南京理工大学离散数学期末试卷

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

南京理工大学紫金学院离散数学(朱保平教授)期末复习试卷

南京理工大学紫金学院离散数学(朱保平教授)期末复习试卷

1、(8分)已知{,{1}}A a =,{{}}B b =试求(1)2A(2)2A B ⨯2、(8分)已知Y X ,是2个任意的集合,试证明Y X Y X ⋂=⋂222。

3、(6分),*)(G 是一个群,R 是G 上的一个二元关系,且对于G y x ∈∀,,R y x ∈),( 当且仅当G ∈∃θ,使得1**-=θθx y ,试证明R 是G 上的等价关系。

4、(8分)已知集合)}3,3(),2,2(),1,1(),,(),,(),,{(c c b b a a A =,分别写出满足如下性质的二元关系:(1)该关系具有反自反性、传递性。

(2)该关系具有自反性、反对称性和对称性。

5、(8分)若在一个边长为4的正方形内任取129个点,则至少存在3个点,由它们构成的三角形(可能是退化的三角形,即一条直线)其面积小于81。

试用抽屉原理证明之。

6、(8分)已知(G ,·)是一个群,∀G g ∈,作G 到G 的一个映射g f 如下,对于G x ∈∀,x g x f g ⋅=)(。

求证g f 是双射。

7、(6分)图),(E V G =,有n 个顶点,n 4条边,存在一个7度顶点,试证明其它顶点的度数均大于7。

7、(6分)若无向图G 中只有两个奇数度结点,则这两个结点一定连通。

8、(8分)有24个人围坐一圆桌,边开会边交流网球技术。

已知这24个人中,每个人至少与其余12个人打过球,试问是否有一种坐法,使每个人左、右两人都和他打过球?试用图论的语言证明之。

9、(8分)按要求画图:(1)画一个14个顶点的哈密尔顿图但非欧拉图,有偶数条边;(2)(1)画一个14个顶点的欧拉图但非哈密尔顿图,有奇数条边;10、(6分)),(E V G =是一个无向图。

若10||>V ,则G 或者G 的补图G 是非平面图。

11、(6分)),(E V G =是一个连通图,V v ∈,deg(v)=1,E e ∈是关联顶点v 的一条边。

离散数学期末考试题附答案和含解析1

离散数学期末考试题附答案和含解析1

..一、填空2.A ,B ,C 表示三个会合,文图中暗影部分的会合表达式为 (B⊕C)-AA C4.公式(PR)(SR)P的主合取范式为(PSR) ( PS R)。

5.若解说I 的论域D 仅包括一个元素,则 xP(x) xP(x) 在I 下真值为 1 。

6.设A={1,2,3,4},A 上关系图以下,则 R^2={(1,1),(1,3),(2,2),(2,4)}。

//备注: 0 1 0 01 0 1 0 0 1 0 1R 1 0 1 0 R 20 0 0 1 0 0 0 00 0 0 00 0 0 07.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图以下,则R={(a,b),(a,c),(a,d),(b,d),(c,d)}U{(a,a),(b,b)(c,c)(d,d)}。

备注:偏序知足自反性,反对称性,传达性8.图 的补图为 。

//补图:给定一个图G,又G 中全部结点和全部能使 G 成为完整图的增添边构成的图,成为补图. 自补图:一个图假如同构于它的补图,则是自补图 9.设A={a ,b ,c ,d},A 上二元运算以下:* a b c da abcd b b c d a ccdabd d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为a,b,c,d,它们的逆元分别为a,b,c,d 。

//备注:二元运算为 x*y=max{x,y},x,y A 。

10.以下图所示的偏序集中,是格的为 c。

//(注:什么是格?即随意两个元素有最小上界 和最大 下界的偏序)二、选择题 1、以下是真命题的有( C 、D )A .{a} {{a}};B .{{}} { ,{}};C .{{}, }; D .{} {{ }}。

2、以下会合中相等的有( B 、C )A .{4,3} ;B .{ ,3,4};C .{4, ,3,3};D .{3,4}。

;....3、设A={1,2,3},则A 上的二元关系有( C )个。

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)

广东技术师范学院模拟试题科 目:离散数学考试形式:闭卷 考试时间: 120 分钟 系别、班级: 姓名: 学号:一.填空题(每小题2分,共10分)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是__ ∃x ∃y¬P(x)∨Q(y) __________。

2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =__{2}__,=A _{4,5}____,=B A __ {1,3,4,5} _____3. 设{}{}b a B c b a A ,,,,==,则=-)()(B A ρρ__ {{c},{a,c},{b,c},{a,b,c}} __________,=-)()(A B ρρ_____Φ_______。

4. 在代数系统(N ,+)中,其单位元是0,仅有 _1___ 有逆元。

5.如果连通平面图G 有n 个顶点,e 条边,则G 有___e+2-n ____个面。

二.选择题(每小题2分,共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=,A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 3. 在图>=<E V G ,中,结点总度数与边数的关系是( ) (A)E v i 2)deg(= (B) E v i =)deg((C)∑∈=Vv iE v 2)deg((D) ∑∈=Vv iE v )deg(4. 设D 是有n 个结点的有向完全图,则图D 的边数为( ) (A))1(-n n (B))1(+n n (C)2/)1(+n n (D)2/)1(-n n5. 无向图G 是欧拉图,当且仅当( )(A) G 的所有结点的度数都是偶数 (B)G 的所有结点的度数都是奇数(C)G 连通且所有结点的度数都是偶数 (D) G 连通且G 的所有结点度数都是奇数。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。

12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。

最新离散数学期末考试试题与答案[1]课件ppt

最新离散数学期末考试试题与答案[1]课件ppt

19. (5分) 已知公理 A: (pq) ((qp) (pq)) B: pp∨q
C: pp D: (pr) ((qr) ((p∨q) r)) E: p∧qp 证明定理: p(p∨p)
证明:
(1) pp∨q
公理B
(2) pp∨p
代入
(3) (pr) ((qr) ((p∨q) r))
公理D
(4) (pp) ((pp) ((p∨p) p)) 代入
∑d(v) ≥1+2(|V|-1)=2|E|+1, 这与结论 ∑ d(v) =2|E| 矛盾! 矛盾说明 T 不止
一片树叶。
12. (8分) (G, ·)是一个群,取定u ∊ G. ∀g1,g2∊G,定义: g1*g2= g1·u-1·g2. 证明: (G,*)是群。
证明: (1) 封闭性 (2) 可以结合性 (3) 幺元 e*=u. 事实上, g*e*=g*u=g·u-1·u=g·e=g e**g=u*g=u·u-1·g=e·g=g (4) 逆元 对于∀g∊G, 在代数运算*下的逆元记为g*-1 于是, g*-1=u·g-1·u
所以,根据连通的定义知:G的补图一定连通 。
9. (4分) 一个有奇数条边、偶数个顶点的欧拉图,但不是哈 密尔顿图。
10 (6分) 画出K4,4,判断K4,4是否平面图. 否!
11. (5分) 证明: 多于一个顶点的树,至少有两片树叶。
证明:设 T=(V,E)是一棵树,若T中最多只有一片树叶, 则有
g*a*g-1H,
g*a*g-1K, 从而有g*a*g-1HK, 故HK是G的正规子群。
14. (4分) 已知(G, *),(A, △)是两个群,f: G→A是群同态的。
证明: (1) f(eG)=eA (eG G是幺元, eA A是幺元). (2) ∀g∊G, f(g-1)=(f(g))-1.

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。

archivetemp15离散数学A密码123

archivetemp15离散数学A密码123

南京理工大学课程考试试卷(学生考试用)课程名称:离散数学A 学分:4.5大纲编号试卷编号:考试方式:闭卷满分分值:100考试时间:120分钟组卷日期:2016年12月31日组卷教师(签字)朱保平审定人(签字)金忠学生班级:计算机学院15级一、逻辑学(每小题6分,共18分)1.(6分)把下列语句翻译为谓词演算公式(1)人人爱我,我爱人人。

(2)有些人喜欢所有的鲜花;但并非所有人均喜欢鲜花。

2.(6分)已知前提∀x (A →C )(x )(x )结论∀x (∃y →∃z )(A ∧B (y )(x ,y ))(C ∧B (z )(x ,z ))试用归结原理证明之。

3.(6分)试把函数h (,,,)=f (4,,,,)化为标准迭x 1x 3x 4x 5g 1(,3x 1)g 2(,x 5x 3)x 4g 3(x 5)置。

二、集合与关系(共28分)4.(8分)已知A={,},B={{南京}},试求{南京理工大学}{计算机学院,2}(1)(2)5.(6分)是3个任意的集合,试证明(A -B )∪=Φ当且仅当A⊆(B∩(A -C )C )。

6.(6分)已知,,⋯均为A 上的等价关系,证明∩∩⋯也为A 上的等R 1R 2R n R 1R 2∩R n 价关系。

7.(8分)已知A ={{计算机学院},,,b ,中国},根据要求分别构{{一流学院}}(a ,a )造下列关系。

(1)有反自反性,反对称性和传递性;(2)有自反性,对称性。

三、图结构(共34分)8.(6分)设图有个顶点,6n 条边,且存在1个度数为11的顶点和1个度数为12的顶点,证明:中至少有一个顶点的度数大于12。

9.(6分)G=(V ,E )是一个简单连通图,且G 为二部图,相应的顶点二分类为。

{,V 1V 2}若|>||,则G 不为哈密尔顿图。

|V 1V 210.(8分)有80个人围坐一圆圈,边开会边交流乒乓球技术。

已知这80个人中,每个人至少与其余40个人打过球,试问是否有一种坐法,使每个人左、右两人都和他打过球?试用图论的语言证明之。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试证明(G, /J.)是一个群。
15. (6 分)设(A,·) 和 (B,*)是两个群, e1和 e2分别是A和B 的么元,cp是A到B的群同态
映射,C = {x EA仰(x) = e2} 。试证明C是A的正规子群。
ir `
树T上。
I
四、函数与群(共20分)
13. (6分)已知 (G, ·)是一个艺堡琶f是G到G的映射,且\:/x EG, f(x) = X 一1 。试
证明: f是G到G的自同构映射。
14. (8分) (G, o)是一个群,取定u·e G, 对于任意的a, b EG, a!J.b = a o u一i ob 。
(I)所有入均皂欢微信或微博。 (2) 有些人喜欢机器学习课程;但并非所有人均喜欢机器学习课程。 2. 已知知识:
(1) 3x(P(x) A Vy(D(y)➔ L(x, y))) (2)Vx(P(x) ➔ Vy(Q(y) ➔ -,L(x, y))) 结论: Vx(D(x)➔ 勹Q(x)) 试用HORN子句逻辑程序证明之。
3. 把函数h(xi, x2, x3,x5心) = f(g1(X3, 环),2,gz(X1五),g3(X5,3))化为(4,5)迭置。
二、集合与关系(共30分)
4. (8分) 已知集合A = {{a},{{0}}}, B = {人工智能}。试求:
Cl) zA
(2) zA x B
5. (8分)已知3个任意的集合X,Y,Z, 若X <I, (Yu Z), 则(X - Y) n(X - Z) -=I= 0。
— 南京理工大学课程考试试卷(学生考试用)
课程名称:
A
学分:_生L 大纲编号
试卷编号: --考试方式: 且违� 满分分值: 」毁_考试时间: ..J1Q_分钟
组卷日期:
组拉主上且上且—_组卷教师(签字)� 审定人(签字)_金忠___
学生班级:
i上往垫学院17级
一、逻辑学(每小题6分,共18分) I. 把下列知识表达为谓词演算公式
6. (6分)设凡是A上的等价关系,设R2是B上的等价关系,且A-:/= 0, B -=I= 0。关系
R满足: ((x1 1 Y心 (Xz, 为 )) ER当 且仅当(xl 'Xz) ER1 且(yl '为) ER2。证明R为
AБайду номын сангаасB上的等价关系。 7. (8分)设A, B是两个集合,{A1, Az, …, An}是集合A的一个划分,且对于任意
* 的i E{1, 2, …,n}, Ai nB 0 。试证{A1 nB, A2 nB, …,An nB}是集合An
B 的 一 个划分。
三、图结构(共32分)
8. (8分)设图G = (V,E)有n个顶点,8n条边, 且存在一个度数为15的顶点,2个
度数为16的顶点,证明: G中至少有一个顶点的座塾岑王且;。 右每9. 两个(6人 人分至都)和 少有与他30其 对个余战人过1围5个“坐黑人1域对圆战战圈界过,”“边黑?聚域试会战用边界图交”论流,的试“语黑问言域怎证战么明界安之”排。游一戏种。坐已法知,这使3每0个 个人 入左 中,、 10. (6 分) 设G=(V, E)是一个连通平面图, IVI=九,IEI=m。若G的每个面至少 有re�3)条边围成,则m :s; /—-I-2 (n - 2)。
11. (8 分) G = (V, E)是一个简单的连通无庐吵 、 图, 且IVI�3。试证明G中至少
存在汇企堕点基湛店妇长[笠王立
v 12. (4分)设G = (V, E)是一无向带权连通图,且各边的权值不相等, =片 u V2,
* Vin 构=0, 且Vi if= 0, V2 0, 试证明 Vi与V2之间的权值最小边一定在G的最小生成
相关文档
最新文档