4.《图形的初步认识与三角形》

合集下载

中考数学复习第四章图形的初步认识与三角形第17讲等腰三角形与直角三角形

中考数学复习第四章图形的初步认识与三角形第17讲等腰三角形与直角三角形

12
【思路点拨】 本题考查等腰三角形的性质.根据等腰三角形的性质和三角形 的内角和即可得到结论.
第一部分 教材同步复习
13
1.(2017海南)已知△ABC的三边长分别为4,4,6,在△ABC所在平面
内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样
的直线最多可画__________条. A.3
第一部分 教材同步复习
6
(2)在 Rt△ABC 中,∠ACB=90°,∠A=30°,BC=1,则 AB 边上的中线长为
A.1
B.2
(A )
C.1.5
D. 3
(3)已知直角三角形中 30°角所对的直角边为 2 cm,则斜边的长为
(B )
A.2 cm
B.4 cm
C.6 cm
D.8 cm
第一部分 教材同步复习
周长:c=a+b+c;
周长、 面积
面积:SRt△ABC=12ab=12ch(其中
a,b
为两个直角边,c
为斜边,h
为斜边上
的高)
第一部分 教材同步复习
知识点四 等腰直角三角形的判定与性质
【回顾】
(1)等腰直角三角形的直角边为 2,则斜边的长为
A. 2
B.2 2
C.1
D.2
1 (2)等腰直角三角形的斜边长 2,则它的面积为___2_______.
第一部分 教材同步复习
8
(1)有一个角为⑤___9_0_°_____的三角形是直角三角形;
判 (2)勾股定理逆定理:如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么 定 这个三角形是直角三角形;
(3)一条边的中线等于这条边的一半的三角形是直角三角形;

精品2014年八年级数学上册-三角形初步认识同步讲义+练习

精品2014年八年级数学上册-三角形初步认识同步讲义+练习

精品2014年⼋年级数学上册-三⾓形初步认识同步讲义+练习三⾓形初步认识第01课与三⾓形有关的线段知识点:三⾓形定义:组成的图形叫做三⾓形。

⽤符号“△”表⽰。

注意:三条线段必须①;②组成三⾓形的线段叫做三⾓形的,相邻两边所组成的⾓叫做三⾓形的,简称⾓,相邻两边的公共端点是三⾓形的。

注意:三⾓形ABC 的顶点C 所对的边AB 可⽤c 表⽰,顶点B 所对的边AC 可⽤b 表⽰,顶点A 所对的边BC 可⽤a 表⽰.三⾓形三要素:、、。

三⾓形三边的不等关系:。

附加:公式:三⾓形的分类:(1)按⾓分类: 三⾓形、三⾓形、三⾓形。

(2)按边分类:三⾓形的⾼线:从三⾓形的⼀个向它的对边所在直线作,顶点和垂⾜之间的叫做三⾓形的⾼线,简称三⾓形的⾼.注意:⾼与垂线不同,⾼是线段,垂线是直线。

三⾓形的三条⾼,简称三⾓形的⼼。

三⾓形的中线:如图,我们把连结△ABC 的顶点A 和它的对边BC 的中点D ,所得线段AD 叫做△ABC 的钝⾓三⾓形直⾓三⾓形锐⾓三⾓形位置边BC 上的中线,表⽰为BD=DC 或BD=DC=21BC 或2BD=2DC=BC. 三⾓的三条中线,简称三⾓形的⼼。

注意:三⾓形的中线是线段。

三⾓形的⾓平分线:如图,画∠A 的平分线AD ,交∠A 所对的边BC 于点D ,所得线段AD 叫做△ABC 的⾓平分线,表⽰为∠BAD=∠CAD 或∠BAD=∠CAD =1/2∠BAC 或2∠BAD=2∠CAD =∠BAC 。

三⾓形三个⾓的平分线,简称三⾓形的⼼。

注意:三⾓形的⾓平分线是线段,⽽⾓的平分线是射线,是不⼀样的。

三⾓形稳定性(1)把三根⽊条⽤钉⼦钉成⼀个三⾓形⽊架,然后扭动它,它的形状会改变吗? (2)把四根⽊条⽤钉⼦钉成⼀个四边形⽊架,然后扭动它,它的形状会改变吗? (3)在四边形的⽊架上再钉⼀根⽊条,将它的⼀对顶点连接起来,然后扭动它,它的形状会改变吗?例1.⽤⼀条长为18cm 的细绳围成⼀个等腰三⾓形. (1)如果腰长是底边的2倍,那么各边的长是多少? (2)能围成有⼀边长为4㎝的等腰三⾓形吗?为什么?例2.已知△ABC 的周长是24cm ,三边a 、b 、c 满⾜c+a=2b ,c-a=4cm ,求a 、b 、c 的长.三⾓形中线的性质:例3.⼀个等腰三⾓形的周长为32 cm,腰长的3倍⽐底边长的2倍多6 cm.求各边长.例4.如图,在直⾓三⾓形ABC中,∠ACB=900,CD是AB边上的⾼,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的⾯积;(2)CD的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的⾯积;(4)作出△BCD的边BC边上的⾼DF,当BD=11cm 时,试求出DF的长。

苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思

苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思

苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思一、教材分析:《图形的初步认识(一)》是苏教版(2024)小学数学一年级上册的内容。

本课程旨在引导学生初步认识基本的平面图形,包括圆形、正方形、长方形和三角形。

这部分教材主要通过观察、操作等活动,让学生直观认识长方体、正方体、圆柱和球等立体图形。

通过观察、比较和操作活动,学生将学会辨识这些基本图形,并理解它们的基本特征,同时引导学生认识这些图形的特征,为后续学习几何知识奠定基础。

二、教学目标:【知识与技能目标】:1.能够正确识别并命名圆形、正方形、长方形和三角形。

2.让学生直观认识长方体、正方体、圆柱和球等立体图形,能够辨认和区分这些图形。

3.培养学生的观察能力、动手操作能力和空间观念。

【过程与方法目标】:1.能够从不同的图形中挑选出指定的图形,并能描述这些图形的基本特征。

2.通过观察、操作、交流等活动,让学生经历认识图形的过程。

3.引导学生在实际生活中寻找这些图形,感受数学与生活的联系。

【情感态度与价值观目标】:1.培养学生对数学的兴趣和好奇心,激发学生的学习积极性。

2.培养学生的合作意识和团队精神,激发学生对数学学习的兴趣,感受数学与生活的密切联系。

3.激发学生对几何图形的兴趣,培养学生的观察力和空间想象力。

三、教学重难点:【教学重点】:认识长方体、正方体、圆柱和球的形状特征,能够正确辨认和区分这些图形。

2.识别并描述圆形、正方形、长方形和三角形的基本特征。

【教学难点】:1.区别不同形状的图形,建立空间观念,培养学生的空间观念。

2.区分长方形和正方形,理解它们的相似性和差异性。

四、学情评估:一年级的学生处于形象思维阶段,对直观的事物比较感兴趣。

但对抽象概念的理解有限。

他们喜欢通过具体的操作和游戏来学习新知识;在生活中已经接触过一些立体图形,但对这些图形的特征还没有系统的认识。

在教学中,要充分利用学生的生活经验,通过直观的教学手段,引导学生认识图形的特征。

幼儿园小班教案《认识三角形》

幼儿园小班教案《认识三角形》

The earth is in motion all the time, and a person will not always be in an unlucky position.精品模板助您成功!(页眉可删)幼儿园小班教案《认识三角形》幼儿园小班教案《认识三角形》1设计思路:根据幼儿活泼好动,喜欢摆弄物品的特点,我为幼儿提供了小棒、图形、彩纸等大量活动材料,让幼儿在玩中学、学中乐,乐中做,启发幼儿主动探索、发现三角形的特征,培养幼儿的创新意识,使幼儿养成动手、动脑、动口的好习惯。

活动目标:1、引导幼儿在探索操作活动中,初步感知三角形,知道其名称和形状特征;2、培养幼儿的动手操作能力,发展幼儿思维的灵活性;3、初步培养幼儿的创新意识和实践能力。

活动准备:1、长短不同的小棒若干,总数是幼儿人数的6倍;2、三角形卡片若干;3、红领巾、小房子、小旗子等三角形实物若干;4、彩纸、铅笔、橡皮、剪刀每人一份。

活动过程:一、探索操作:1、在正方形拼图的基础上,请幼儿任意拿3根小棒拼摆图形。

幼儿探索活动,教师指导。

2、请个幼儿说一说,摆得什么样的图形,用了几根小棒,有几个角;3、师生共同拼图,并点数图形的边、角;小结:有3条边、3个角的图形叫三角形。

丰富词汇:三角形。

二、探索感知:1、请幼儿任意取出一个三角形卡片,点数它有几个条边、几个角?2、出示各种不同的三角形,引导幼儿观察其不同点,相同点。

不同点:有的大、有的小、有的角尖、有的角大……相同点:都有3个角、3条边。

3、小结:不管图形大小,不管角尖,只要有3条边、3 个角的图形都是三角形。

三、找一找、想一想、说一说1、引导幼儿在环境中找出象三角形的物体(小彩旗、红领巾)。

2、请幼儿想一想、说一说,见过的象三角形的物体四、做一做、试一试剪裁三角形并拼图1、教师引导幼儿用各种方法剪裁出任意三角形(剪、撕、画等),培养幼儿的创新意识2、鼓励幼儿用剪出的三角形拼出自己喜爱的动物或物品的'形象。

安徽省中考数学总复习第一轮中考考点系统复习第四单元图形的初步认识与三角形第18讲解直角三角形试题

安徽省中考数学总复习第一轮中考考点系统复习第四单元图形的初步认识与三角形第18讲解直角三角形试题

第18讲解直角三角形1.(2016·亳州模拟)如果一个三角形三个内角的度数比为1∶2∶3,那么这个三角形最小角的正切值为( C )A。

错误! B.错误! C.错误! D.错误! 2.(2016·芜湖南陵县模拟)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC =3,则sinB的值是( A )A。

错误! B。

错误! C。

错误! D。

错误!3.(2016·乐山)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是( C )A.sinB=错误! B.sinB=错误!C.sin B=错误! D.sinB=错误!4.(2014·巴中)在Rt△ABC中,∠C=90°,sinA=错误!,则tanB的值为( D )A.错误!B.错误! C。

错误! D。

错误! 5.(2016·益阳)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为( A )A。

错误!米 B。

错误!米 C。

错误!米 D。

错误!米6.(2016·白银)如图,点A(3,t)在第一象限,射线OA与x轴所夹的锐角为α,tanα=错误!,则t的值是错误!.7.(2016·岳阳)如图,一山坡的坡度为i=1∶错误!,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.8.(2016·灵璧县模拟)某校加强社会主义核心价值观教育,在清明节期间,为缅怀先烈足迹,组织学生参观滨湖渡江战役纪念馆,渡江战役纪念馆实物如图1所示.某数学兴趣小组同学突发奇想,我们能否测量斜坡的长和馆顶的高度?他们画出渡江战役纪念馆示意图如图2,经查资料,获得以下信息:斜坡AB的坡比i=1∶3,BC=50 m,∠ACB=135°.求AB及过A 点作的高是多少?(结果精确到0。

三角形的初步认识教案

三角形的初步认识教案

三角形的初步认识教案【篇一:三角形的初步认识复习教案】龙文教育学科老师个性化教案【篇二:《认识三角形》教学设计】《三角形的认识》教学设计【教学目标】1.联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形底和高相互依存的关系。

2.在认识三角形有关特征的活动中,体会认识多边形特征的基本方法,发展观察、比较、抽象、概括等思维能力。

3.体会三角形是日常生活中常见的图形,并在学习活动中进一步产生学习图形的兴趣和积极性。

【教学重难点】重点:认识三角形的一些最基本的特征,认识三角形的底和高。

难点:懂得底和高的对应关系,会画三角形指定边上的高。

【教学准备】方格纸、三角尺、小棒、练习纸等【教学过程】一、走进生活,导出课题谈话:出示三角板,老师手里拿的是什么?(三角尺)它是什么形状的呢?出示书上图:你能从这幅图中找到三角形吗?提问:生活中,你在哪些地方看到过三角形?(结合举例出示自行车图等)揭示:三角形在生活中的运用非常广泛。

今天这节课我们进一步研究三角形。

(板书课题:认识三角形)【设计意图:数学来源于生活。

三角形的稳定性决定了它在生活中的广泛应用。

结合身边熟悉的物品、结合生活中常见的例子,导入新课的学习,激发学生的兴趣,让学生产生进一步探究的欲望。

】二、动手操作,了解特征1.激趣:想动手做一个三角形吗?首先,我们要明确活动要求。

出示要求:(1)用你手中的工具,想办法做出一个三角形。

(2)小组成员比较所做的不同的三角形,看看有什么共同点。

2.操作:学生分组活动,教师巡视。

3.交流:指名某组代表上台利用实物投影介绍,别的小组补充。

(材料:小棒、三角尺、方格纸、点子图、白纸)4.感受围成提问:刚才有同学是用小棒摆三角形的,那么摆一个三角形至少要用几根小棒?出示开口和出头的两种摆法:这样行吗?不管是摆还是画三角形,都要注意三条边首尾相连。

【试题】怀化专版2020年中考数学总复习阶段测评四图形的初步认识与三角形四边形B试题

【试题】怀化专版2020年中考数学总复习阶段测评四图形的初步认识与三角形四边形B试题

【关键字】试题阶段测评(四) 图形的初步认识与三角形、四边形(B)(时间:120分钟总分:120分)一、选择题(每题4分,共40分)1.(2016毕节中考)到三角形三个顶点的距离都相等的点是这个三角形的( D )A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的笔直平分线的交点2.(2016娄底中考)下列命题中,错误的是( D )A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等3.(2015徐州中考)如图,在菱形ABCD中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( A )A.3.5 B.4 C.7 D.14,(第3题图)) ,(第4题图))4.(2015台州中考)如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD 交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O,当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( C )A.6.5 B.6 C.5.5 D.55.(2016宜宾中考)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( A )A.4.8 B.5 C.6 D.7.2,(第5题图)) ,(第6题图))6.(2015龙东中考)如图,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF 的面积为( D )A.4 B. C.2 D.27.如图,在△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC交DE于点F,若BC=6,则DF的长是( B )A.2 B.3 C.4 D.5,(第7题图)) ,(第8题图))8.如图,在菱形ABCD中,DE⊥AB,∠A=60°,BE=2.则菱形ABCD的面积为( C )A.8 B.4 C.8 D.129.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( C )A.14 B.15 C.16 D.17,(第9题图)) ,(第10题图))10.(2014德州中考)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD、BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,在以下四个结论中,正确的有( C )①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围是3≤BF≤4;④当点H与点A重合时,EF=2.A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共16分)11.(2016临沂中考)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD =3,BF=4,则FC的长为____.,(第11题图)) ,(第12题图))12.(2016昆明中考)如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为__40°__.13.(2016茂名中考)已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD=__2__.14.(2014安徽中考)如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是__①②④__.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.三、解答题(每题8分,共64分)15.(2015梅州中考)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,求▱ABCD的周长.解:▱ABCD的周长为20.16.(2016泸州中考)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.证明:∵CD∥BE,∴∠ACD=∠CBE.∵C是AB的中点,∴AC=CB,∴在△ACD和△CBE中,∴△ACD≌△CBE,∴∠D=∠E.17.(2016泰州中考)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.解:(1)∵AB=AC,∴∠B=∠3,∵AD平分∠CAE,∴∠1=∠2,而∠CAE=∠1+∠2=∠B+∠3,∴∠1=∠3,∴AD∥BC;(2)BC=8.18.(2014枣庄中考)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论. 解:(1)略;(2)若OD =12AC ,则四边形ABCD 是矩形, 理由:∵△BOE≌△DOF,∴DO =OB ,OF =OE.又∵O 是AC 的中点,∴OA =OC ,∵OD =12AC ,∴OD =OA =OB =OC , ∴四边形ABCD 为矩形.19.(2015扬州中考)如图,在△ABC 中,AB =AC ,D 是BA 延长线上的一点.(1)实践与操作:根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC 的平分线AM ;②作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF.(2)猜想并证明:判断四边形AECF 的形状并加以证明.解:(1)如图;(2)四边形AECF 是菱形,∵EF 是AC 的垂直平分线,∴AG =GC ,AF =FC ,AE =EC ,且∠AGF=∠E GC =90°.∠DAC 是△ABC 的外角,∴∠DAC =∠ABC+∠ACB.∵AB=AC ,∴∠ABC =∠ACB,∴∠DAC =2∠ACB,∵AM 平分∠DAC,∴∠DAC =2∠FAC,∴∠ACB =∠FAC.在△AGF 和△CGE 中,⎩⎪⎨⎪⎧∠AGF=∠CGE,AG =CG ,∠FAG =∠ECG,∴△AGF ≌△CGE ,∴AF =EC ,∴AF =FC =EC =AE ,∴四边形AECF 为菱形.20.(2016北京中考)如图,在四边形ABCD 中,∠ABC =90°,AC =AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN.(1)求证:BM =MN ;(2)若∠BAD=60°,AC 平分∠BAD,AC =2,求BN 的长.解:(1)∵∠ABC=90°,M 为AC 的中点,∴BM =12AC. 又∵在△ACD 中,M 、N 分别为AC 、CD 的中点,∴MN ∥AD 并且MN =12AD. 又∵AC=AD ,∴BM =12AC =12AD =MN ,即BM =MN ; (2)BN = 2.21.(2016长沙中考)如图,AC 是▱ABCD 的对角线,∠BAC =∠DAC.(1)求证:AB =BC ;(2)若AB =2,AC =23,求▱ABCD 的面积.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BCA =∠DAC,又∠BAC=∠DAC,∴∠BCA =∠BAC,∴AB =BC.(2)∵AB=BC ,∴▱ABCD 是菱形,连接BD 交AC 于点O ,则∠AOB=90°.∴AO =12AC =3,BO =22-(3)2=1, ∴BD =2,∴S ▱A BCD =12×23×2=2 3. 22.如图,两个全等的△ABC 和△DFE 重叠在一起,固定△ABC,将△DEF 进行如下变换:(1)如图1,△DEF 沿直线CB 向右平移(即点F 在线段CB 上移动),连接AF 、AD 、BD ,请直接写出S △ABC 与S 四边形AFBD 的关系;(2)如图2,当点F 平移到线段BC 的中点时,若四边形AFBD 为正方形,那么△ABC 应满足什么条件?请给出证明;(3)在(2)的条件下,将△DEF 沿DF 折叠,点E 落在FA 的延长线上的点G 处,连接CG ,请你画出图形,并求出sin ∠CGF 的值.解:(1)S △ABC =S 四边形AFBD ;(2)△ABC 为等腰直角三角形,即AB =AC ,∠BAC =90°.理由:∵F 为BC 的中点,∴CF =BF ,∵CF =AD ,∴AD =BF.又∵AD∥BF,∴四边形AFBD 为平行四边形,∵AB =AC ,F 为BC 的中点,∴AF ⊥BC ,∴▱AFBD 为矩形,∵∠BAC =90°,F 为BC 的中点,∴AF =12BC =BF , ∴四边形AFBD 为正方形;(3)如图所示,由(2)知,△ABC 为等腰直形三角形,AF ⊥BC ,设CF =k ,则GF =EF =CB =2k ,∴CG =5k ,∴sin ∠CGF =CF CG =k 5k =55.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

认识三角形教案(20篇)

认识三角形教案(20篇)

认识三角形教案(20篇)熟悉三角形教案(1)活动目标:1、培育幼儿对图形的爱好和数学活动常规。

2、初步进展幼儿的观看力、分析力量和概括力量。

3、感知并说出三角形的基本特征,能找出和三角形相像的物体。

活动预备:多媒体、课件各一,图形若干。

活动分析:观看、对比是孩子们探究的过程,利用图形的对比引领幼儿感知三角形的基本特征,作为本次活动的重点。

活动中运用课件直观、形象的特征,利用多种嬉戏形式,采纳引发法、提示法,引领幼儿进一步掌控并概括三角形的基本特征,从而突破难点部分。

活动的结束之际,组织幼儿进一步从生活环境中找出像三角形的物体,作为活动的延长环节,自然结束。

活动过程:一、导入。

采纳观看法,利用课件中图形宝宝的口吻引出三角形。

二、绽开。

1、采纳嬉戏法引领幼儿在众图形中查找三角形。

2、引领幼儿观看三种三角形的共同特征,发觉三角形有三条边、三个角。

3、动手操作:a、幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌控三角形特征;b、观看并说出三角形像什么。

4、嬉戏“猜猜我是谁”。

组织幼儿依据图形慢慢露出部分猜想出图形,进一步巩固幼儿对图形特征的熟悉。

5、嬉戏“捉迷藏”幼儿从简洁的画面中找出三角形。

6、引领幼儿观看并找出活动室中那些物品像三角形。

三、延长。

请幼儿到生活环境中进一步查找三角形的踪迹。

熟悉三角形教案(2)活动背景:不同外形的三角形,使得幼儿很感爱好。

利用动手操,将3根一样长或不一样长的小棍,拼做三角形,使幼儿进一步熟悉到了有三个角,三条边的就是三角形。

活动目标:1、熟悉三角形,知道三角开有三条边,三个角,复习手口一样点数。

2、培育幼儿的观看和比较力量。

3、激活幼儿学习图形的爱好。

4、体会数学的生活化,体悟数学嬉戏的乐趣。

5、能与伙伴合作,并试试记录结果。

教学重点、难点:1、熟悉三角形,并知道三角形有很多外形2、区分三角形与正方形活动预备:PPT课件、教具实物(三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3页共9页
第 16 讲 等腰、等边及直角三角形
三、 知识清单梳理 知识点一:等腰和等边三角形
关键点拨与对应举例
(1)性质 ①等边对等角:两腰相等,底角相等,即 AB=AC ∠B=∠C;
②三线合一:顶角的平分线、底边上的中线和底边上的高
1. 等 腰
互相重合;
三角
③对称性:等腰三角形是轴对称图形,直线 AD 是对称轴.
中线
(1) 将三角形的面积等分 (2) 直角三角形斜边上的中线等于斜边的一半
锐角三角形的三条高相交于三角形内部;直角三角形的三条高 高
相交于直角顶点;钝角三角形的三条高相交于三角形的外部
中位线 平行于第三边,且等于第三边的一半
(1)角平分线、高结合求角度 时,注意运用三角形的内角和为 180°这一隐含条件. (2)当同一个三角形中出现两 条高,求长度时,注意运用面积 这个中间量来列方才能够求解.
(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角 形是直角三角形.即若 AD=BD=CD,则△ABC 是 Rt△
(3) 勾股定理的逆定理:若 a2+b2=c2,则△ABC 是 Rt△.
长度,若斜边不明确,应分类讨 论. (3)在折叠问题中,求长度,往 往需要结合勾股定理来列方程解 决.
第5页共9页
(1)等边三角形是特殊的等腰三 角形,所以等边三角形也满足 “三线合一”的性质.
(2)等边三角形有一个特殊的角 60°,所以当等边三角形出现 高时,会结合直角三角形 30° 角的性质,即 BD=1/2AB.
例:△ABC 中,∠B=60°,AB=AC, BC=3,则△ABC 的周长为 9.
例:如图,△ABC 中,∠C=90°, ∠A=30°,AB 的垂直平分线交 AC 于 D,交 AB 于 E,CD=2,则 AC=6.
(1)角:有公共端点的两条射线组成的图形.
2.概念 (2)角平分线:在角的内部,以角的顶点为端点把这个角分成两个相
等的角的射线
3.角的度 1°=60′,1′=60'',1°=3600''

4.余角和 ( 1 ) 余角:∠1+∠2=90°⇔∠1 与∠2 互为余角;
补角
( 2 ) 补角:∠1+∠2=180°⇔∠1 与∠2 互为补角.
角形的性 (3)全等三角形的周长等、面积等. 质
一 般 SSS(三边对 SAS(两边和它 ASA(两角和它 AAS(两角和其
三 角 应相等)
们的夹角对应 们的夹角对应相 中一个角的对边
形全
相等)
等)
对应相等)
7. 三 角 形 等
失分点警示:运用全等三角 形的性质时,要注意找准对 应边与对应角.
失分点警示 如图,SSA 和 AAA 不能判 定两个三角形全等.
3. 角 平
∠1 =∠2,PA⊥OA,PB⊥OB,则 PA=PB.
分线 (2)判定:角的内部到角的两边的距离相等的点在角的角平
分线上.
4. 垂 直 (1)性质:线段的垂直平分线上的点到这条线段的两端点距
平 分 离相等.即若 OP 垂直且平分 AB,则 PA=PB.
线 图 (2)判定:到一条线段两端点距离相等的点在这条线段的垂

(2)判定
则△ABC 是等腰三角形.
(1)三角形中“垂线、角平分线、 中线、等腰”四个条件中,只要 满足其中两个,其余均成立. 如: 如左图,已知 AD⊥BC,D 为 BC 的中点,则三角形的形状是等腰 三角形.
失分点警示:当等腰三角形的
第1页共9页
第 15 讲 一般三角形及其性质
二、 知识清单梳理
知识点一:三角形的分类及性质
关键点拨与对应举例
(1)按角的关系分类
(2)按边的关系分类
1. 三 角 形
的分类
直角三角形
三角形
斜三角形
锐角三角形 钝角三角形
不等边三角形 三角形等腰三角形等底边和三腰角不形相等的等腰三角形
失分点警示:
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度
例:如图所示,点 A 到 BC 的距离为 AB, 点 B 到 AC 的距离为 BD,点 C 到 AB 的 距离为 BC.
8.平行线
(1)平行线的性质与判定
①同位角相等 两直线平行 ②内错角相等 两直线平行 ③同旁内角互补 两直线平行
(2)平行公理及其推论 ①经过直线外一点,有且只有一条直线与已知直线平行.
bd
n
a c ... m =k.(b、d、···、n≠0) b d ... n
一个参数的式子表示,再求代数式的值,也
可以用给出的字母中 的一个表示出其他的
字母,再代入求解.如下题可设 a=3k,b=5k,再
代入所求式子,也可以把原式变形得 a=3/5b
代入求解.
例:若
a
3
,则
a
b
8
.
b5
(2)命题的结构:由题设和结论两部分组成,命题常写成"如果 p, 那么 q"的形式,其中 p 是题设,q 是结论.
(3)证明:从一个命题的题设出发,通过推理来判断命题是否成立的 过程.证明一个命题是假命题时,只要举出一个反例署名命题不成 立就可以了.
例:下列命题是假命题的有( ③ ) ①相等的角不一定是对顶角; ②同角的补角相等; ③如果某命题是真命题,那么它的逆命题 也是真命题; ④若某个命题是定理,则该命题一定是真 命题.
两个角叫做对顶角. (2)性质:对顶角相等,邻补角之和为 180°.
一个角的同位角、内错角或同旁内角可能 不止一个,要注意多方位观察
例:在平面中,三条直线相交于 1 点,则 图中有 6 组对顶角.
7.垂线
(1)概念:两条直线互相垂直,其中的一条直线叫做另一条直线的垂 线.
(2)性质:①过一点有且只有一条直线与已知直线垂直. ②垂线段最短.
(2)外角的性质: ①三角形的一个外角等于与它不相邻的两个内角和.
利用三角形的内、外角的性质求 角度时,若所给条件含比例,倍 分关系等,列方程求解会更简 便.有时也会结合平行、折叠、 等腰(边)三角形的性质求解.
4. 三 角 形
中的重 要线段
②三角形的任意一个外角大于任何和它不相邻的内角.
四线
性质
角平分线 (1) 角平线上的点到角两边的距离相等 (2) 三角形的三条角平分线的相交于一点(内心)
第四单元 图形的初步认识与三角形
一、 知识清单梳理
第 14 讲 平面图形与相交线、平行线
知识点一:直线、线段、射线
关键点拨
1.
(1)直线的基本事实:经过两点有且只有一条直线.
基本事实 (2)线段的基本事实:两点之间,线段最短.
知识点二 :角、角平分线
例:在墙壁上固定一根横放的木条, 则至少需要 2 枚钉子,依据的是两 点确定一条直线.
b5
(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若 l3∥l4∥l5,则 AB DE .
2
2
∠O;
1
如图④,BO、CO 分别为∠CBD、∠BCE 的平分线,则∠O=90°- ∠A.
2
对于解答选择、填空题,可 以直接通过结论解题,会起 到事半功倍的效果.
第2页共9页
知识点二 :三角形全等的性质与判定
(1)全等三角形的对应边、对应角相等.
6. 全 等 三 (2)全等三角形的对应角平分线、对应中线、对应高相等.
(1)直角三角形的面积 S=1/2ch=1/2ab( 其 中 a,b 为 直 角 边,c 为斜边,h 是斜边上的高), 可以利用这一公式借助面积这个 中间量解决与高相关的求长度问 题. (2)已知两边,利用勾股定理求
第4页共9页
6. 直 角 三角 形的 判定
(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则 △ABC 是 Rt△;
2. 等 边
平分线或中线)所在的直线是对称轴.
三角形 (2)判定
①定义:三边都相等的三角形是等边三角形;
②三个角都相等(均为 60°)的三角形是等边三角形;
③任一内角为 60°的等腰三角形是等边三角形.即若 AB=AC,且∠B=
60°,则△ABC 是等边三角形.
知识点二 :角平分线和垂直平分线
(1)性质:角平分线上的点到角的两边的距离相等.即若
5. 三 角 形
中内、外 角与角 平分线 的规律 总结
1
1
如图①,AD 平分∠BAC,AE⊥BC,则∠α= ∠BAC-∠CAE= (180°-∠B-
2
2
1
∠C)-(90°-∠C)= (∠C-∠B);
2
如图②,BO、CO 分别是∠ABC、∠ACB 的平分线,则有∠O= 1 ∠A+90°; 2
1
1
如图③,BO、CO 分别为∠ABC、∠ACD、∠OCD 的平分线,则∠O= ∠A,∠O’=
腰和底不明确时,需分类讨论. 如 若等腰三角形 ABC 的一个内角为 30° , 则 另外 两 个 角的 度数 为 30°、120°或 75°、75°.
(1)性质
①边角关系:三边相等,三角都相等且都等于 60°.
即 AB=BC=AC,∠BAC=∠B=∠C=60°;
②对称性:等边三角形是轴对称图形,三条高线(或角
形 直平分线上.
知识点三:直角三角形的判定与性质
5. 直 角 三角形 的性质
(1)两锐角互余.即∠A+∠B=90°; (2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则 AC= 1 AB;
2 (3)斜边上的中线长等于斜边长的一半.即若 CD 是中线,则
CD= 1 AB. 2
(4)勾股定理:两直角边 a、b 的平方和等于斜边 c 的平方.即 a2+b2=c2 .
相关文档
最新文档