模式识别及应用--教学大纲
天津大学模式识别2课程教学大纲

天津大学《模式识别2》课程教学大纲课程代码:2160265 课程名称:模式识别2学 时: 20 学 分: 1学时分配: 授课:12 上机:8 实验: 实践: 实践(周):授课学院: 计算机学院适用专业: 计算机科学与技术先修课程: 高等数学,线性代数,概率统计一.课程的性质与目的本课程讲授模式识别的基本理论与基本方法。
具体介绍模式识别问题定义,贝叶斯分类器,错误率估计,概率密度估计,窗方法,线性判别分类器,多类别分类,紧邻法,支持向量机,人工神经网络,分类树,K均值聚类,分级聚类等基础模式识别算法的理论和实际使用方法。
二.教学基本要求要求学生了解模式识别的基本理论,掌握基本算法原理,能够根据给出的数据和要求,选择合适的算法,使用现有的软件解决模式识别的模型训练,测试,性能评价问题。
三.教学内容第一章:模式识别的问题定义与数据收集介绍模式识别的问题定义方法,数据形式,模型形式,并指导学生进行一次实际的数据收集。
实践内容:收集包括身高,体重,性别三个维度的数据,并按照模式识别的数据要求进行整理第二章:贝叶斯分类器及其性能评价介绍贝叶斯分类器,两种错误的概念及其估计,证明最小错误率分类器,介绍概率密度估计的基本理论,窗估计方法,介绍性能评价体系,交叉验证的概念,过学习的概念,推广性的概念。
实践内容:利用第一章中收集的数据,建立贝叶斯分类器并进行性能评价。
第三章:线性分类器介绍线性分类器的基本理论,Fisher线性判别器,线性分类器的性能评价。
实践内容:利用第一章的数据,建立Fisher线性分类器,并进行性能评价。
第四章:人工神经网络和支持向量机简介介绍人工神经网络的基本概念和算法,反向传播(BP)训练算法,支持向量机基本概念和算法。
简单介绍统计机器学习理论(SLT)的最基本概念:VC维,泛化能力,模型选择定理。
实践内容:利用第一章中的数据,建立人工神经网络和支持向量机模型,并进行性能评价。
第五章:紧邻法介绍紧邻法的基本理论和方法,紧邻法的错误率边界定理,紧邻法的实现技术,紧邻法在应用上的优势与局限,稀疏性问题。
《模式识别》课程教学大纲

《模式识别》课程教学大纲课程名称:模式识别/Pattern Recognition课程编号:Y08030D开课单位:理学院课程学时:36课程学分:2学生层次:硕士研究生授课方式:讲授适用专业:应用数学课程性质:选修课考试方式:考查教学大纲撰写人:魏明果预修课程:概率论,图象处理一、教学目标与要求《模式识别》是以图象处理技术为基础,研究计算机识别物体的机理,该课程的学习将为计算机视觉以及人工智能等学科的学习打下基础。
本课程主要介绍模式识别的基本概念、基本原理、典型方法、实用技术以及有关研究的新成果,其目的是使学生掌握模式识别的基本概念和基本原理,了解模式识别的具体应用、存在的问题和发展前景。
二、课程主要内容:(一)统计模式识别(二)句法模式识别(三)模糊模式识别其中统计模式识别又分为:(1)用似然函数进行模式识别;(2)用距离函数机型模式识别;(3)特征选择;句法模式识别又分为:(1)串文法的表达与分类;(2)句法识别;(3)文法推断。
课程的教学内容和基本要求第1章引论 21.1 模式识别概况1.2 模式识别应用举例1.3 模式识别方法第2章数学基础 22.1 多元正态2.2 随机变量的线性变换统计模式识别第3章用似然函数进行模式识别83.1 几钟统计决策规则3.2 错误率3.3 参数估计第4章用距离函数进行模式识别64.1最小距离分类法4.2 相似性度量和集群规则4.3 系统聚类4.4 动态聚类第5章特征选择 65.1 维数问题和类内距离5.2 聚类变换5.3 K_L变换5.4 分散度句法模式识别第6章句法模式识别206.1串文法的表达与分类6.2 句法识别6.3 文法推断6.4 混合模式识别模糊模式识别6第7章模糊模式识别三、教材名称:《模式识别》第二版,边肇祺,张学工等编著,清华大学出版社三、主要参考书:(1)J. T. Tou,《Pattern Recognition Principle》(2)Gonzalez, Thomason, 《Syntatic Pattern Recognition-an introduction》(3)Duda, Hart, 《Pattern Classifier & Scene Analysis》。
模式识别课程教学大纲.doc

《模式识别》课程教学大纲一、课程基本信息课程代码:110441课程名称:模式识别英文名称:pattern recognition课程类别:专业选修课学时:总学时54学分:3适用对象:信息与计算科学专业本科考核方式:考查(开卷)先修课程:离散数学、高级语言程序设计、数据结构、高等数学、工程数学、数字图像处理二、课程简介模式识别诞生于20世纪20年代,随着计算机的出现,人工智能的兴起,模式识别迅速发展成为一门学科。
它所研究的理论和方法在很多技术领域中得到广泛的重视,推动了人工智能系统的发展,扩大了计算机应用的可能性。
几十年来模式识别研究取得了大量的成果在很多地方得到了成功的应用。
但是,由于模式识别涉及到很多复杂的问题,现有的理论和方法对于解决这些问题还有很多不足之处。
还有待进一步研究发展。
《模式识别》就是利用计算机对某些物理现象进行分类,在错误概率最小的条件下,使识别的结果尽量与事物相符。
模式识别的原理和方法在医学、军事等众多领域应用十分广泛,是计算机及其相关专业进行科学研究的基础。
这门课的教学目的是让学生掌握统计模式识别和结构模式识别基本原理和方法。
为将来继续深入学习或进行科学研究打下坚实的基础。
《Pattern recognition》is a course about classification of physical phenomenon with the help of computer, the result should best match the real matter under the condition of least probability. The theory of pattern recognition is widely used, including medicine, military affairs, etc. and it is also the base of computer speciality and other related speciality.三、课程性质与教学目的本课程一综合性学科,同时又需要一定的理论基础。
实验课程-091042-模式识别

模式识别实验教学大纲(实验课程)◆课程编号:091042◆课程英文名称:Pattern Recognition◆课程类型:☐通识通修☐通识通选☐学科必修☐学科选修☐跨学科选修☐专业核心 专业选修(学术研究)☐专业选修(就业创业)◆适用年级专业(学科类):计算机科学与技术、网络工程、软件工程四年级◆先修课程:高等数学、线性代数、概率与数理统计、程序设计语言◆总学分:1◆总学时:32一、课程简介与教学目标《模式识别实验》是配合计算机科学与技术、网络工程和软件工程专业课程《模式识别》开设的实验课程。
要求学生在理解模式识别理论及方法的基础上,应具有设计、实现、分析和维护模式识别等方面的能力。
通过本实验课程的训练,使学生熟练掌握模式识别的基本原理和方法,加深对各方法涉及的基础知识的认识,强化编程技能,培养创新能力。
二、教学方式与方法教学方式:学生动手实验为主,辅以适当的提问、小组讨论及实验点评等。
教学方法:探讨式教学、启发式教学、实验教学相结合;尝试包括实验设计、研究设计、答辩、总结等环节的教学。
三、教学重点与难点(一)教学重点理解模式识别系统的基本原理,掌握模式识别中Bayes分类器、Parzen窗估计与K N近邻估计、最近邻方法和C均值聚类算法等,学会使用相应工具进行模式识别方法的设计与实现,从而进一步理解模式识别课程中所讲授的理论知识。
(二)教学难点H-K算法、基于K-L变换的实现。
四、学时分配计划五、教材与教学参考书(一)教材1.《模式识别(第2版)》,边肇祺,张学工等,清华大学出版社,2000。
(二)教学参考书1.《模式识别导论》,齐敏、李大健、郝重阳,清华大学出版社,2009;2.《模式识别原理》,孙亮,北京工业大学出版社,2009;3.《模式识别(第3版)》,张学工,清华大学出版社,2010;4.《模式识别(英文版·第3版)(经典原版书库)》,(希腊)西奥多里迪斯等著,机械工业出版社,2006。
模式识别课程实验教学大纲

《模式识别》课程实验教学大纲一、制定实验教学大纲的依据根据本校《2004级本科指导性培养计划》和《模式识别》课程教学大纲制定。
二、本课程实验教学在培养实验能力中的地位和作用《模式识别》课程是电子信息专业、自动化专业教学计划一门以应用为基础的专业选修课。
是研究如何用机器去模拟人的视觉、听觉、触觉以识别外界环境的理论与方法,其主要任务是使学生获得如何对对象进行分类的有关理论和方法方面的知识。
实验课是本课程重要的教学环节,其目的是使学生掌握统计模式识别的基本分类方法的算法设计及其验证方法,通过接受设计性实验的训练,以提高学生的分析、解决问题的能力。
三、本课程应讲授的基本实验理论1、非监督参数估计的基本原理;2、比较监督参数估计、非监督参数和非参数估计三种样本集估计概率密度方法的差异;3、用Parzen窗法进行总体分布非参数估计的原理;4、Kn近邻法进行总体分布非参数估计的原理;5、感知器算法的基本思想;6、应用感知器算法实现线性可分样本的分类方法;7、高维特征空间向低维特征空间转换的Fisher准则方法。
四、实验教学应达到的能力要求1、掌握根据概率密度用MATLAB生成实验数据的原理和方法;2、掌握用Parzen窗法和Kn近邻法进行总体分布的非参数估计方法,以加深对非参数估计基本思想的认识和理解;3、通过自编程序和程序运行结果,说明Parzen窗法和Kn近邻法各自的优缺点;4、掌握根据已知类别的样本用感知准则进行线性判别函数设计的方法;5、通过编制程序,实现感知器准则算法,并实现线性可分样本的分类;6、掌握高维特征空间向低维特征空间转换的Fisher准则方法;7、通过编制程序并上机运行体会Fisher线性判别的基本思路,理解线性判别的基本思想,掌握Fisher线性判别问题的实质。
五、学时、教学文件学时:本课程总学时为32学时,其中实验为4学时,占总学时的13%。
教学文件:校编《模式识别实验指导书》;实验报告学生自拟。
模式识别 教学大纲

模式识别教学大纲一、课程概述模式识别是一门涉及计算机科学、数学和统计学等多个领域的学科,旨在让学生了解和掌握模式识别的基本概念、原理和应用。
本课程将介绍模式识别的主要方法和技术,并通过实践案例,培养学生的模式识别能力和实践应用能力。
二、教学目标1. 理解模式识别的基本概念和原理;2. 掌握常用的模式识别方法和技术;3. 能够运用模式识别技术解决实际问题;4. 培养学生的团队合作和创新思维能力。
三、教学内容1. 引言和基本概念1.1 模式识别的定义和应用领域1.2 模式识别的相关概念:样本、特征、分类等2. 模式识别方法2.1 统计模式识别2.1.1 贝叶斯决策理论2.1.2 最大似然估计和最大后验概率估计 2.1.3 参数估计和模型选择2.2 数学模式识别2.2.1 线性回归和逻辑回归2.2.2 主成分分析和典型相关分析2.2.3 支持向量机和神经网络2.3 深度学习2.3.1 卷积神经网络2.3.2 循环神经网络2.3.3 长短时记忆网络3. 特征提取与选择3.1 特征抽取方法3.1.1 基于统计的特征提取3.1.2 基于图像处理的特征提取3.1.3 基于频域分析的特征提取3.2 特征选择方法3.2.1 信息增益和卡方检验3.2.2 嵌入式特征选择3.2.3 过滤式特征选择4. 分类与评估4.1 经典分类算法4.1.1 K近邻算法4.1.2 决策树算法4.1.3 朴素贝叶斯算法4.2 模型评估和交叉验证4.2.1 准确率、精确率、召回率和F1值 4.2.2 ROC曲线和AUC值4.2.3 K折交叉验证和留一法5. 实践案例分析5.1 图像识别5.1.1 手写数字识别5.1.2 人脸识别5.2 语音识别5.2.1 声纹识别5.2.2 语音情感识别5.3 生物信息识别5.3.1 DNA序列识别5.3.2 蛋白质结构识别四、教学方法1. 理论讲授:通过教师讲解,介绍模式识别的基本概念、原理和方法。
2. 实践操作:组织学生进行编程实践,实现模式识别算法并应用于案例分析。
机器学习与模式识别-教学大纲

《机器学习与模式识别》教学大纲课程编号:071243B课程类型:□通识教育必修课□通识教育选修课■专业必修课□专业选修课□学科基础课总学时:48讲课学时:32 实验(上机)学时:16学分:3适用对象:计算机科学与技术专业先修课程:程序设计基础与应用、数据结构、高等数学、算法导论一、教学目标《机器学习与算法导论》是计算机科学技术专业的一门专业选修课程。
本课程是面向计算机技术开设的专业选修课。
其教学重点是使学生掌握常见机器学习算法,包括算法的主要思想和基本步骤,并通过编程练习和典型应用实例加深了解;同时对机器学习的一般理论,如假设空间、采样理论、计算学习理论,以及无监督学习和强化学习有所了解。
模式识别部分是研究计算机模式识别的基本理论、方法和应用。
通过本课程的学习,使学生掌握模式识别的基本概念、基本原理、基本分析方法和算法,培养学生利用模式识别方法,运用技能解决本专业和相关领域的实际问题的能力。
学生通过本门课程的学习,能够对机器学习和模式识别的内容有一个较为全面的了解和认识,更深刻地理解机器学习的实质内容,使学生具备前沿的计算机技术必要的专业知识。
从而,为学生今后从事计算机技术应用与计算机技术前沿研究,以及相关领域的科学研究做好理论和技术上的准备。
目标1:通过对机器学习与模式识别基本概念、原理、和基本方法的讲解,让学生理解并掌握机器学习和模式识别的基本技术。
目标2:培养学生利用模式识别方法,运用技能解决本专业和相关领域的实际问题的能力。
目标3:鼓励学生运用知识解决各自学科的实际问题,培养他们的独立科研的能力和理论联系实际的能力。
二、教学内容及其与毕业要求的对应关系(黑体,小四号字)本课程主要介绍决策论与信息论基础、概率分布、回归的线性模型、分类的线性模型、核方法、支持向量机、图模型、混合模型和期望最大化、隐Markov 模型和条件随机场模型、统计决策方法、概率密度函数的估计、线性分类器、非线性分类器、其他分类方法、特征选择、特征提取、非监督模式识别、模式识别系统的评价等。
模式识别与应用课程设计

模式识别与应用课程设计一、课程目标知识目标:1. 让学生掌握模式识别的基本概念,理解其在实际生活中的应用。
2. 使学生了解并掌握常用的模式识别算法,如统计方法、机器学习方法等。
3. 帮助学生了解模式识别技术在各领域的发展趋势。
技能目标:1. 培养学生运用模式识别技术解决实际问题的能力。
2. 提高学生运用编程语言(如Python)实现模式识别算法的技能。
3. 培养学生分析数据、提取特征、选择合适算法并进行模型训练的能力。
情感态度价值观目标:1. 培养学生对模式识别技术及其应用的兴趣,激发学生的创新意识。
2. 培养学生严谨的科学态度,养成良好的学术道德。
3. 增强学生团队合作意识,提高沟通与协作能力。
课程性质分析:本课程为应用性较强的学科,结合当前热门的人工智能技术,旨在培养学生的实际操作能力和创新思维。
学生特点分析:学生具备一定的数学基础和编程能力,对新鲜事物充满好奇,喜欢探索未知领域。
教学要求:1. 理论与实践相结合,注重培养学生的动手操作能力。
2. 采用案例教学,让学生在实际问题中感受模式识别技术的魅力。
3. 强化团队合作,培养学生的沟通与协作能力。
二、教学内容1. 模式识别基本概念:包括模式、特征、分类、聚类等基本概念及其相互关系。
教材章节:第一章 模式识别概述2. 模式识别算法:重点讲解统计方法、机器学习方法及其在实际中的应用。
教材章节:第二章 统计模式识别;第三章 机器学习与模式识别3. 特征提取与选择:介绍常用的特征提取和选择方法,如主成分分析、线性判别分析等。
教材章节:第四章 特征提取与选择4. 模型评估与优化:讲解模型评估指标、过拟合与欠拟合问题,以及优化方法。
教材章节:第五章 模型评估与优化5. 模式识别应用案例分析:分析实际案例,如人脸识别、语音识别等。
教材章节:第六章 模式识别应用案例分析6. 实践环节:安排学生进行编程实践,实现简单的模式识别算法,如K-近邻、支持向量机等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《模式识别及应用》课程教学大
纲
( 06、07级)
编号:40021340
英文名称:Pattern Recognition and Its
Applications
适用专业:电子信息工程
责任教学单位:电子工程系电子信息
教研室
总学时:32
学分:2
考核形式:考查
课程类别:专业课
修读方式:必修
教学目的:模式识别是电子信息工程专业的一门专业必修课。
通过该课程的学习,学生能够掌握模式识别的基本理论和主要方法,并且能掌握在大量的模式样本中获取有用信息的原理和算法,通过课外上机练习,学会编写模式识别的算法程序,达到理论和实践相结合的目的,使学生了解模式识别的应用领域,为将来从事这一方面的研究打下初步基础。
主要教学内容及要求:由于本课程的目标是侧重在应用模式识别技术,因此在学习内容上侧重基本概念的讲解,辅以必要的数学推导,使学生能掌握模式识别技术中最基本的概念,以及最基本的处理问题方法。
本课程安排了一些习题,以便学生能通过做练习与实验进一步掌握课堂知识,学习了本课程后,大部分学生能处理一些简单模式识别问题,如设计获取信息的手段,选择要识别事物的描述方法以及进行分类器设计。
第一章概论
1.掌握模式识别的概念
2.熟悉模式识别系统
3.熟悉模式识别的应用
第二章统计模式识别——概率分类法
1. 掌握概率分类的判别标准
(1)Bayes法则
(2)Bayes风险
(3)基于Bayes法则的分类器
(4)最小最大决策
(5)Neyman-pearson决策
2. 熟悉正态密度及其判别函数
(1)正态密度函数
(2)正态分布样品的判别函数
3.了解密度函数的估计
第三章聚类分析
1. 掌握基于试探的聚类算法
(1)基于最近邻规则的试探法
(2)最大最小距离法
2.熟悉层次聚类算法
3.熟悉动态聚类法
(1)K均值算法
(2)迭代自组织的数据分析算法4.了解合取聚类法、最小张树分类法
第四章模糊模式识别
1.掌握模糊信息处理的基本概念
2.熟悉模糊识别信息地获取
3.熟悉模糊综合评判
4.熟悉基于识别算法的模糊模式识别
5.熟悉模糊聚类分析
第五章神经网络识别理论及模型
1.掌握人工神经网络基本模型
2.熟悉神经网络分类器
3.熟悉模糊神经网络系统
4.熟悉神经网络识别模型及相关技术
第六章特征提取与选择
1.掌握类别可分性判据
2.掌握基于可分性判据进行变换的特征提取与选择
3.掌握最佳鉴别矢量的提取
4.熟悉离散K-L变换及其在特征提取与选择中的应用
5.熟悉基于决策界的特征提取
6.熟悉特征选择中的直接挑选法
本课程与其他课程的联系与分工:本课程的先修课程是线性代数、概率与数理统计。
它与数字图像处理课可并开。
所学知识可以直接应用于相关课题的毕业设计中,并可为学生在研究生阶段进一步深入学习模式识别理论和从事模式识别方向的研究工作打下基础。
学时分配表:
实验和上机要求:
实验的名称:聚类分析
实验的目的:设计基于等价关系的C均
值模型并编程实现
实验的内容和要求:(1)写出算法计算
公式;(2)基于等价关系的C均值模型数据
结构设计;(3)程序设计的实现流程;(4)
编程实现训练算法;(5)验证实例。
使用的设备和仪器:微型计算机,Visual
Basic或Visual C++程序设计环境
编制人:韦雪洁2006年
审核人:王俊红2006年。