线线角、线面角,二面角(高考立体几何法宝)

合集下载

线线角_线面角_二面角的讲义汇总(K12教育文档)

线线角_线面角_二面角的讲义汇总(K12教育文档)

线线角_线面角_二面角的讲义汇总(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(线线角_线面角_二面角的讲义汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为线线角_线面角_二面角的讲义汇总(word版可编辑修改)的全部内容。

B 1D 1A D C 1BC A 1线线角与线面角一、课前预习1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 .2。

如图,在长方体ABCD-A1B1C1D1中 ,B1C 和C1D 与底面所成的角分别为60ο和45ο,则异面直线B1C 和C1D 所成角的余弦值为 ( )63(A)。

46 (B )。

36 (C).62 (D)。

3.平面α与直线a 所成的角为3π,则直线a 与平面α内所有直线所成的角的取值范围是 .4。

如图,ABCD 是正方形,PD ⊥平面ABCD ,PD=AD,则PA与BD 所成的角的度数为 (A )。

30ο (B )。

45ο (C ).60ο (D ).90ο5。

有一个三角尺ABC ,∠A=30ο, ∠C=90ο,BC 是贴于桌面上,当三角尺与桌面成45ο角时,AB 边与桌面所成角的正弦值是 .二、典型例题例1。

(96·全国) 如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值。

【备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有:A CB D B PCD A C B①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线的关系。

高中数学 空间中线线角,线面角,面面角成法原理与求法思路

高中数学 空间中线线角,线面角,面面角成法原理与求法思路

DBA C α空间中线线角,线面角,面面角成法原理与求法思路空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

1、异面直线所成的角(1)异面直线所成的角的范围是2,0(π。

求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。

具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用解三角形来求角。

简称为“作,证,求” 2、线面夹角直线与平面所成的角的范围是]2,0[π。

求直线和平面所成的角用的是射影转化法。

具体步骤如下:(若线面平行,线在面内,线面垂直,则不用此法,因为角度不用问你也知道)①找过斜线上一点与平面垂直的直线;②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。

也是简称为“作,证,求”注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,β为斜线与平面内任何一条直线所成的角,则有θβ≤;(这个证明,需要用到正弦函数的单调性,请跳过。

在右图的解释为 BAD CAD ∠>∠) )2.1确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;已知:如图,BAC ∠在一个平面α内,,,PN AC PM AB PN PM ⊥⊥且=(就是点P 到角两边的距离相等)过P 作PO α⊥(说明点O 为P 点在面α内的射影)求证:OAN OAM ∠∠=(OAN OAM ∠∠=,所以AO 为BAC ∠的角平分线,所以点O 会在BAC ∠的角平分线上)证明: PA =PA ,PN =PM ,90PNA PMA ∠∠︒==PNA PMA ∴∆≅∆(斜边直角边定理) AN AM ∴=①(PO NO MO PN PM α⊥⎫⇒=⎬⎭斜线长相等推射影长相等)= O AN AM AO AO AMO ANO NAO MAO OM N ⎫⎪⇒∆≅∆⇒∠∠⎬⎪⎭==== 所以,点P 在面的射影为BAC ∠的角平分线上。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

高考数学立体几何中与角有关的四大定理及其证明

高考数学立体几何中与角有关的四大定理及其证明

则 cosθ = cos2β + cos2γ - 2cosαcosβcosγ sinα
证明:设 ∠HAC = θ1,∠HAB = θ2 ⇒ α = θ1 + θ2,
由三余弦定理得:
cos β cosγ
= =
cosθ cosθ
cosθ1 cosθ2
① ②
由①和②得 cosθ = cosβ = cosγ ③ cosθ1 cosθ2
α

γ
P α : 线面角 β : 斜线角 γ : 射影角 则 cosβ = cosαcosγ ⇒ β > α,β > γ
Q
B
证明:cosβ =
AB PA
,cosα =
QA PA
,cosγ =
AB QA
⇒ cosβ = cosαcosγ
·1·
3. 三夹角公式
P
θ

γ
α
C H
B
若 θ 为 PA 与平面 ABC 的夹角

HO BO
AH AO

BH BO
= cosθ - cosθ1cosθ2 sinθ1sinθ2
注:若 φ =
π 2
,
则该定理退化为三余弦定理
·3·
立体几何中与角有关的四大定理及其证明
1. 三正弦定理
β α
A
γ
B
P
α : 线面角 β : 线棱角 γ : 二面角 则 sinα = sinβsinγ Q ⇒ α ≤ β,α ≤ γ
证明:sinα =
PQ PA
,sinβ =
PB PA
,sinγ =
PQ PB
⇒ sinα = sinβsinγ

专题35 空间中线线角、线面角,二面角的求法-

专题35   空间中线线角、线面角,二面角的求法-

专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。

浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想

浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想

浅谈线线角、线面角、面面角的定义方式北京市顺义区第九中学101300高中阶段在学习空间线、面位置关系的时候,会给出线线角、线面角及面面角的定义,本文以角形成的定义方式及蕴含的基本思想为主,进行研究。

1、直线与直线所成的角:(1)共面:同一平面内的两直线所成角,是利用两直线位置关系,平行、重合所成角为0度,如果相交就取交线所构成的锐角(或直角)。

(2)异面:如图所示,已知两条异面直线a和b,经过空间任一点O分别作直线a′∥a,b′∥b,我们把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角)。

θ定义方式:是发生定义法(即构造定义方式)定义中的“空间中任取一点O”,意味着:角的大小与O 点选取的位置无关;通过平移把异面直线所成角转化成两相交直线,是将空间图形问题转化成平面图形问题的定义方式,体现了定义的纯粹性和完备性。

2、直线和平面所成的角:如图,一条直线和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的一点P向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角。

规定:一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角。

3、面面所成的角:(1)在二面角的棱l上任取一点O,以该点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的角称为二面角的平面角.( 2)作二面角的平面角的方法方法一:(定义法)在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图所示,∠AOB为二面角α­a­β的平面角.方法二:(垂线法)过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,连接该点与垂足,利用线面垂直可找到二面角的平面角或其补角.如图所示,∠ACB为二面角α­m­β的平面角.4、线线、线面、面面所成角的定义方式线线、线面、面面所成角的定义方式是“属加种差定义法”。

押新高考第19题 立体几何(新高考)(解析版)

押新高考第19题 立体几何(新高考)(解析版)

立体几何对于立体几何的解答题,在高考中常借助柱、锥体考查线面、平行与垂直,考查利用空间向量求二面角、线面角、线线角的大小,考查利用空间向量探索存在性问题及位置关系等,难度中等偏上.1.用向量法求异面直线所成的角 (1)建立空间直角坐标系; (2)求出两条直线的方向向量;(3)代入公式求解,一般地,异面直线AC ,BD 的夹角β的余弦值为||cos ||||AC BD AC BD β⋅=.2.用向量法求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 3.用向量法求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 4.平面,αβ所成的二面角为θ,则0πθ≤≤,如图①,AB ,C D 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=,〈〉AB CD .如图②③,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=1212n n n n ,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).1.(2021·湖南·高考真题)如图,四棱锥中,底面ABCD 是矩形,平面ABCD ,E 为PD 的中点.(1)证明:平面ACE ;(2)设,,直线PB 与平面ABCD 所成的角为,求四棱锥的体积.【详解】 (1)连接交于点,连接. 在中,因为,所以,因为平面,平面,则平面.(2)因为平面ABCD ,所以就是直线PB 与平面ABCD 所成的角,所以,又,,所以,所以四棱锥的体积,所以四棱锥的体积为.2.(2021·天津·高考真题)如图,在棱长为2的正方体中,E为棱BC的中点,F为棱CD 的中点.(I)求证:平面;(II)求直线与平面所成角的正弦值.(III)求二面角的正弦值.【详解】(I)以为原点,分别为轴,建立如图空间直角坐标系,则,,,,,,,因为E为棱BC的中点,F为棱CD的中点,所以,,所以,,,设平面的一个法向量为,则,令,则,因为,所以,因为平面,所以平面;(II)由(1)得,,设直线与平面所成角为,则;(III)由正方体的特征可得,平面的一个法向量为,则,所以二面角的正弦值为.3.(2021·浙江·高考真题)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,. (1)证明:;(2)求直线与平面所成角的正弦值.【详解】(1)在中,,,,由余弦定理可得,所以,.由题意且,平面,而平面,所以,又,所以.(2)由,,而与相交,所以平面,因为,所以,取中点,连接,则两两垂直,以点为坐标原点,如图所示,建立空间直角坐标系, 则,又为中点,所以.由(1)得平面,所以平面的一个法向量从而直线与平面所成角的正弦值为.4.(2021·北京·高考真题)如图:在正方体中,为中点,与平面交于点.(1)求证:为的中点;(2)点是棱上一点,且二面角的余弦值为,求的值.【详解】(1)如图所示,取的中点,连结,由于为正方体,为中点,故,从而四点共面,即平面CDE即平面,据此可得:直线交平面于点,当直线与平面相交时只有唯一的交点,故点与点重合,即点为中点.(2)以点为坐标原点,方向分别为轴,轴,轴正方向,建立空间直角坐标系,不妨设正方体的棱长为2,设,则:,从而:,设平面的法向量为:,则:,令可得:,设平面的法向量为:,则:,令可得:,从而:,则:,整理可得:,故(舍去).5.(2021·全国·高考真题)在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.【详解】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量, 则即,取,则,故. 而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.1.(2022·河北秦皇岛·二模)如图,在四棱锥P ABCD -中,PA AB ⊥,PC CD ⊥,BC AD ∥,23πBAD ∠=, 2PA AB BC ===,4=AD .(1)证明:PA ⊥平面ABCD .(2)若M 为PD 的中点,求二面角M AC D --的大小. 【解析】 (1)证明:由题可知ABC 为等边三角形,所以2AC =,3π∠=CAD .在ACD △中,由余弦定理得2224224cos 233CD π=+-⨯⨯=,所以222AC CD AD +=,所以CD AC ⊥. 因为CD PC ⊥,且ACPC C =,所以CD ⊥平面PAC .因为PA ⊂平面PAC ,所以CD PA ⊥. 因为PA AB ⊥,且,AB CD 相交, 所以PA ⊥平面ABCD . (2)以A 为坐标原点,以AD ,AP 的方向分别为y ,z 轴的正方向,建立如图所示的空间直角坐标系A xyz -则()3,1,0C,()0,2,1M .设平面MAC 的法向量为(),,n x y z =,则30,20,n AC x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩令1x =,得()1,3,23n =-. 取平面ACD 的一个法向量为()0,0,1m =, 则233cos ,142⋅<>===⨯m n m n m n. 由图可知二面角M AC D --为锐角,所以二面角M AC D --的大小为6π.2.(2022·湖南永州·三模)如图,在三棱柱111ABC A B C -中,112AB AA AC BC ====.(1)求证:11A B B C ⊥;(2)若2AC =,160ABB ∠=,点M 满足132AM MC =,求二面角11A A B M --的余弦值. 【解析】 (1)连接11,A B AB 交于点O ,连接OC ,四边形11ABB A 为菱形,11A B AB ∴⊥,O 为1A B 中点, 又1CA CB =,1A B OC ∴⊥, 1AB OC O =,1,AB CO ⊂平面1ACB ,1A B ∴⊥平面1ACB ,又1B C ⊂平面1ACB ,11A B B C ∴⊥. (2)160ABB ∠=,12AB AA ==,3OB ∴=,1OA =,在Rt OBC 中,222OC BC OB =-,1OC ∴=, 在OAC 中,有222OA OC AC +=,OC OA ∴⊥,又OA OB O =,,OA OB ⊂平面11ABB A ,OC ∴⊥平面11ABB A ,则以O 为坐标原点,,,OA OB OC 为,,x y z 轴可建立如图所示空间直角坐标系,则()1,0,0A ,()10,3,0A -,()11,0,0B -,()0,0,1C ,()11,3,1C --,()12,3,1AC ∴=--,设(),,M x y z ,则()1,,AM x y z =-,()11,3,1MC x y z =---,132AM MC =,()()()()3121323321x x y y z z ⎧-=--⎪⎪∴=-⎨⎪=-⎪⎩,解得:152325x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,1232,55M ⎛⎫∴ ⎪ ⎪⎝⎭,1133255A M ⎛⎫∴= ⎪ ⎪⎝⎭,()113,0A B =-,设平面11MA B 的法向量(),,n a b c =,1111332055530A M n a c A B n a b ⎧⋅=++=⎪∴⎨⎪⋅=-+=⎩,令1b =,解得:3a =3c =-(3,1,23n ∴=-;又OC ⊥平面11ABB A ,则平面11AA B 的一个法向量为()0,0,1m =,3cos ,2m n m n m n⋅∴<>==⋅,又二面角11A A B M --为锐二面角,∴二面角11A A B M --的余弦值为32. 3.(2022·江苏·南京市第一中学三模)在正三棱柱111ABC A B C -中,122AA AB ==.D 为1CC 中点,E 为1B D 上一点.(1)求四棱锥11A BB C C -的体积;(2)若1B E CE CD +=,求三棱锥1D AEC -的体积. 【解析】 (1)解:取BC 的中点为O ,因为三棱柱111ABC A B C -为正三棱柱,所以ABC 为正三角形,四边形11BB C C 为矩形,且1C C ⊥平面ABC , 所以1C C AO ⊥,AO BC ⊥,又1BC CC C =, 所以AO ⊥平面11BB C C ,即为四棱锥11A BB C C -的高, 又122AA AB ==,所以32AO =, 所以四棱锥11A BB C C -的体积11111133123323A BBC C BB C C V S AO -=⋅=⨯⨯⨯=;(2)解:因为1B E CE CD +=,即1B E CD CE ED =-=,所以E 为1B D 的中点,所以11111111111111133112223232224E ADC B ADC A B C D D AEC B C DV V V V SAO ----====⨯⨯=⨯⨯⨯⨯⨯=. 4.(2022·广东汕头·二模)如图所示,C 为半圆锥顶点,O 为圆锥底面圆心,BD 为底面直径,A 为弧BD 中点.BCD △是边长为2的等边三角形,弦AD 上点E 使得二面角E BC D --的大小为30°,且AE t AD =.(1)求t 的值;(2)对于平面ACD 内的动点P 总有OP //平面BEC ,请指出P 的轨迹,并说明该轨迹上任意点P 都使得OP //平面BEC 的理由. 【解析】 (1)易知OC ⊥面ABD ,OA BD ⊥,以,,OD OA OC 所在直线为,,x y z 轴建立如图的空间直角坐标系,则(0,1,0),(1,0,0),(1,0,0),3)A B D C -,(1,0,3),(1,1,0),(1,1,0)BC AD BA ==-=,()1,1,0(1,1,0)(1,1,0)BE BA AE BA t AD t t t =+=+=+-=+-,易知面BCD 的一个法向量为(0,1,0)OA =,设面BCE 的法向量为(,,)n x y z =,则30(1)(1)0n BC x z n BE t x t y ⎧⋅=+=⎪⎨⋅=++-=⎪⎩,令1x =,则13(1,,)13t n t +=--, 可得222131cos30213113t OA n t OA nt t +⋅-===⋅⎛⎫+⎛⎫++- ⎪ ⎪-⎝⎭⎝⎭,解得13t =或3,又点E 在弦AD 上,故13t =. (2)P 的轨迹为过AD 靠近D 的三等分点及CD 中点的直线,证明如下: 取AD 靠近D 的三等分点即DE 中点M ,CD 中点N ,连接,,MN OM ON , 由O 为BD 中点,易知ON BC ∥,又ON ⊄面BEC ,BC ⊂面BEC , 所以ON //平面BEC ,又MN EC ∥,MN ⊄面BEC ,CE ⊂面BEC ,所以MN //平面BEC , 又ON MN N ⋂=,所以面OMN //平面BEC ,即O 和MN 所在直线上任意一点连线都平行于平面BEC , 又MN ⊂面ACD ,故P 的轨迹即为MN 所在直线, 即过AD 靠近D 的三等分点及CD 中点的直线.5.(2022·福建·模拟预测)如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,60BAD BPD ∠=∠=︒,2PB PD ==.(1)证明:平面PAC ⊥平面ABCD ;(2)若二面角P BD A --的余弦值为13,求二面角B PA D --的正弦值.【解析】 (1) 设ACBD O =,连接PO ,在菱形ABCD 中,O 为BD 中点,且BD AC ⊥, 因为PB PD =,所以BD PO ⊥, 又因为POAC O =,且PO ,AC ⊂平面PAC ,所以BD ⊥平面PAC ,因为BD ⊂平面ABCD ,所以平面PAC ⊥平面ABCD ; (2)作OM ⊥平面ABCD ,以{},,OA OB OM 为x ,y ,z 轴,建立空间直角坐标系,易知2PB PD BD AB AD =====,则3OA OP ==,1OB =, 因为OA BD ⊥,OP BD ⊥,所以POA ∠为二面角P BD A --的平面角,所以1cos 3POA ∠=,则326,0,33P ⎛⎫ ⎪ ⎪⎝⎭,()3,0,0A ,()0,1,0B ,()0,1,0D -,所以()3,1,0AD =--,()3,1,0AB =-,2326,0,33AP ⎛⎫=- ⎪ ⎪⎝⎭, 设平面PAB 的法向量为()111,,m x y z =,由00m AB m AP ⎧⋅=⎨⋅=⎩,得1111302326033x y x z ⎧-+=⎪⎨-+=⎪⎩ 取11z =,则12x =,16y =,所以()2,6,1m =,设平面PAD 的法向量为()222,,n x y z =,由00n AD n AP ⎧⋅=⎨⋅=⎩,得2222302326033x y x z ⎧--=⎪⎨-+=⎪⎩ 取21z =,则22x =,26y =-,所以()2,6,1n =-,设二面角B PA D --为θ,则2611cos 3261261m n m nθ⋅-+===++⋅++⋅,又[]0,πθ∈,则222sin 1cos 3θθ=-=.(限时:30分钟)1.如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M ,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①7AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由; (2)求二面角A MN B --的正弦值.【详解】(1)若选①:7AD =在Rt BCD 中,2BC =,1CD =,3BD =,2AB =, 可得222AB BD AD +=,所以AB BD ⊥, 又由AB BC ⊥,且BCBD B =,,BC BD ⊂平面CBD ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 又因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,可得CD AD ⊥, 又由CD BD ⊥,且ADBD D =,,AD BD ⊂平面ABD ,所以CD ⊥平面ABD ,因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选③:平面ABC ⊥平面BCD ,平面ABC 平面BCD BC =,因为AB BC ⊥,且AB平面ABC ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . (2)以D 为原点,射线OB 为y 轴建立如图直角坐标系,则()3,2A ,()3,0B ,()1,0,0C -,13,,122M ⎛⎫- ⎪ ⎪⎝⎭,30,2N ⎛⎫⎪ ⎪⎝⎭可得1,0,02MN ⎛⎫= ⎪⎝⎭,30,1AN ⎛⎫=- ⎪ ⎪⎝⎭,30,BN ⎛⎫= ⎪ ⎪⎝⎭ 设平面AMN 的法向量为()111,,m x y z =,则111102302m MN x m AN y z ⎧⋅==⎪⎪⎨⎪⋅=--=⎪⎩,取13y =1130,2x z ==-,所以30,3,2m ⎛⎫=- ⎪⎝⎭设平面BMN 的法向量为()222,,n x y z =,则222102302n MN x n BN y z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩, 取23y =,可得30,3,2n ⎛⎫= ⎪⎝⎭,所以9314cos ,9734m n m n m n -⋅===⋅+,故二面角A MN B --的正弦值437.2.如图,在三棱锥A BCD -中,ABC 是边长为3的等边三角形,CD CB =,CD ⊥平面ABC ,点M 、N 分别为AC 、CD 的中点,点P 为线段BD 上一点,且//BM 平面APN .(1)求证:BM AN ⊥;(2)求平面APN 与平面ABC 所成角的正弦值. 【详解】(1)证明:因为CD ⊥面ABC ,BM ⊂面ABC ,所以CD BM ⊥.又∵正ABC 中,AM MC BM AC =⇒⊥,∴BM CDBM AC BM CD AC C ⊥⎫⎪⊥⇒⊥⎬⎪⋂=⎭面ACD , ∴BM AN ⊥.(2)解:连接MD 交AN 于G 点,连接PG ,因为//BM平面APN ,所以//BM PG ,由重心性质知P 为靠近B 点的三等分点.∴()0,0,0C ,3330,,22A ⎛⎫ ⎪ ⎪⎝⎭,()0,3,0B ,()1,2,0P ,3,0,02N ⎛⎫⎪⎝⎭, 设面APN 的法向量为(),,n x y z =,0AP n ⋅=,0AN n ⋅=,∴13302233330222x y z x y z ⎧+-=⎪⎪⎨⎪--=⎪⎩,令4x =,则1,3y z == ∴()4,1,3n =,平面ABC 的法向量为()1,0,0u =,425cos ,51613u v ==++, ∴平面APN 与平面ABC 所成角的正弦值为55.3.如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M ,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①7AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由;(2)求三棱锥A MNB -的体积.【详解】(1)若选①:7AD =Rt BCD 中,2BC =,1CD =,可得3BD =,又由2AB =,所以222AB BD AD +=,所以AB BD ⊥,因为AB BC ⊥,且BC BD B =,,BC BC ⊂平面CBD ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,AB BD B =且,AB BD ⊂平面ABD ,所以CD ⊥平面ABD ,又因为M ,N 分别为AC ,AD 中点,所以//MN CD ,所以MN ⊥平面ABD .若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,CD AD ⊥,因为CD BD ⊥,可证得CD ⊥平面ABD ,又M ,N 分别为AC ,AD 中点,//MN CD ,所以MN ⊥平面ABD .若选③:平面ABC ⊥平面BCD ,平面ABC平面BCD BC =, 因为AB BC ⊥,且AB 平面ABC ,所以AB ⊥平面CBD ,又由CD ⊂平面CBD ,所以AB CD ⊥,因为CD BD ⊥,AB BD B =且,AB BD ⊂平面ABD ,所以CD ⊥平面ABD ,又因为M ,N 分别为AC ,AD 中点,//MN CD ,所以MN ⊥平面ABD .(2)由(1)知MN ⊥平面ABD ,其中ABD △为直角三角形, 可得3122ANB ADB S S ==△△,1122MN CD ==, 故三棱锥A MNB -的体积为131332A MNB M ABN V V --===.4.如图,在四棱锥P ABCD -中,//AB CD ,AB ⊥平面PAD ,24PA AD DC AB ====,27PD =,M 是PC 的中点.(1)证明:平面ABM ⊥平面PCD ;(2)求三棱锥M PAB -的体积.【详解】(1)取PD 中点N ,连接MN ,AN ,因为PA AD =,所以AN PD ⊥,由AB ⊥平面PAD ,PD ⊂平面PAD ,所以AB PD ⊥,又由AN AB A =,且,AN AB ⊂平面ABN ,所以PD ⊥平面ABN ,因为MN 是PCD ∆中位线,所以////AB CD MN ,四边形ABMN 是平行四边形,于是PD ⊥平而ABM ,PD ⊂平面PCD ,所以平面ABM ⊥平面PCD .(2)由(1)可得//MN AB ,且AB平面PAB ,所以//MN 平面PAB , 所以AB M P N PAB B NAP V V V ---==,因为AB ⊥平面PAD ,可得13B NAP NAP V S AB -∆=⨯, 又由4AP =,7=PN ,AN PD ⊥, 所以2473AN -=,137732NAP S ∆== 所以137273B NAP V -==5.如图,三棱柱111ABC A B C -中,13AA AB ==,2BC =,E ,P 分别是11B C 和1CC 的中点,点F 在棱11A B 上,且12B F =.(1)证明:1//A P 平面EFC ;(2)若1AA ⊥底面ABC ,AB BC ⊥,求二面角P CF E --的余弦值.【详解】(1)证明:如图,连接1PB 交CE 于点D ,连接DF ,EP ,1CB .因为E ,P 分别是11B C 和1CC 的中点, 故11//2EP CB ,故112PD DB =. 又12B F =,113A B =,故1112A F FB =,故1//FD A P . 又FD ⊂平面EFC ,所以1//A P 平面EFC . (2)由题意知AB ,BC ,1BB 两两垂直,以B 为坐标原点,以1BB 的方向为z 轴正方向,分别以BA ,BC 为x 轴和y 轴的正方向,建立如图所示空间直角坐标系B xyz -.则()0,2,0C ,()10,0,3B ,()2,0,3F ,()0,1,3E ,30,2,2P ⎛⎫ ⎪⎝⎭. 设()111,,n x y z =为平面EFC 的法向量, 则00n EF n EC ⎧⋅=⎨⋅=⎩,即11112030x y y z -=⎧⎨-=⎩,可取3,3,12n ⎛⎫= ⎪⎝⎭. 设()222,,m x y z =为平面PFC 的法向量,则00m PF m PC ⎧⋅=⎨⋅=⎩,即222232202302x y z z ⎧-+=⎪⎪⎨⎪=⎪⎩,可取()1,1,0m =.所以233922cos ,14391112n m n m n m +⋅===⎛⎫++⨯+ ⎪⎝⎭. 由题意知二面角P CF E --为锐角, 所以二面角P CF E --的余弦值为214.。

2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)

2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)

专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。

这是空间向量求解的巨大优点,也是缺点,就这么共存着。

其实不建系而直接计算真的很比较锻炼空间想象的能力,方法上也更灵活一些,对于备考的中档学生来说,2种方法都要熟练掌握。

方法介绍一、定义法:交线上取点 等腰三角形共底边时作二面角步骤第一步:在交线l上取一点O第二步:在α平面内过O点作l的垂线OA第三步:在β平面内过O点作l的垂线OB∠AOB即为二面角,余弦定理求角αβl OAB二、三垂线法(先作面的垂直)—后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B作l的垂线OB∠AOB即为二面角且△AOB为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO⊥l第二步:作OB⊥l连接AB,∠AOB即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO⊥l第二步:作AB⊥β(找不到垂足B的位置用等体积求AB长)连接AB,∠AOB即为二面角△AOB为直角三角形,邻比斜五、转换成线线角—计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB,且β平面存在垂线AC则α平面与β平面的夹角等于直线AC与AB的夹角αβlOABαβlOABβαOABCαβlOAB六、投影面积法——面积比(三垂线法进阶)将cos θ=边之比∣面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC , 则平面α与平面ABC 的夹角余弦值1cos A BCABCθ=△△即cos θ=投影原S S补充:即使交线没有画出来也可以直接用例题:一题多解2023汕头二模T20如图在正方体ABCD -A 1B 1C 1D 1中,PQ 是所在棱上的中点.1C 1CD ABA B 1αBCAA 1D(1)求平面APQ 与平面ABCD 夹角的余弦值 (2)补全截面APQ2023全国乙卷数学(理)T9——由二面角求线面角P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1PC 1DABA B 11.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( )A .15B .25C .35D .252021·新高考1卷·T20——由二面角求线段长2.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45︒,求三棱锥A BCD −的体积.题型一 定义法1.如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC . (2)求二面角M—AC—B 的平面角的正切值;2.(湛江期末)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,点M ,N 分别是PB ,AC 的中点,且MN ⊥A C . (1)证明:BC ⊥平面PA C .(2)若PA =4,AC =BC =22,求平面PBC 与平面AMC 夹角的余弦值.(几何法比较简单)3.如图1,在平行四边形ABCD 中,60,2,4A AD AB ∠=︒==,将ABD △沿BD 折起,使得点A 到达点P ,如图2.重点题型·归类精讲(1)证明:平面BCD⊥平面P AD;(2)当二面角D PA B−−的平面角的正切值为6时,求直线BD与平面PBC夹角的正弦值.题型二三垂线法4.(佛山期末)如图,四棱锥P-ABCD中,AB∥CD,∠BAD=90°,12PA AD AB CD===,侧面PAD⊥底面ABCD,E为PC的中点.(1)求证:BE⊥平面PCD;(2)若PA=PD,求二面角P-BC-D的余弦值.5.如图,在四棱锥P -ABCD 中,△P AD 是以AD 为斜边的等腰直角三角形,,,224,23BC AD CD AD AD CD BC PB ⊥====∥ (2023广州一模T19)(1) 求证:AD PB ⊥;(2)求平面P AB 与平面ABCD 交角的正弦值.6.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为2的等边三角形,点E 在棱AD 上,2DE EA =且二面角E BC D −−的大小为60,求三棱锥A BCD −的体积.7.(2023·浙江·统考二模)如图,在三棱柱111ABCA B C 中,底面ABC ⊥平面11AA B B ,ABC 是正三角形,D 是棱BC 上一点,且3CD DB =,11A A A B =.(1)求证:111B C A D ⊥;(2)若2AB =且二面角11A BC B −−的余弦值为35,求点A 到侧面11BB C C 的距离.8.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,3BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由; (2)求平面CDE 与平面ABC 所成的锐二面角的正切值.题型三 作2次交线的垂线9.在三棱锥S ABC −中,底面△ABC 为等腰直角三角形,90SAB SCB ABC ∠=∠=∠=︒. (杭州二模) (1)求证:AC ⊥SB ;(2)若AB =2,22SC =,求平面SAC 与平面SBC 夹角的余弦值.题型四 找交线10.如图,在四棱锥P -ABCD 中,底面ABCI )是平行四边形,∠ABC =120°,AB =1,BC =2,PD ⊥C D . (1)证明:AB ⊥PB ;(2)若平面PAB ⊥平面PCD ,且102PA =,求直线AC 与平面PBC 所成角的正弦值. (广东省二模T19)题型五 转换成线线角湖北省武汉市江汉区2023届高三上学期7月新起点考试11.在直三棱柱111ABC A B C −中,已知侧面11ABB A 为正方形,2BA BC ==,D ,,E F 分别为AC ,BC ,CC 1的中点,BF ⊥B 1D .(1)证明:平面B 1DE ⊥平面BCC 1B 1;(2)求平面BC 1D 与平面1B DE 夹角的余弦值六、 题型六 投影面积法12.(2022·惠州第一次调研)如图,在四棱锥P -ABCD 中,已知//AB CD ,AD ⊥CD ,BC BP =,CD =2AB=4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若2,PA =求平面PBC 与平面PAD 夹角的余弦值13.(2022深圳高二期末)如图(1),在直角梯形ABCD 中,AB //CD ,AB ⊥BC ,且12,2BC CD AB ===取AB 的中点O ,连结OD ,并将△AOD 沿着OD 翻折,翻折后23AC =M ,N 分别是线段AD ,AB 的中点,如图(2).(1)求证:AC⊥OM.(2)求平面OMN与平面OBCD夹角的余弦值.专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
A 1
B 1
C 1
D A
B
C
D E F
G
线线角、线面角、二面角的求法
1.空间向量的直角坐标运算律:
⑴两个非零向量与垂直的充要条件是
1122330a b a b a b a b ⊥⇔++=
⑵两个非零向量与平行的充要条件是
a ²
b =±|a ||b | 2.向量的数量积公式
若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a ²b =|a ||b | cos θ
(2)模长公式:则2
12||a a a a a =⋅=++,2
||b b b b =⋅=+(3)夹角公式:2
cos ||||a b
a b a b a ⋅⋅==⋅+ (4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则
2
|
|(AB AB x ==,A B d =
①两条异面直线a 、b 间夹角0,2πα⎛⎫
∈ ⎪⎝⎭
在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=
例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( )
A .5
15arccos
B .
4
π C .5
10
arccos
D .2π
(向量法,传统法)
P
B
C
A
例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=︒且
PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____.
解:(1)向量法
(2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB 中
,即
t a n 2PD
DBA DB

=
=. 点评:本题是将三棱柱补成正方体'''DBCA D B C P -
②直线a 与平面α所成的角0,2πθ⎛⎤
∈ ⎥⎝⎦
(重点讲述平行与垂直的证明)
可转化成用向量→
a 与平面α的法向量→
n 的夹角ω表示,由向量平移得:若
ππ(图);若ππ
平面α的法向量→
n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤:
(1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z =
(3)根据法向量的定义建立关于x,y,z 的方程组(0a <<
(4)解方程组,取其中的一组解,即得法向量。

图1-
图1-
图1-
1
D 1
B 1
C P
D
B
C
A
1. (线线角,线面角).在棱长为a 的正方体''''
ABCD A B C D -中,,E F 分别是'',BC A D 的中点.
(1)求直线'
AC DE 与所成角;
(2)求直线AD 与平面'
B EDF 所成的角.
2.如图,底面ABCD 为直角梯形, 90=∠ABC ,⊥PB 面ABCD ,
22====CD BP BC BA ,E 为PD 的中点,求
1) 异面直线BD 与PA 所成角的余弦值; 2) 直线CP 与面ADP 所成角的正弦值;
③求二面角βα-- 的大小θ
1.范围:[0,]π
2.二面角的向量求法:
方法一:如图,若AB 、CD 分别是二面角α-l -β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角.
方法二:设,u v 是二面角α-l-β的两个面α,β的法向量,则向量u 与v 的夹角(或其补角就是二面角的平面角的大小.如图,设二面角的平面角的大小为θ,法向量的夹角为ϕ.
cos cos ||||u v u v θϕ==
cos cos()cos ||||
u v
u v θπϕϕ=-=-=-
注意:在用向量求二面角的大小时,我们是先求出两半平面的法向量所在直线的夹角ϕ,
但二面角可能是钝角或锐角,因此在求出ϕ角后,应判断二面角的大小,再确定二面角就是两半平面的法向量所在直线的夹角ϕ或是其补角。

例:如图,PA ABC ⊥平面,,1,AC BC PA AC BC ⊥===求二面角A PB C -
-的
大小。

u
v
l
z
1.[2014·新课标全国卷Ⅱ] 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;
(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =3
4,求A 到平面PBC 的距
离.
2、(2011年高考陕西卷理科16)(本小题满分12分)
如图:在,ABC ∠0
中,ABC=60,∠0
BAC=90AD BC 是上的高,沿AD 把ABD 折起,使
∠0BDC=90.证明:
(Ⅰ)平面⊥ADB BDC 平面;
(Ⅱ)设E BC DB 为的中点,求AE 与夹角的余弦值。

3、(2011年高考北京卷理科16)(本小题共14分)
如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,
2,60AB BAD =∠=.
(Ⅰ)求证:BD ⊥平面;PAC (Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;
4、(2011年高考全国新课标卷理科18) (本小题满分12分)
如图,四棱锥P —ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD. (Ⅰ)证明:PA ⊥BD ;
(Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。

直线与平面平行或者垂直(重点掌握)
1.如图,已知正方体ABCD-A 1B 1C 1D 1,M,N 分别是A 1B 1,BB 1的中点.求证:
(1)MN//平面ACD 1 ; (2)DB 1⊥平面ACD 1.
2、如图,四棱锥P —ABCD 中, PA ⊥平面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,CD ⊥AD ,CD=2AB ,E 为PC 中点. (I) 求证:CD ⊥平面PAD ; (II) 求证:BE//平面PAD .
3.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点,求证: (1)D 1O//平面A 1BC 1; (2)D 1O ⊥平面MAC.
B
C D
A
B C
D1
M
N
A B C D E P
AB ,点D是AB的中4.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,5
点,求证:
(I)AC⊥BC
;(II)A1C//平面CDB1;
5.已知正方体ABCD-A1B1C1D1的棱长为2,E、F、G分别是BB1、DD1、DC的中点,求
证:
(1)平面ADE∥平面B1C1F;
(2)平面ADE⊥平面A1D1G;。

相关文档
最新文档