智能车控制算法
智能汽车控制策略及PID算法分析

智能汽车控制策略及其PID 算法分析作者:王保磊机电1103-11221077目录背景简介一.智能汽车竞赛简介: (1)系统建立二.控制策略: (1)2.1:理论分析 (2)2.2 : PID 控制规律的离散化 (3)2.3 : matlab 分析 (4)2.4 :系统校正 (9)总结三.总结: (14)一.智能汽车竞赛简介。
全国大学生“飞思卡尔”杯智能汽车竞赛是在规定的模型汽车平台上,使用飞思卡尔半导体公司的 8 位、 16 位微控制器作为核心控制模块,通过增加道路传感器、电机驱动电路以及编写相应软件,制作一个能够自主识别道路的模型汽车,按照规定路线行进,以完成时间最短者为优胜。
因而该竞赛是涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的比赛。
摄像头组比赛规则:采用模拟或数字摄像头对赛道信息进行采集,通过硬件二值化并进行软件信息处理,获得赛道信息,采用规定的舵机和电机控制小车的行走。
相同的赛道,竞速,完成赛道时间短的队伍获胜。
下图为赛道示意图和实际赛道照片。
为保证小车一直沿着黑色引导线快速行驶,系统主要的控制对象是小车的转向和车速。
即应使小车在直道上以最快的速度行驶。
在进入弯道的时刻尽快减速,且角度的转向要适合弯道的曲率,确保小车平滑地转弯,并在弯道中保持恒速。
从弯道进入直道时,小车的舵机要转向至中间,速度应该立即得到提升,直至以最大的速度行进。
为实现上述控制思想,我们采用不同的控制方法来控制小车的转角和速度。
下图为小车的实物模型:二.控制策略。
2.1:理论分析:Ov7620 数字摄像头采集到的赛道信息为采集点灰度值,这些灰度值与设定的阀值进行比较转化为二进制信息,利用这些二进制信息可以确定赛道黑线位置,进而确定小车当前位置及理想通过曲线。
求得理想通过曲线上各点的斜率进而确定赛道类型,通过算法控制电机转速,以保证小车安全通过赛道防止侧翻和打滑。
计算小车的当前位置横坐标值即摄像头视野中线与理想通过曲线与横坐标交点的差值。
智能车辆中的运动控制算法研究

智能车辆中的运动控制算法研究随着技术的不断进步,智能车辆已经成为了一种趋势。
智能车辆在交通、物流等领域具有广阔的应用前景。
而其中的运动控制算法则是智能车辆实现自主驾驶、避障、路径规划等功能的关键技术之一。
一、运动控制算法的定义和意义运动控制算法是智能车辆的核心技术之一,其主要作用是实现车辆对行进速度和方向的控制。
智能车辆能够进行自主驾驶的关键在于运动控制算法的准确、高效和稳定性。
运动控制算法不仅可以提高智能车辆的安全性和行驶效率,还可以提高其自主驾驶的自适应性和鲁棒性。
二、智能车辆中的运动控制算法智能车辆中的运动控制算法主要包括三个方面:车辆的行进速度控制、车辆的方向控制和刹车控制。
1. 行进速度控制行进速度控制是智能车辆运动控制算法的重要内容之一。
实现行进速度控制可以让车辆在不同路况下保持稳定、平稳、并且具有高速行驶的能力。
主要的控制方法包括PID控制、模糊控制、遗传算法等。
其中PID控制是最常用的控制方法。
该方法可以通过不断地计算和比较车辆的实时速度与期望速度之间的误差来调整输入信号,从而实现车辆行进速度的控制。
模糊控制和遗传算法对于复杂性较高的道路环境下的速度控制也有一定的应用。
2. 方向控制方向控制是智能车辆运动控制算法中另一个重要方面。
它通过对车辆的车轮进行控制,实现对方向的调整和控制。
方向控制主要的控制方法包括前馈控制、模糊控制和神经网络控制等。
其中模糊控制是最常用的控制方法之一。
通过对车辆行驶环境的模糊化处理,将车辆行驶环境的模糊输入转化为车辆方向控制的输出。
前馈控制和神经网络控制对于道路环境变化较大、路况不良等情况下的方向控制能力更为强大。
3. 刹车控制刹车控制是智能车辆运动控制算法的第三个方面。
通过刹车控制可以实现车辆的急刹车、平稳刹车、以及防抱死等功能。
主要的刹车控制方法包括反馈控制和PID控制。
反馈控制是刹车控制中常用的方法。
该方法主要通过对车辆速度并不断调整刹车信号,从而实现对车辆刹车效果的控制。
智能小车控制算法课程设计

智能小车控制算法课程设计一、课程目标知识目标:1. 让学生理解智能小车的基本工作原理,掌握控制算法的基本概念;2. 使学生掌握智能小车运动控制的基本方法,包括速度控制、方向控制等;3. 引导学生了解控制算法在智能小车领域的应用,如PID控制、模糊控制等。
技能目标:1. 培养学生运用编程语言(如Python、C++等)实现智能小车控制算法的能力;2. 提高学生通过实验和调试解决实际问题的能力;3. 培养学生团队协作、沟通表达的能力。
情感态度价值观目标:1. 激发学生对智能小车和控制算法的兴趣,培养创新意识和探索精神;2. 引导学生关注科技发展,认识到控制算法在现实生活中的重要性;3. 培养学生严谨、务实的学习态度,养成良好的学习习惯。
课程性质:本课程为实践性较强的学科,结合理论知识与实际操作,培养学生动手能力、编程能力和创新能力。
学生特点:针对高中年级学生,具备一定的物理知识和数学基础,对新鲜事物充满好奇心,具备一定的自学能力和团队合作精神。
教学要求:注重理论与实践相结合,以学生为主体,发挥教师引导作用。
通过课程学习,使学生能够独立完成智能小车控制算法的设计与实现,达到预期的学习成果。
二、教学内容1. 智能小车基本原理及结构:介绍智能小车的主要组成部分,包括驱动电机、传感器、控制器等,分析各部分的功能和相互关系。
教材章节:《自动化技术基础》第二章2. 控制算法原理:讲解PID控制、模糊控制等基本控制算法的原理,探讨其在智能小车控制中的应用。
教材章节:《控制理论及其应用》第三章3. 编程语言及开发环境:学习Python、C++等编程语言,了解智能小车控制算法的编程实现。
教材章节:《Python编程》第一章、《C++编程》第一章4. 智能小车运动控制:分析速度、方向等运动控制方法,结合实际案例进行讲解。
教材章节:《自动化技术基础》第四章5. 实践操作:组织学生进行智能小车控制算法的编程实践,包括控制算法的设计、调试与优化。
智能交通系统中的智能车辆调度算法设计

智能交通系统中的智能车辆调度算法设计随着智能交通系统的不断发展,智能车辆调度算法成为了提高交通效率和减少交通拥堵的重要手段。
智能车辆调度算法设计的目标是在保证交通安全和提高交通效率的前提下,合理调度车辆的行驶路径和速度,以优化交通流量和缓解交通拥堵。
一、智能车辆调度算法的基本原理智能车辆调度算法的基本原理是通过实时监测路况和车辆情况,采用智能化的决策方法对车辆进行调度。
具体而言,智能车辆调度算法需要考虑以下几个方面的因素:1. 路况监测与预测:智能车辆调度算法需要通过路况监测系统实时获取道路拥堵情况,并通过数据分析和建模技术对未来一段时间的交通情况进行预测。
这样可以提前做出调度决策,将车辆引导到畅通的路段,避开拥堵节点,从而提高交通效率。
2. 车辆状态监测与动态调整:智能车辆调度算法还需要实时监测车辆的状态,包括车速、加速度、制动情况等。
根据车辆状态的变化,通过动态调整车辆的速度和行驶路径,使车辆能够保持合适的距离和速度,避免交通事故的发生,并提高交通流量。
3. 交通流分配与协调:智能车辆调度算法需要实现对交通流的分配与协调。
通过合理安排车辆的行驶路径和相互之间的车距,避免车辆之间的冲突和碰撞。
同时,还可以通过协调车辆的速度和行驶时间,平衡不同道路的交通流量,以达到最佳的交通效果。
二、常见的智能车辆调度算法1. 基于流量预测的调度算法:这类算法通过分析历史交通数据和实时监测的路况信息,预测未来一段时间的交通情况。
然后根据预测结果,调度车辆的行驶路径和速度,将车辆引导到畅通的路段,避开拥堵节点,达到缓解交通拥堵的目的。
2. 基于优先级的调度算法:这类算法根据车辆的不同优先级,灵活安排车辆的行驶顺序和路径。
例如,救护车和消防车通常具有高优先级,可以优先获得通行权。
而普通车辆则在这些特殊车辆通行后再进行调度,以确保交通的秩序和公平性。
3. 基于最优控制的调度算法:这类算法基于数学建模和优化理论,通过最优化算法寻找最佳的车辆调度策略。
PID算法在智能车方向控制中的应用

PID算法在智能车方向控制中的应用智能车是指能够感知、分析、决策和执行动作的汽车。
它可以通过集成传感器、图像识别、机器学习和控制算法来实现自主导航和安全驾驶。
在智能车的控制系统中,方向控制是一个重要的组成部分。
PID算法是智能车方向控制中常用的一种算法,它能够通过实时调整车辆转向角度来实现车辆的精确控制。
PID算法是一种反馈控制算法,它通过不断地对系统输出与期望输出的差异进行检测和调整,以实现控制系统的稳定。
PID算法由比例控制、积分控制和微分控制三个部分组成。
比例控制部分根据系统输出与期望输出的差异进行比例调整,积分控制部分根据系统输出与期望输出的累积差异进行积分调整,微分控制部分根据系统输出与期望输出的变化速率进行微分调整。
这三个部分共同作用,通过实时调整控制信号来达到期望输出。
在智能车的方向控制中,PID算法可以通过以下步骤应用:1.传感器数据获取:智能车通常配备了多种传感器,如惯性传感器、陀螺仪和激光雷达等,用于感知车辆的运动状态和周围环境。
PID算法需要读取传感器数据作为反馈信号。
2.设置期望输出:根据预定的路线或目标,可以设置一个期望的转向角度作为系统的期望输出。
3.计算误差:将传感器数据中获取的实际转向角度与期望转向角度进行比较,计算得出误差。
误差可以表示为实际转向角度减去期望转向角度的差异。
4.比例控制:根据误差的大小,比例控制部分会调整控制信号的大小,从而影响车辆的转向角度。
比例系数越大,车辆的响应速度越快,但可能会引起过冲或震荡现象。
5.积分控制:积分控制部分会通过累积误差来调整控制信号,从而消除系统的稳态误差。
积分系数越大,车辆的稳定性越好,但可能会引起过冲现象。
6.微分控制:微分控制部分会通过测量误差的变化率来调整控制信号,从而降低车辆的震荡现象。
微分系数越大,车辆的稳定性越好,但可能会引起过度补偿。
7.发送控制信号:根据比例控制、积分控制和微分控制的结果,生成控制信号并发送给车辆的转向系统,从而实现转向角度的调整。
车辆智能控制算法的优化与应用

车辆智能控制算法的优化与应用在当今科技飞速发展的时代,车辆的智能化程度越来越高,车辆智能控制算法作为其中的核心技术,对于提升车辆的性能、安全性和舒适性起着至关重要的作用。
车辆智能控制算法的优化,首先要从对车辆系统的深入理解开始。
车辆是一个复杂的动态系统,包括发动机、传动系统、制动系统、悬挂系统等多个子系统,这些子系统之间相互关联、相互影响。
为了实现对车辆的精准控制,需要建立准确的车辆模型。
这个模型要能够反映车辆在不同工况下的动态特性,比如加速、减速、转弯等。
通过对大量实际车辆数据的采集和分析,结合物理原理和数学方法,可以构建出较为精确的车辆模型。
在算法优化方面,传统的控制算法如 PID 控制(比例积分微分控制)虽然在一些简单的控制场景中表现出色,但对于复杂的车辆系统,其控制效果往往不够理想。
近年来,一些先进的控制算法如模型预测控制(Model Predictive Control,MPC)、自适应控制、模糊控制等逐渐被应用到车辆智能控制中。
模型预测控制是一种基于模型的优化控制方法。
它通过预测未来一段时间内车辆的状态,并根据设定的优化目标和约束条件,计算出最优的控制输入。
这种算法能够充分考虑车辆系统的约束,如发动机扭矩限制、制动压力限制等,从而实现更加精确和高效的控制。
自适应控制则能够根据车辆系统参数的变化实时调整控制策略。
例如,车辆在使用过程中,由于零部件的磨损、环境条件的改变等因素,车辆的性能可能会发生变化。
自适应控制算法可以通过监测车辆的运行状态,自动调整控制参数,以保证控制效果的稳定性和可靠性。
模糊控制则是一种基于模糊逻辑的控制方法,它不需要精确的数学模型,而是通过模糊规则来描述控制策略。
这种方法对于处理一些具有不确定性和模糊性的问题非常有效,比如驾驶员的驾驶意图判断、路况的复杂程度评估等。
除了控制算法的选择和优化,算法的实现也需要考虑计算效率和实时性。
车辆控制系统需要在极短的时间内做出决策并执行控制指令,因此算法的计算复杂度不能过高。
智能车PID的算法推荐

智能车PID的算法推荐智能车PID控制算法是一种常用的控制算法,它通过不断地调整车辆的控制量来实现目标状态与当前状态之间的误差最小化。
PID算法的名称源于它的三个部分:比例(P)、积分(I)和微分(D),而车辆的控制量则是根据这三个部分的权重参数进行计算。
比例项(P)是通过比较目标状态和当前状态的误差得到的,其控制效果是与误差成比例的。
当误差较大时,比例项会产生较大的输出,有助于加快系统响应速度;而当误差较小时,比例项的输出将减小,以减小振荡。
积分项(I)可以追踪已经发生的误差,得到误差的累积项。
它在误差持续存在时提供控制输出,可以在误差较小或者趋于零时,对系统进行微调以消除持久性误差。
微分项(D)是根据误差的变化率来调整系统的输出。
它可以提供一个反馈信号,预测误差的变化趋势,并制定适当的控制输出来减小误差的变化速度,以克服过冲或振荡的问题。
在实际应用中,选择合适的PID权重参数是非常重要的。
通常的做法是先设置P和D的值,然后逐渐增加I的值直到系统稳定。
这个过程可能需要多次试验和微调,以获得最佳的参数组合。
除了基本的PID算法,还有一些改进的PID算法可供选择,其中一些常用的包括:1.增量PID算法:在每个控制周期中,通过计算误差的变化量来更新控制量,以提高控制系统对于误差变化的敏感性。
2.自适应PID算法:根据系统当前状态和性能,动态调整PID参数,以适应不同的工况和外部扰动。
3.模糊PID算法:结合模糊逻辑和PID算法,通过定义模糊规则来调整PID参数,以更好地适应非线性和不确定性系统。
4.基于模型的PID算法:通过对系统动态建模,根据建模结果自动调整PID参数,以提高系统的控制精度和稳定性。
5.改进的积分项算法:针对积分项可能导致的问题(如积分饱和),进行改进和优化,以避免控制系统出现过度响应或不稳定的情况。
6.鲁棒PID算法:通过考虑外部扰动和模型不确定性,设计具有鲁棒性的PID控制器,以提高系统的抗干扰能力和稳定性。
智能车PID算法实现原理讲解

智能车PID算法实现原理讲解引言智能车是一种能够通过传感器收集环境信息,然后分析、决策、控制并实现自主导航的车辆。
PID(Proportional-Integral-Differential)控制算法是智能车中常用的一种控制方法,可以实现对车辆的位置、速度等参数进行精确调节。
本文将对PID算法的实现原理进行详细讲解。
一、PID控制算法原理PID控制算法是一种经典的反馈控制算法,通过对系统的误差进行连续检测和调整,使得系统能够自动调整到期望值附近并保持稳定。
PID算法由三个部分组成:比例控制(P),积分控制(I)和微分控制(D)。
1.比例控制(P)比例控制是基于误差的当前值来进行控制调整的,它通过将误差乘以一个比例系数来调整控制量的变化。
这意味着当误差增大时,控制量的变化也会增大。
2.积分控制(I)积分控制是基于误差的历史累积值来进行控制调整的,它通过将误差的累积值乘以一个积分系数来调整控制量的变化。
这意味着当误差持续存在时,控制量的变化会逐渐增大,从而更好地调整系统。
3.微分控制(D)微分控制是基于误差的变化率来进行控制调整的,它通过将误差的变化率乘以一个微分系数来调整控制量的变化。
这意味着当误差快速变化时,控制量的变化也会被加大。
二、PID算法实现步骤基于PID算法的智能车控制实现需要按照以下步骤进行:1.设定目标值(设定值)和实际值(反馈值)。
目标值为期望的位置或速度,实际值通过传感器获取。
2.计算误差。
误差可以通过将设定值减去实际值得到。
3.计算比例控制量。
比例控制量可以通过将误差乘以比例系数得到。
4.计算积分控制量。
积分控制量可以通过将误差的累积值乘以积分系数得到。
5.计算微分控制量。
微分控制量可以通过将误差的变化率乘以微分系数得到。
6.将比例控制量、积分控制量和微分控制量相加得到最终的控制量。
7.根据最终的控制量来调整车辆的状态,例如调整轮速、转向角度等。
8.循环执行上述步骤,使得车辆能够持续地调整控制量,使得实际值逐渐接近设定值,从而实现稳定的控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能车转角与速度控制算法
1.检测黑线中点Center:设黑、白点两个计数数组black、white,从第一个白点开始,检测到一个白点,白点计数器就加1,检测到第一个黑点,黑点计数器就加1,并且白点计数器停止,以此类推扫描每一行;黑线中点=白点个数+(黑点的个数/2)
2.判断弯直道:
找出黑线的平均位置avg (以每10行或者20…作为参照,行数待定)
算出相对位移之和(每一行黑线中点与黑线平均位置距离的绝对值之和)
然后用Curve的大小来确定是否弯直道(Curve的阀值待定)。
3.控制速度:
根据弯度的大小控制速度大小。
//*****************************弯度检测函数*******************************// Curvecontrol ()
{
int black[N]; //黑点计数器
int white[N]; //白点计数器
int center[N]; //黑线中点位置
int avg; //黑线中点平均位置
int curve;//N行的相对位移之和
if(白点) ++white[N]; //判断黑白点的个数
else ++black[N];
center[N]=white[N]+black[N]/2; //每一行的黑线中点avg=(center[1]+center[2]+...+center[N])/N; //求出黑线中点的平均位置
curve=(|avg-center[1]|+|avg-center[2]|+...+|avg-center[N]|)/N //求出N行的相对位移之和
return curve; //返回弯度大小
}
//*****************************舵舱转角控制函数******************************// //****黑线轨迹会指引小车的行驶方向,所以向左还是向右是由黑线决定的。
********// //****设0为小车正向行驶,-10为向左的最大转角,+10为向右的最大转角。
*******// //****设小车实际行驶路线中心A相对于黑线中线B偏移量为gap;gap有正负之分,
//gap为正时,小车在黑线中线的右侧,应该左转;gap为负时,小车在黑线中线左侧,应//该右转。
转角的大小由刚刚得到的弯度Curve确定。
*****************************// Viewpointcontrol()
{
Int gap, A, B;
Int y; //****y为舵舱的转角角度
gap=A-B;
If(gap>0) 左转
else if (gap<0) 右转
else 不变
y=与Curve和gap有关的公式; //****y有正负之分
return y; //****返回转角角度
}
//*****************************速度控制函数*********************************// //*******根据弯度的大小来改变速度大小*****//
Speedcontrol()
{
Return speed;
}
5.3.1 偏航距离的计算
由于已经获得了赛道中心线的位置,所以计算偏航距离的问题是选取何处的中心线的距离为当前的偏航距离。
控制算法的执行周期为40ms,如果赛车的速度为2m/s,则在两次控制
算法的执行中间,赛车要前进8cm,赛车所处的环境将发生比较大的改变,所以赛车的控制只能算是半实时控制,这是所有使用摄像头作为主要寻线传感器的参赛队都避免不了的问题。
因为算法的滞后性,赛车需要将“当前位置”进行适当前移。
前移量应该跟赛车当前速度成正比,但实际中我们发现,适当
增加一些前移距离是有好处的,因为可以在入弯处提前转弯,使得赛车沿弯道内侧行驶,缩短了过弯距离。
5.3.2 偏航角度的计算
计算偏航角度的实质是直线拟合问题,因为赛道中心线所在的直线确定了,而直线的斜率与偏航角度一一对应。
直线拟合最有效的方法是最小二乘法[7],但是直接应用存在一个问题,即如何确定进行直线拟合的区间?在整个成功识别出赛道的区间内进行直线拟合显然是欠缺考虑的,因为在弯道的情况下,这种方法拟合出的是一条弦线,而不是当前该弯道处的切线。
摄像头视野越大,弯道曲率越大,弦线偏离切线的程度也就越大。
为了能够在直道和弯道上都能正确的拟合出正确的直线,我们采用了直线检测的方法,即首先根据残差的大小确定直线的范围,然后在这一范围内进行直线拟合。
5.3.3 曲率的计算
如果说斜率的计算需要某种技巧的话,计算曲率则更是一种技巧的应用。
首届时很多参赛队针对各自的实际需要,提出了自己的方法。
其中最普遍的是根据斜率的导数来计算曲率[8]。
但是斜率的计算本身就很不准确,特别是某个点的斜率,对斜率求导就更不准确,所以使用这种方法只能得出一个大致的结果。
本文作者提出了另外一种方法,首先对获得的路径进行滤波,使得路径尽可能平滑,然后取其两个端点和中间点,计算这3个点组成的三角形的外接圆的半径,半径的倒数就是这段路径的曲率。
经过多次实验,这种方法的误差一般不大于20%,对智能车的控制来说已经足够了。
让赛车从起跑线开始,在赛道上行驶一圈,记录下每个时刻的曲率,如图5.9。
图5.9计算出的赛道曲率从图5.9可以看出,计算出的曲率能较为正确的反映实际赛道的弯曲情况。
但是这种方法得出的曲率不是摄像头所看到的当前位置的曲率,而是摄像头所看
到的路径的整体曲率,因为这种算法仅仅与路径中三个点的位置有关。
然而实验中却发现,这种特点反而给赛车带来了一个好处:即摄像头在小S型弯道时舵机几乎不跟随路径的摆动而摆动,而是直线冲过。
这是因为较小的S型路径其弯曲部分能完整的显现在摄像头的视野中,而算法中对路径进行了滤波,滤除了中间部分的弯曲,使得路径变直了,赛车因此就直线走过。