等运动单元引起键长键角的变化引起。

高分子物理课件8聚合物的屈服和断裂

高分子物理课件8聚合物的屈服和断裂

解:=0, n=0
=45, s=0/2
0=30MP 0=40MP
先,拉断
(2).已知材料的最大抗张强度为30MP,最大抗剪强度为
10MP,试问此材料是受张力破坏还是剪切作用下形变?
解:=0, n=0
0=30MP
=45, s=0/2 0=20MP
先,发生形变
8 聚合物的屈服和断裂
Shear bana
在细颈出现之 前试样上出现 与拉伸方向成 45角的剪切滑 移变形带
8 聚合物的屈服和断裂
(3) Crazing 银纹
银纹现象为聚合物所特有,它是聚合物在张应力作用下, 于材料某些薄弱地方出现应力集中而产生局部的塑性形 变和取向,以至于在材料表面或内部垂直于应力方向上 出现长度为100µm、宽度为10 µm左右、厚度约为1 µm 的微细凹槽的现象
(a) Different
T
temperature
T
Temperature Example-PVC,Tg=80℃ Results
a: T<<Tg b: T<Tg
0°C 0~50°C
脆断 屈服后断
c: T<Tg (几十度)
50~70°C
韧断
d: T接近Tg
70°C
无屈服
8 聚合物的屈服和断裂
(b) Different strain rate
要 非常迅速。 特 ➢屈服应力对应变速率和温度都敏感。 征 ➢屈服发生时,拉伸样条表面产生“银纹”或“剪切
带”,继而整个样条局部出现“细颈”。
8 聚合物的屈服和断裂
Strain softening 应变软化
弹性变形后继续施加载荷,则产生塑性形变,称为 继续屈服,包括: ➢应变软化:屈服后,应变增加,应力反而有稍许 下跌的现象,原因至今尚不清楚。 ➢呈现塑性不稳定性,最常见的为细颈。 ➢塑性形变产生热量,试样温度升高,变软。 ➢发生“取向硬化”,应力急剧上升。 ➢试样断裂。

第八章聚合物的力学性能

第八章聚合物的力学性能
2.) 在交变应力作用下,滞后产生的内耗可从聚合物材 料的拉伸和回缩的应力-应变曲线进行理解
橡胶拉伸-回缩和拉伸-压缩循环应力-应变曲线
表征滞后现象参数:储存模量、损耗模量(或复数模 量)损耗角正切
四、粘弹性力学模型
理想模型:理想弹簧和理想粘壶 理想弹簧:代表符合虎 克定律的理想固体
E / D
应力松弛过程总形变恒定,有:
d 1 d 0 dt E dt
d E dt
(t) 0et /
t = 0-τ,有: 0 / e 0.370
2、伏伊特模型
结构:由一个理想弹黄与一 σ1
E
ησ2
个理想粘壶并联而成,如图
1 2
定义:高分子材料在交变应力作用下,形变落后于应力 的现象
橡胶轮胎应力和应变随时间的变化曲线,如图 滞后现象,如图
原因:高分子材料也是一个松弛过程
影响因素: 1.) 化学结构; 2.) 外力作用频率、温度等
对聚合物性能的影响:
1.) 如果使用的聚合物发生了滞后现象,则在每一个循 环中都要消耗功-力学损耗;这种消耗功转变成热 能释放出来,会导致聚合物本身的温度升高,从而 影响材料的使用寿命;
晶态聚合物的拉伸: 晶态聚合物典型的应力-应变曲线,如图
未经拉伸的晶态聚合物中,其微晶排列是杂乱的, 拉伸使得晶轴与外力方向不同的微晶熔化,分子链沿 外力方向取向再重排结晶,使得取向在熔点以下不能 复原,使得产生的形变也不能复原,但加热到熔点附 近形变能复原,因此晶态聚合物的大形变本质上也属 高弹性


0
E0

0
E
1
exp

t


  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章聚合物的力学性质8.1力学性质的基本物理量当材料在外力作用下,材料的几何形状和尺寸就要发生变化,这种变化称为应变(strain)。

此时材料内部发生相对位移,产生了附加的内力抵抗外力,在达到平衡时,附加内力和外力大小相等,方向相反。

定义单位面积上的附加内力为应力(stress)。

有三种基本的受力-变形方式(图9-1):1、简单拉伸(stretch or tensile)张应力,张应变杨氏模量,拉伸柔量2、简单剪切(shear)切应力,切应变(当足够小时)切变模量,切变柔量3、静压力围压力,压缩应变:本体模量,本体柔量(压缩率)有四个材料常数最重要,它们是E,G,B和。

是泊松比,定义为在拉伸试验中,材料横向单位宽度的减小与纵向单位长度的增加的比值,即没有体积变化时,=0.5(例如橡胶),大多数材料体积膨胀,<0.5。

四个材料常数已知两个就可以从下式计算另外两个。

显然E>G,也就是说拉伸比剪切困难。

三大高分子材料在模量上有很大差别,橡胶的模量较低,纤维的模量较高,塑料居中。

工程上表征材料力学性能的物理量主要有:1、抗张强度(kg/cm2)2、抗冲强度(或冲击强度) (kg.cm/cm2)试验方法有两类:简支梁式(Charpy)——试样两端支承,摆锤冲击试样的中部。

悬臂梁式(Izod)——试样一端固定,摆锤冲击自由端。

Charpy试样又分两类:带缺口和不带缺口。

根据材料的室温冲击强度,可将高聚物分为脆性、缺口脆性和韧性三类。

3、硬度(以布氏硬度为例) (kg/mm2)以上各式中:P为负荷;、b、d分别为试样的长、宽、厚;W为冲断试样所消耗的功;D为钢球的直径;h为压痕深度。

8.2应力-应变曲线1、非晶态聚合物的应力-应变曲线以一定速率单轴拉伸非晶态聚合物,其典型曲线如图8-2所示。

整个曲线可分成五个阶段:图8-2非晶态聚合物的应力-应变曲线①弹性形变区,从直线的斜率可以求出杨氏模量,从分子机理来看,这一阶段的普弹性是由于高分子的键长、键角和小的运动单元的变化引起的。

②屈服(yield,又称应变软化)点,超过了此点,冻结的链段开始运动。

③大形变区,又称为强迫高弹形变,本质上与高弹形变一样,是链段的运动,但它是在外力作用下发生的。

④应变硬化区,分子链取向排列,使强度提高。

⑤断裂。

应力-应变行为有以下几个重要指标:杨氏模量E——刚性(以“硬”或“软”来形容);屈服应力或断裂应力(又称抗张强度) ——强度(以“强”或“弱”来形容)Carswell和Nason将聚合物应力-应变曲线分为五大类型,即:硬而脆、硬而强、强而韧、软而韧、软而弱。

影响应力-应变行为的因素主要有温度、外力和外力作用速率。

随温度的增加,应力-应变曲线开始出现屈服点,从没有屈服点道出现屈服点之间存在一个特征温度(称脆化温度),是塑料的耐寒性指标。

从分子机理来说,相应于链节等较小运动单元开始运动的温度。

影响的结构因素主要是分子链的柔顺性,刚性越大,降低(因为刚性链间堆砌松散,受力时链段反而有充裕的活动空间),同时升高,因而塑料的使用温区增加。

典型例子列于表8-1。

表8-1影响的结构因素2、结晶态聚合物的应力-应变曲线图8-3是晶态聚合物的典型应力-应变曲线。

同样经历五个阶段,不同点是第一个转折点出现“细颈化”,接着发生冷拉,应力不变但应变可达500%以上。

结晶态聚合物在拉伸时还伴随着结晶形态的变化。

图8-3晶态聚合物的应力-应变曲线3、特殊的应力-应变曲线①应变诱发塑料-橡胶转变SBS试样在S与B有相近组成时为层状结构,在室温下它是塑料,所以第一次拉伸是非晶态的曲线,在断裂之前除去外力,由于塑料相的重建需要很长时间,因而第二次拉伸时成为典型的橡胶的应力-应变曲线。

(图8-4)②硬弹性材料的应力-应变曲线易结晶的高聚物熔体在较高的拉伸应力场中结晶时可得到很高弹性的纤维或薄膜材料,其弹性模量比一般弹性体高得多,称为硬弹性材料。

其应力-应变曲线有起始高模量,屈服不太典型,但有明显转折,屈服后应力会缓慢上升。

达到一定形变量后移去载荷形变会自发回复(对于上述结晶态或非晶态聚合物的典型情况下,移去载荷后必须加热才能使形变完全恢复)。

曲线见图9-5。

8.3屈服脆性断裂:试样形变均匀,断裂面光滑,断裂应变<5%;韧性断裂:试样形变不均匀,断面粗糙,断裂孔较大。

对于高分子材料,还依赖于温度和测试速率。

脆性聚合物在断裂前,试样没有明显变化,断裂面与拉伸方向相垂直。

而韧性聚合物拉伸到屈服点时,常看到试样出现与拉伸方向成大约45˚角倾斜的剪切滑移变形带。

由于两个45˚角都会产生,所以将这种性质又称为切应力双生互等定律。

从任意断面的应力分析入手可以说明这个现象。

样条的任意斜截面(面积)上的法应力当=0时有最大值,所以切应力当=45˚时有最大值,也就是说抗剪切强度总是比抗张强度低,由于分子链间的滑移总是比分子链断裂容易。

所以拉伸时45˚斜面上切应力首先达到材料的抗剪切强度而出现滑移变形带。

拉伸时由于截面积变化较大,使真应力-应变曲线与习用应力(或工程应力)-应变曲线有很大差别,真应力-应变曲线上可能没有极大值,而不能判断屈服点。

可以用康西德雷()作图法,即从(即)点向曲线作切线,切点就是屈服点,因为高聚物的真应力-应变曲线可归纳为三类(图9-6):1、从点不可能向曲线引切线,没有屈服点,是橡胶态聚合物的情况;2、从点可以向曲线引一条切线,得到一个屈服点,是非晶态聚合物的情况;3、从点可以向曲线引两条切线,A点是屈服点,出现细颈,然后发生冷拉到B点,(细颈后试样面积不变,应力也不变,从而真应力不变,出现平台),这是结晶态聚合物的情况。

图9-6真应力-应变曲线的作图屈服判据(a)不能形成细颈;(b)能成颈,但不稳定;(c)能形成稳定细颈一些聚合物在屈服时会出现银纹(crazing),称屈服银纹。

因加工或使用中环境介质与应力的共同作用也会出现银纹,称环境银纹。

银纹垂直于应力方向,银纹常使材料变为不透明,称应力发白。

银纹于裂纹或裂缝(crack)不同,它质量不等于零(约为本体的40%),仍有一定强度(约为本体的50%),这是由于银纹内尚有高度取向的分子链构成的微纤。

银纹是裂缝的前奏,但在材料受力形成银纹时吸收了功,因而能产生银纹有利于改善材料脆性。

8.4断裂高分子材料的实际强度比理论强度小1~2个数量级。

说明高聚物的断裂不是完全破坏每根链的化学键,也不是分子间完全滑脱,而很可能是垂直于受力方向的不符分子链的分子间作用力先破坏,然后应力集中到取向的分子链上导致一些共价键断裂。

1、影响高分子材料强度的因素如下:(从中可以总结出提高强度的措施)(1)化学结构链刚性增加的因素(比如主链芳环、侧基极性或氢键等)都有助于增加抗张强度。

极性基团过密或取代基过大,反而会使材料较脆,抗冲击强度下降。

(2)相对分子质量在临界相对分子质量(缠结相对分子质量)之前,相对分子质量增加增加,越过后不变。

随相对分子质量增加而增加,不存在临界值。

(3)支化和交联交联使和都提高。

但支化使提高,而下降。

(4)结晶和取向结晶度增加,提高,但降低。

结晶尺寸减小,和均提高。

取向使提高。

总之以上各因素在讨论时主要考虑分子间作用力的大小,而讨论时主要考虑自由体积的大小。

(5)应力集中物裂缝、银纹、杂质等缺陷在受力时成为应力集中处,断裂首先在此处发生。

纤维的直径越小,强度越高,这是由于纤维越细,纤维皮芯差别就越小,缺陷出现的几率越小。

根据这个原理,用玻璃纤维增强塑料可以得到高强度的玻璃钢。

(6)添加剂增塑剂、增量剂(又称填料)、增强剂和增韧剂都可能改变材料的强度。

增塑使分子间作用力减小,从而降低了强度。

惰性填料(如CaCO3)只降低成本,强度也随着降低;活性填料有增强作用,如炭黑对天然橡胶的补强效果。

纤维状填料有明显的增强作用。

塑料增韧的方法是共混或共聚,用少量橡胶作为增韧剂去改进塑料的脆性。

(7)外力作用速度和温度在拉伸试验中提高拉伸速度和降低温度都会使强度降低。

在冲击试验中提高温度会增加冲击强度。

由于外力作用速度和温度的改变,甚至会使材料从脆性变为韧性,或反过来。

2、增强途径与机理①活性填料:①料状:炭黑补强橡胶“表面效应”②纤维“复合作用”③液晶原位复合增强3、聚合物的冲击强度和增韧冲击强度是衡量材料韧性的指标;定义试样冲击载荷下折断时单位截面积所吸收的能量。

与试样形状和试验方法有关。

测试:摆捶式、落垂式,高速拉伸。

4、增韧途径与机理①银纹机理②银纹-剪切带机理:HIPS外力作用下引发大量银仪、剪切带、吸收能量。

橡胶粒未知剪切带控制和终止银纹发展,使银纹不至形成裂纹。

③刚性粒子增韧机理:超细CaCO3(1~10mm)的加入,使基体在逝裂过程发生剪切屈服,吸收大量塑性形变能,促进基体脆-韧转变。

5、影响聚合物冲击强度的因素(1)高分子的结构a、极性、氢键↑,拉伸强度提高,但冲击强度↓b、支化程度↑,拉伸强度降低,冲击强度↑如2DPεHDPεc、适度交联,拉伸冲击强度者提高。

d、结晶度↑冲击强度↓,球面大,冲击强度↓αe、双轴取向,冲击强度↑(2)温度外力作用影响:T↑冲击强度增加。

相关文档
最新文档