有机化合物红外光谱谱图的基本特征

合集下载

红外光谱的四大特征

红外光谱的四大特征

红外光谱的四大特征
红外光谱的四大特征包括谱带的数目、谱带的位置、谱带的强度以及谱带的形状。

这四大特征可以帮助科学家们在鉴定化合物时确定化合物的类型。

具体来说,
1. 谱带的数目:不同的化合物在红外光谱中表现出不同数量的吸收谱带。

2. 谱带的位置:每个基团都有其特征振动频率,在红外光谱中表现出特定的吸收谱带位置,通常用波数表示。

在鉴定化合物时,谱带位置是最重要的参数之一。

3. 谱带的强度:谱带的强度可以反映化合物中相关基团的含量,也可以反映基团间的相互作用。

4. 谱带的形状:如果所分析的化合物较纯,其谱带较尖锐、对称性好;若是混合物,有时会出现谱带的重叠、加宽,对称性被破坏。

对于晶体固态物质,其结晶的完整性程度也影响谱带形状。

各类有机物的红外特征吸收

各类有机物的红外特征吸收
各类有机物的红外 特征吸收
汇报人:XX
目录
• 红外光谱基本原理 • 烷烃类有机物红外特征吸收 • 烯烃类有机物红外特征吸收 • 炔烃和芳香烃类有机物红外特征吸收 • 含氧官能团有机物红外特征吸收 • 其他类型有机物红外特征吸收
01
红外光谱基本原理
红外光谱定义及作用
定义
红外光谱(Infrared Spectroscopy, IR)是研究物质在红外光区的吸收和 发射特性的光谱学分支。
实例分析:典型烯烃类有机物红外光谱图
• 以乙烯为例,其红外光谱图在1650cm-1处出现强吸收峰,对 应于C=C伸缩振动;在3020cm-1处出现中等强度吸收峰,对 应于C-H伸缩振动;在1460cm-1处出现弱吸收峰,对应于CC伸缩振动;在965cm-1和870cm-1处出现弱吸收峰,分别 对应于面外弯曲振动。这些特征吸收峰可用于鉴别乙烯及其 他烯烃类有机物。
C-C伸缩振动
位于约1460-1380 cm^-1^和 1100-1000 cm^-1^范围内,表 现为中等强度吸收峰。随着碳链 长度的增加,吸收峰向低波数方 向移动。
C-H弯曲振动
位于约1460-1380 cm^-1^范围 内,表现为弱吸收峰。随着碳链 长度的增加,吸收峰向低波数方 向移动。
实例分析:典型烷烃类有机物红外光谱图
02
烷烃类有机物红外特征吸 收
烷烃类有机物概述
烷烃类有机物定义
烷烃是一类仅由碳和氢两种元素 组成的有机化合物,分子中的碳 原子之间以单键相连,其余价键 均与氢原子结合。
烷烃类有机物种类
根据碳链的长度和形状,烷烃可 分为直链烷烃、支链烷烃和环烷 烃等。
红外特征吸收峰位置及强度
C-H伸缩振动
位于约3000-2800 cm^-1^范围 内,表现为强吸收峰。随着碳链 长度的增加,吸收峰向低波数方 向移动。

各类有机化合物的红外光谱

各类有机化合物的红外光谱

4. 芳烃
芳烃的特征吸收:(与烯烃类似) 芳烃的特征吸收:(与烯烃类似) :(与烯烃类似
• υ=C-H 3000~3100 cm-1 (芳环C-H伸缩振动) 3000~ 芳环C 伸缩振动) =C- • υC=C =C 1650~ 芳环骨架伸缩振动) 1650~1450 cm-1(芳环骨架伸缩振动) • γ面外=C-H 900~650 cm-1 用于确定芳烃取代类型 900~ 用于确定 确定芳 取代类型 C 芳环取代基性质无关 而与取代个数有关, 取代基性质无关, (与芳环取代基性质无关,而与取代个数有关,取代 基个数越多, 芳环上氢数目越少, 基个数越多,即芳环上氢数目越少,振动频率越 低。) • γ面外=C-H C 2000~ 倍频 2000~1600 cm-1(w) 用于确定芳 用于确定芳烃取代类型
C4H9-O-C4H9 -
丁醚的红外光谱图
1210-1000cm –1是醚键的不对称伸缩振动 υC-O-C 是醚键的不对称伸缩振动 -
7. 胺和铵盐
CH3CH2CH2CH2NH2
丙胺的红外光谱图
CH3CH2CH2NH3+Cl-
丙胺盐的红外光谱图
8.羰基化合物 8.羰基化合物 • 因υC=O 非常特征,羰基化合物易与其他 非常特征, 有机物区分。 有机物区分。 • 不同的羰基化合物的区分主要依据: 不同的羰基化合物的区分主要依据: • υC=O 位置 • 其他辅助信息
3. 炔烃
端基炔烃有两个主要特征吸收峰: 端基炔烃有两个主要特征吸收峰: 一是叁键上不饱和C 伸缩振动υ 约在3300cm 一是叁键上不饱和C-H伸缩振动υ≡C-H约在3300cm-1处产 叁键上不饱和 生一个中强的尖锐峰 二是C 伸缩振动υ 吸收峰在2140 二是C≡C伸缩振动υ≡C-C吸收峰在2140 ~2100cm-1。 位于碳链中间则只有υ 若C≡C位于碳链中间则只有υ≡C-C在2200cm-1左右一个尖 在对称结构中, 峰,强度较弱。如果在对称结构中,则该峰不出现。 强度较弱。如果在对称结构中 则该峰不出现。

第二章 红外光谱

第二章  红外光谱

(2)羧酸盐的对称伸缩振动s在1450~1300cm-1出现强 峰;硝基s 在1385~1290cm-1出现强峰;砜类as(SO2)在 1440~1300cm-1出现强峰 。
X-Y伸缩振动(13001050 cm-1 )
伸缩振动类型 醇C-O 伯醇 仲醇 叔醇 酚C-O
醚C-O 脂肪醚 芳香醚 乙烯醚
(2)醛基上的C-H在2820cm-1、2720-1处有两个吸收锋,它 是由C-H弯曲振动的倍频与C-H伸缩振动之间相互作用的结果 (费米共振),其中2720cm-1吸收峰很尖锐,且低于其他的 C-H伸缩振动吸收,易于识别,是醛基的特征吸收峰,可作为 分子中有醛基存在的一个依据。
(3)氧甲基(-OCH3)、氮甲基(-NCH3)和不与芳环相 连的仲胺、叔胺中的亚甲基(-N-CH2-),可在2850-2720cm-1 范围内产生中等强度的吸收峰。
取代基位置等有用情报。
脂肪族化合物C-H面外弯曲振动区
烯烃类型
波数(cm-1)
峰强度

RCH=CH2
990和910
RCH=CHR(顺) 690
强 中至强
RCH=CHR(反) 970
中至强
R2C=CH2 R2C=CHR
890 840-790
中至强 中至强
讨论:
(1)除了R1R2C=CR3R4类型的烯烃化合物,所有其他类 型的烯烃都可用C-H面外弯曲振动作为鉴定的重要依据,其 中=CH2基团除了基频谱带外,在1800cm-1附近可观察到C-H 面外弯曲振动的倍频谱带。
-OCH3 -O-CH2-O-
醛基C-H
波数(cm-1) 2960及2870 2930及2850
2890 2830-2810 2720-2750 2780-2765

红外图谱特征

红外图谱特征

一、基团频率区和指纹区(一)基团频率区中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。

最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。

区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。

这种振动与整个分子的结构有关。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域:LT7U 键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。

若分子中含有C、H、N原子,-C ≡N基吸收比较强而尖锐。

若分子中含有O原子,且O原子离-C ≡N 基越近,-C ≡N基的吸收越弱,甚至观察不到。

1900~1200 cm-1为双键伸缩振动区该区域重要包括三种伸缩振动:①C=O伸缩振动出现在1900~1650 cm-1 ,是红外光谱中很特征的且往往是最强的吸收,以此很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。

酸酐的羰基吸收带由于振动耦合而呈现双峰。

②C=C伸缩振动。

烯烃的C=C伸缩振动出现在1680~1620 cm-1 ,一般很弱。

单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-1附近,有两个峰,这是芳环的骨架结构,用于确认有无芳核的存在。

③苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围,是C-H面外和C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上是有用的。

(二)指纹区d 1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、P-O、Si-O 等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。

各类化合物的红外光谱特征

各类化合物的红外光谱特征

各类化合物的红外光谱特征红外光谱是一种常用的分析技术,可以用于识别和表征不同化合物的结构和功能团。

不同类型的化合物在红外光谱中显示出特定的吸收峰,这些峰对应于特定的振动模式和化学键。

有机化合物的红外光谱特征:1. 烷烃:烷烃的红外光谱特征主要包括C-H伸缩振动峰和C-H弯曲振动峰。

在3000-2850 cm-1区域,烷烃显示出强的C-H伸缩振动峰。

在1450-1375 cm-1区域,烷烃显示出C-H弯曲振动峰。

2. 卤代烃:卤代烃的红外光谱特征主要包括C-X伸缩振动峰和C-H弯曲振动峰。

在3000-2850 cm-1区域,卤代烃显示出C-H伸缩振动峰。

在700-600 cm-1区域,卤代烃会显示出C-X伸缩振动峰(X表示卤素)。

3. 醇:醇的红外光谱特征主要包括O-H伸缩振动峰和C-O伸缩振动峰。

在3650-3200 cm-1区域,醇显示出非常强的O-H伸缩振动峰。

在1050-1000 cm-1区域,醇会显示出C-O伸缩振动峰。

4. 酸:酸的红外光谱特征主要包括O-H伸缩振动峰和C=O伸缩振动峰。

在3650-3200 cm-1区域,酸显示出非常强的O-H伸缩振动峰。

在1750-1690 cm-1区域,酸会显示出C=O伸缩振动峰。

5. 醛和酮:醛和酮的红外光谱特征主要包括C=O伸缩振动峰和C-H伸缩振动峰。

在1750-1690 cm-1区域,醛和酮会显示出强的C=O伸缩振动峰。

在3000-2850 cm-1区域,醛和酮显示出C-H伸缩振动峰。

6. 酯:酯的红外光谱特征主要是C=O伸缩振动峰和C-O伸缩振动峰。

在1750-1690 cm-1区域,酯显示出强的C=O伸缩振动峰。

在1250-1100 cm-1区域,酯会显示出C-O伸缩振动峰。

7. 醚:醚的红外光谱特征主要是C-O伸缩振动峰。

在1250-1100cm-1区域,醚会显示出C-O伸缩振动峰。

8. 腈:腈的红外光谱特征主要是C≡N伸缩振动峰。

在2250-2100cm-1区域,腈会显示出C≡N伸缩振动峰。

各类有机化合物的红外吸收

各类有机化合物的红外吸收

一、第一峰区(4000 ~2500 cm-1)
为X-H伸缩振动区,X可以是O、N、 C 或 S 等原子。
1、O--H的伸缩振动
出现在3650 ~3200 cm-1 范围内,它可以 作为判断有无醇类、酚类和有机酸类的重要 依据。
(1)醇和酚 游离态:在3650 ~3590 cm-1 处出现中等强 度吸收带,峰形尖锐。 缔合态:在3350 cm-1 出现一个宽而强的吸 收峰。 (2) 羧酸 缔合态:在3300~2500 cm-1 出现一个宽吸 收峰。
甲苯
四、第四峰区( 1500 ~ 600 cm-1)
为X-C(X≠H)键的伸缩振动及各类 弯曲振动区。 1、C-H弯曲振动 烷烃:
-CH3 as 1450 cm-1(m), s 1380 cm-1(w)
烯烃:
=C-H的面外弯曲振动 对判断双键的取代类型有用 CH面外弯曲振动吸收位置 (cm-1) 990(反),910(顺) 890 730-650 970
1-己炔
正丁腈
三、第三峰区(2000~1500 cm-1)
为双键伸缩振动区和N-H的弯曲振动区。
该区域主要包括三种伸缩振动: 1、C=O伸缩振动 出现在1900~1650 cm-1 ,是红外光谱中特 征的且往往是最强的吸收,以此很容易判断酮 类、醛类、酸类、酯类以及酸酐等有机化合物。
羰基化合物的C=O伸缩振动吸 收峰位置
2、 N-H伸缩振动
胺和酰胺的N-H伸缩振动出现在 3500~3150 cm-1 弱或中等强度的吸收带。 胺类: 伯胺----- 3500,3400 cm-1 仲胺----- 3400 cm-1 酰胺类: 伯酰胺----- 3350,3150 cm-1 仲酰胺----- 3200 cm-1 铵盐:3200~2200 cm-1 强、宽、散吸收带

各类化合物的红外光谱特征讲解

各类化合物的红外光谱特征讲解

各类化合物的红外光谱特征讲解红外光谱是一种重要的分析技术,可以用于确定化合物的结构和化学键的类型。

在红外光谱图中,横坐标表示波数(单位为cm⁻¹),纵坐标表示吸收强度或透射率。

有机化合物:1. 烷烃:烷烃的红外光谱图通常没有明显的峰。

C-H键的拉伸振动一般在3000-2900 cm⁻¹范围内,C-H键的弯曲振动通常在1450 cm⁻¹附近。

2. 烯烃:烯烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1650-1600 cm⁻¹范围内。

C-H键的拉伸振动和弯曲振动与烷烃类似。

3. 芳香烃:芳香烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1600-1475 cm⁻¹范围内。

C-H键的拉伸和弯曲振动在3100-3000 cm⁻¹和1500-1000 cm⁻¹范围内。

4. 醇和酚:醇和酚的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-3200 cm⁻¹范围内。

C-O键的拉伸振动通常在1300-1000 cm⁻¹范围内。

5. 酮:酮的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。

C-C和C-H键的伸缩振动可以在3000-2850cm⁻¹范围内观察到。

6. 醛:醛的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。

C-H键的拉伸振动通常在2850-2700 cm⁻¹范围内。

7. 酸:酸的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-2500 cm⁻¹范围内。

C=O伸缩振动通常在1800-1600 cm⁻¹范围内。

9. 酯:酯的红外光谱图中通常有一个称为C=O伸缩振动的特征峰,在1750-1735 cm⁻¹范围内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
06:34:30
烯烃
3030 cm-1 (弱)=C-H链中烃; 3080(强)=CH2端位烯烃。
1680-1630 -C=C-(弱)
反式:-CH=CH 顺式:-CH=CH
970-960cm-1 770-665cm-1
06:34:30
例2:化合物C6H12的红外光谱如下,写 出其结构式。
06:34:30
在这区域可能还会有另外的吸收出现。 (a)间位二取代在725~680cm-1有强吸收。 (b)1、2、3-三取代化合物另外在745~705cm-1有
强吸收。 (c)1、3、5 - 三取代化合物另外在755~675cm-1
有强吸收。
06:34:30
芳烃
• 3030、1600、1580、 1500、1450.
• 解:
06:34:30
壬烯
06:34:30
06:34:30
1-己烯的红外光谱图
06:34:30
06:34:30
06:34:30
三、炔烃
• ≡C-H 3300 cm-1 一取代炔烃:
R-C≡C-H 2140 cm-1 -2100cm-1 二取代炔烃: R-C≡C-R 2260 cm-1 -2190 cm-1
在饱和烃中 1380cm-1为烷 基异构化情况;
1460cm-1为烷烃 中的-CH2-,
同时在720cm-1证 明。
饱和烃
例1:化合物C9H20的红外光谱如下,写出 其结构式。
06:34:30
• 解:计算不饱和度:
06:34:30
06:34:30
庚烷CH3(CH2)5CH3的红外光谱图
CH3
06:34:30
• 解:
06:34:30
例题:下图为一个含有C、H、O的有机化合物的 光谱图,试问: (1)这个化合物是脂肪族还是芳香族? (2)是醇类还是酮类? (3)是否含有双键或叁键?
06:34:30
推测C8H8纯液体
解:1)U =1-8/2+8=5 2)峰归属 3)可能的结构
06:34:30
第三节 有机化合物红外光谱谱图的基本特征
首先计算不饱和度:
当U=0时,表示分子是饱和的,应为链状饱和烃及其不含 双键的衍生物;
U=1时,可能有一个双键或脂环; U=2时,可能有两个双键或脂环,也可能有一个叁键; U=4时,可能有一个苯环。
06:34:30
➢3000cm-1为分界线: >3000cm-1为不饱和烃 <3000cm-1为饱和烃,另外可能是醇、
• υC≡N:2260-2240(s)(尖锐)
06:34:31
06:34:31
A 3070,3025 B 2910,2860 06C:324:23110
芳 CH 脂肪 C H
CN
十二、硝基化合物
(1)R-NO2 • υas(NO2):1565-1543(s) • υs(NO2):1385-1360(s) • υs(CN):920-800(m)
(2)Ar-NO2 υas(NO2):1550-1510(s) υs(NO2):1365-1335(s) υs(CN):860-840(s)
不明:750(s)
06:34:31
06:34:31
06:34:31
间二硝基苯的红外光谱
06:34:31
06:34:30
例3:化合物C6H10的红外光谱 如下,写出其结构式。
• 解:
• 己炔 • HC≡C-CH2-CH2-CH2-CH3
06:34:30
06:34:30
06:34:30
四、芳香烃
(1)苯环在四个区有其特征吸收:3100~3000、2000~1650、1625~1450及900~ 650cm-1.
H C CH2
五、醇和酚
(1)醇和酚都含有羟基,有三个特征吸收带:OH、 OH和C-O。
(2)羟基的伸缩振动OH在3670~3230cm-1(S)。 游离的羟基OH尖,且大于3600cm-1; 缔合羟基移向低波数,峰加宽,小于3600cm-1。 缔合程度越大,峰越宽,越移向低波数处。 水和NH在此有吸收。
酚、胺
06:34:30
一、饱和烷烃
(a)CH的伸缩振动:基本在2975~2845cm-1之间,包 括甲基、亚甲基和次甲基的对称及不对称伸缩振动。 (b)CH的变形振动:在1460附近、1380附近及 720~810cm-1会出现有关吸收。
(c)C-C环的骨架振动,在720~1250cm-1。
06:34:30
• 670cm-1苯 看3030、1600~1400
有2~4个吸收峰,可 确定为芳香烃化合物。 从900 cm-1 -650 cm-1 区域出现的峰来确定 取代基的数目和位置。
06:34:30
例题 判断有无芳烃的存在,并指出其波数。
06:34:30
06:34:30
06:34:30
• 例题:化合物C9H12的红外光谱如下,写 出其结构式。
06:34:31
乙酸乙酯的红外光谱图
1743为C=O, 1243为
是第一强峰。
as coc
06:34:31
06:34:31
九、羧酸
• OH:3400-2500(m) 有高低不平很宽的峰
• C=O:1740~1690(m)
• OH:1450~1410(w)
• CO:1266~1205(m)
OH R-C
(b)芳香族醚和乙烯基醚: Ph-O-R、Ph-O-Ph和R-C=C-O-R’
1310~1020cm-1为
as C
O
C
1075~1020cm-1为
s C
O
C
强吸收 强度较弱
06:34:31
(2)一般情况下,只用IR来判别醚是困难的。 因其他一些含氧化合物,如醇、羧酸、酯类都会 在1100~1250cm-1范围有强的C-O吸收。
06:34:30
CH
CH2
CH3
CH
CH3
CH3
红外光谱
二、 烯烃
(1)烯烃有三个特征吸 区 (a)3100~3000cm-1 , =CH (b)1680~1620cm-1 , C=C (a) 、(b)用于判断烯
键的存在与否。 (c)l000~650cm-1,烯碳上质子的面外摇摆振动
=CH,用于判断烯碳上取代类型及顺反异构。
06:34:31
• 醇:
• O-H:3700-3200(变) • 游离O-H: 3670-3580 • 缔合O-H: 3550-3230 • OH: 1410-1260(w) • C-O: 1250-1000(s) • OH: 750-650 (s)
酚:
O-H: 3705-3125(s) C=C: 1650-1430(m)
06:34:31
1-辛醇的红外光谱图
06:34:31
06:34:31
苯酚的红外光谱图
06:34:31
06:34:31
06:34:31
六、醚
(1)醚的特征吸收为碳氧碳键的伸缩振动
as CO
C
和 s

COC
(a)脂肪族醚(R-O-R):
脂肪族醚中
s C
O
C
弱。
as COC
在 1150~1050cm-1(S)
(4)面外变形振动=CH在900-650cm-1,按其位置、吸收峰个数及强度可以用来判 断苯环上取代基个数及取代模式。
06:34:30
(5)苯环质子的面外变形振动的倍频及组合频在 2000~1650cm-1。也可以用于确定苯环取代类型。
(6)其他 除了上述按邻接氢判断在900~650cm-1的谱带外,
(2)-NH υNH :3500-3300(m) υNH:1650-1550(vw)
υC-N 脂肪族胺:1220~1020 (m,w) υC-N 芳香胺:1350~1280 (S)
06:34:31
正丙胺的红外光谱图
06:34:31
Ph-CH2NH-Ph的红外光谱
06:34:31
十一、腈-C≡N
06:34:31
06:34:31
06:34:31
酰胺:
七、羰基化合物
1680~1630
羰基:
1710 ~1730
醛 C=O ~1725(vs) 双峰:υCH:≈2820, ≈2720 (w)
酮 C=O ~1715(vs)
06:34:31
06:34:31
3-戊酮的红外光谱图
06:34:31
苯甲醛的红外光谱图
(3)υC-O-C
在1330~1050cm-1有两个吸收带,即
as coc
和 csoc

其中
as coc
在1330~1150cm-1,峰强度大而且宽,
常为第一强峰。
06:34:31
酯(RCOOR’)
• υC=O:3450ቤተ መጻሕፍቲ ባይዱw)(泛频) • υC=O: 1770-1720(S) • υCOC: 1300-1000(S)
O
O C-R
HO
羧酸在液体和固体状态,一般以二聚体形式存在, 羧酸分子中既有羟基又有羰基,两者的吸收皆有。
06:34:31
06:34:31
06:34:31
苯甲酸的红外光谱图
06:34:31
十、胺
(1)-NH2 υNH :3500-3300(m),双峰 υNH:1650-1590(m,s)
υC-N 脂肪族胺:1220~1020 (m,w) υC-N 芳香胺:1340~1250 (S)
(2)=CH出现在3100-3000cm-1,常在3030cm-1附近。
(3)苯环的骨架振动:在1625-1450cm-1之间,可能有几个吸收,强弱及个数皆与结构 有关。
相关文档
最新文档