大型矿用自卸车静液压传动系统设计
70t矿用自卸车转向液压系统设计与仿真研究.

分类号:TH1210710-2010125028硕士学位论文 70t 矿用自卸车转向液压系统设计与仿真研究柳琼璞导师姓名职称焦生杰教授申请学位级别硕士学科专业名称机械电子工程论文提交日期 2013 年 6 月 17 日论文答辩日期 2013 年 6 月 19 日学位授予单位长安大学Design and Simulation of Hydraulic Steering System in70t Mining Dump TruckA Dissertation Submitted for the Degree of MasterCandidate :LiuQiongpuSupervisor :Prof. Jiao ShengjieChang ’ an University, Xi’ an, China摘要矿用自卸车是应用于露天矿区、水利水电建设现场运输岩石、渣土的一种专用车辆 , 其载重吨位大 ,工况恶劣 ,道路爬坡多、转弯多、路况差 ,行驶速度低 ,多发安全事故 , 对车辆的操纵性能提出了较高的要求。
转向系统作为车辆的重要组成部分 , 是车辆直线行驶或转向的操纵执行机构 ,其性能的好坏直接影响到车辆的操纵稳定性和行驶安全性。
因此 ,对矿用自卸车转向系统进行研究有重要工程意义。
本论文以载重量为70t 的 TL87 型宽体矿用自卸车转向系统为研究对象。
论文简要介绍了国内外矿用自卸车转向技术发展概况、研究现状及本文研究内容;概括了转向系统分类及转向性能要求 ;对比分析了国内外 5 家 70t 矿用自卸车转向系统的技术特点 ; 针对车辆在下坡转弯行驶工况中产生的转向沉重现象和无应急转向装置提出了转向系统的改进方案 ,对转向液压系统的元件进行选型计算 ;设计了发动机熄火状态下的应急转向液压系统 ;利用 AMESim 仿真软件建立了转向液压系统中转向器、优先阀、转向液压缸、应急换向阀等元件的仿真模型 ,搭建了带应急转向装置的全液压转向系统仿真模型和机械式液压助力转向系统仿真模型 ;对实际中的四种典型工况下进行了仿真分析 ,分析结果表明本文所设计的转向系统性能达到了设计要求。
重型自卸汽车举升液压系统设计

3.2质量参数的确定[1]
额定装载质量是自卸汽车的基本使用性能参数之一。目前,中、长距离公路运输趋向使用重型自卸汽车,以便提高运输效率、降低运输成本,额定装载质量一般为9~19t;而承担市区或市郊短途运输的自卸汽车额定装载质量为4.5~9t。同时,还应考虑到厂家的额定装载质量合理分级,以利于产品系列化、部件通用化和零件标准化。此外,额定装载质量还必须与选用的二类货车底盘允许的最大总质量相适应。
改装部分质量主要包括:车厢质量、副车架质量、液压系统质量、举升机构质量以及其他改装部件的质量。改装部分质量既可通过计算、称重求得,也可根据同类产品提供的数据进行估算。
自卸汽车整车整备质量是指装备齐全、加够燃料、液压油和冷却液的空车质量。它一般是二类底盘整备质量与改装部分质量的总和。是自卸汽车总体设计的重要设计参数之一。
通常由二类货车底盘改装的自卸汽车(Me<15t)质量利用系数略低于原货车的质量利用系数。国产自卸汽车的ηGO=1.0~1.5,国外自卸车的ηGO=1.3~2.0.如表3—2所示
图3—2自卸汽车质量利用系数
由此ηGO= =0.652(1—4)
自卸汽车的质心位置是指满载时整车质量中心位置,自卸汽车的质心位置对使用性能(例如汽车的制动性、操纵稳定性等)影响很大。因此,自卸汽车总体设计时应尽量使质心位置接近原货车的质心位置。
较低
系统倾卸稳定性
较差
较好
系统耐冲性
较好
较差
直推式举升机构结构简单,较易于设计。但这样易导致油缸泄漏或双缸不同步,进而造成车厢举升受力不均。目前,该类举升机构主要用于重型自卸汽车。
综上所述,结合选择车型情况,对于长安SC3043JD32自卸车,本文选用油缸直推式举升机构。并能承受较大的偏置载荷;举升支架在车厢后部,车厢受力状况较好。
自卸汽车液压系统设计

自卸汽车液压系统设计自卸汽车又称自卸车,是一种用于运输散装物料的特种车辆。
其主要特点是具有自行卸料功能,即可以将装载物体自行卸下,无需借助外力。
自卸汽车液压系统是其实现自卸功能的关键部件,对其性能和安全具有重要影响。
一、液压系统组成自卸汽车液压系统主要由以下部件组成:1.液压泵:将驱动装置提供的动力转化为液压能,提供能量给液压系统。
2.液压缸:将液压能转化为机械能,将卸载箱体提升并斜着倾卸。
3.液压阀:控制油液流动,保证机构的升降和倾卸。
4.油箱:存储液压油,供给液压泵使用。
5.油管:连接各液压元件,传递压力和流量。
6.过滤器:过滤液压油中的杂质,保护系统元件。
7.压力表:测量系统的压力值,保证液压系统工作在安全范围内。
自卸汽车液压系统采用液压原理实现自卸功能。
液压系统的能量转化和传递都依赖于液压油,在高压作用下,液压油产生一定的流量,将液压泵等元件中的活塞或柱塞带动,从而实现传递功效。
具体实现过程如下:1.自卸汽车液压系统的工作开始于油箱内的液压油。
液压泵通过吸油口从油箱中吸取液压油,通过驱动装置产生的动力来转动液压泵中的转子,从而产生压力和流量。
2.压力和流量传递至进口压力油管和回油口分别通过液压管路连接至液压阀组。
液压阀组中的各个阀功能不同,如配压阀、溢流阀、换向阀、电磁阀等,根据不同的控制信号和工作状态来控制液压油的流经和流量,使其他元件协调工作。
3.液压油进入液压缸腔,推动活塞使自卸罐体倾卸。
在倾倒进程中可以通过控制手柄控制升降高度。
4.液压系统中的安全阀起到保护作用,当液压系统油压过高时,安全阀开始工作,保证液压系统正常工作。
在液压系统控制方面采用的是手动控制,通过液压控制阀进行跨越控制。
自卸车的制动过程中,减速器的作用就体现出来了,液压系统的制动能让司机更加轻松地执行制动操作。
此外,液压系统具有很多优点,如下:1.传递能力强:液压系统可根据需要来调整系统中的压力和流量,可在多个执行机构上做功,实现集中控制。
煤矿液压传动控制系统设计

体 。由于煤矿工程周 计
煤 矿 中的液 压传 动控 制系 统在 正常 工作 时,执行元件 能够在 最高和最低旋转速度范围
内任 意 一个 旋 转速 度 下 稳 定 运 行 , 此 时 对 液 压
而 比较较适合采用开放式的循环回路。 1 . 2 _ 3制定调速控制方案 速度一流量控制速度和速度一 压力控制都 是对液压传动速度进 行控制 调节 的方式。在速 度一流量控制方式 中,如果采用变量马达或者
是 结构 较 为 复 杂 的变 量 泵 , 会 花 费 大 量 的成 本 :
而最大供油量可以通过 以下公式来计算 :
O K( QM 十 q Y _ n )
其 中 K为修 正系数,一般在 1 . 1 ~ 1 . 3之
间取值;Q M 是指液压马达实际所 需最大流量, 可 以用排量乘 以转速所得 的理论流量与其容积 效率的 比值求得 :q Y mi n是指一 溢流 阀最小溢 流量,一般取值 0 . 5 x 1 0 - 4 m3 / S 。 随着 机 电一体 化 的发展 ,液压 传动 控制 系统与微 电子、计算机等现代化技术相 结合 , 使得液压传动无级调速 的应用更加广泛 。对于 液压传动控制系统的设计没有定性的方式和步 骤,要根据实际生产需要进行科学合理 设计 , 使其更好的为生产服务 。
矿 的生产情 况。而 液压控 制系统作为煤矿生产
设 备 的 关键 性 组成 部 分 , 一 定 要 对 加 强 对 液 压
该 比计 算得 出 的最高 负荷 压高 ,通常 要高 出 再 由执行元件 的回油控制系统 排到油箱 中,不 2 5 %一 6 0 %左 右 , 因 此扩 充压 力 储 备 能 九 另 外 , 传 动 控 制 系 统 的 设 计 , 以提 升我 国 煤矿 生 产 效
自卸汽车举升机构的机械及液压系统设计

自卸汽车举升机构的机械及液压系统设计一、引言自卸汽车举升机构在现代物流和运输中占有极为重要的地位,因为它可以起重挪动货物,提高货物运输效率。
在举升机构中,机械及液压系统是关键因素之一,对举升机构的性能和可靠性有着至关重要的影响。
本文将从机械及液压系统设计两方面,详细的介绍自卸汽车举升机构的设计原理和过程。
二、机械系统设计在设计机械系统时,应该考虑到举升机构所要承受的负荷和挑战。
首先需要确定所有运动部件的尺寸和位置,以便满足承受负荷和运行稳定的要求。
其次需要选择合适的机械结构和连接件,以确保各个运动部件的协同运行。
最后,需要考虑安全因素,制定相应的安全措施,以保证使用过程中的安全性。
2.1 运动部件尺寸与位置设计在设计自卸汽车举升机构的运动部件时,应首先考虑所要承受的负荷。
举升机构将承受货物的重量和自身重量,因此需要确保各个部件具有足够的强度和刚度。
同时,需要考虑到升高货物所需的高度和占地面积,以便在有限的空间内完成升降工作。
2.2 机械结构与连接件设计自卸汽车举升机构的机械结构和连接件要求具有足够的强度和稳定性,以保证各个运动部件之间的协同运行。
常用的机械结构包括点式连杆机构、摆杆机构、旋转机构等,连接件包括螺栓、销子、铰链等。
在选择机械结构和连接件时,应当根据实际工作情况和要求,进行合理的选择和安排。
2.3 安全措施设计在自卸汽车举升机构中,安全永远是重中之重。
设计安全措施是确保机构在工作期间的正确且稳定运行的必要条件。
一些常规的安全措施包括安装安全带、加强运动部件的抗摆性、设置限制器等。
任何的失误或差错都可能导致安全问题,因此一定要在设计阶段充分考虑和采取必要的安全措施。
三、液压系统设计在自卸汽车举升机构中,液压系统是将机械的能量转换为液体压力能量的关键,其主要功能是控制升降运动和保持稳定平衡。
液压系统设计的目的是保证油液的压力、流量、温度和清洁度等指标,在一定的工作条件下保持稳定运行,满足设备使用的需要。
自卸半挂车液压系统的设计浅谈

Internal Combustion Engine &Parts0引言在当前的物料运输、建筑施工等领域中,自卸半挂车是使用相对广泛的运输车辆之一。
在液压系统的控制下,自卸半挂车可完成限位、中停、举升、回位、顶棚开闭等多项功能,具有良好的应用价值[1]。
此外,该设备还存在操作简便、经济性高、运输效率高、物料剩余率低等优势,因此在工业领域具有重要作用。
下文就针对自卸半挂车液压系统的设计问题做深入探究。
1自卸半挂车液压系统结构用于一般用途的自卸半车主要由车架、支承装置、液压系统、制动系统、连接装置、悬挂系统、翻转装置、轮轴系统、顶棚装置淤积车厢等内容组成[2]。
其中,液压系统是自卸半挂车的重要构成模块,只有在液压系统的控制下,自卸半挂车才能完成中停、回位、举升、限位等相关工作。
在具体作业过程中,液压系统可以使自卸半挂车车厢按照设计多角度倾斜举升,当货物装卸完成后又按照原有轨迹自动回落至初始高度。
其他功能也都是在液压系统的控制下完成。
液压系统作用原理如下:自卸半挂车需要倾卸货物时,通过操作组合手动换向阀的手柄,使液压油进行在系统内运转,运转路径为经气控换向阀进入液压缸体A 腔,随着液压油的运动产生油压,由油压推动液压缸的各级缸筒按照次序依次渗出,随着这一动作,自卸半挂车的车厢会抬升到既定角度。
当达到自卸半挂车的最大设计行程需要回落时,再次操作组合手动换向阀的手柄,操控液压油回流,以此同时,在油压的作用下,液压油会进入缸体的B 腔,并对伸出的末级缸作用一定的回拉力,在回拉力的作用下,自卸半挂车车厢动力将逐渐下降,车厢随之回落。
在具体的装卸、运输过程中,如有需要,可操控顶棚的开启马达的控制换向阀,可以打开顶棚;反之则关闭顶棚[3]。
经过上述分析可以得知,较之其他同类型的验货车辆,自卸半挂车具有一定的应用优势,如运输效率相对较高,且便于操作与维修,系统结构也相对科学合理,设备安全性与可靠性高,在运输过程中对道路的环保、货物的安全性都有可靠保障。
平推式自卸汽车设计(液压系统) 本科毕业论文

平推式自卸汽车设计(液压系统)本科毕业论文一、绪论随着工程领域的不断发展,自动化技术在汽车工业中起到了至关重要的作用。
自卸汽车是一种重要的运输工具,具有将货物自动卸载的特点,可以提高运输效率和减少人工成本。
本文根据自卸汽车的使用环境和性能要求,设计了一种基于液压系统的平推式自卸汽车。
二、液压系统结构设计1. 液压泵组液压泵组是整个液压系统的核心部件,负责向液压缸供应高压液体以实现装载和卸载的操作。
泵组采用双联泵,即高压泵负责提供液压缸所需的高压液体,低压泵负责提供稳定的低压液体以保证泵组正常工作。
泵组采用封闭式设计,具有较强的抗污染和防漏性能。
2. 液压缸结构液压缸是平推式自卸汽车装卸货物的关键器件,本文设计的液压缸结构为双作用柱塞式。
液压缸采用高强度合金钢材料,具有承载能力强、耐磨性高等优点。
为了提高液压缸的输出力,本系统在设计中对液压缸的面积进行了优化,同时在液压缸内部设置了防爆装置以确保安全性。
3. 液压控制阀液压控制阀是液压系统的调节器,负责控制液压油在各个液压缸之间的流量和压力,以实现车体升、平推、降的操作。
本文设计的液压控制阀采用二位四通结构,具有结构简单、操作方便等优点。
同时,液压控制阀采用防爆设计,在使用过程中安全可靠。
三、自卸系统设计1. 倾斜平台结构倾斜平台是自卸汽车实现卸载功能的关键部件。
本文设计的倾斜平台采用加强型钢构架,并对其梁体进行加厚,以保证其承载力和稳定性。
同时,倾斜平台采用翘头式设计,可以在卸载时有效地减少货物残留。
2. 卸载控制系统卸载控制系统是指自卸汽车在实现卸载前,必须进行的操作。
本文设计的卸载控制系统采用液压控制方式,通过液压控制阀调节液压缸的压力和流量,实现卸载功能。
同时,卸载控制系统具有自动反转功能,可以在卸载完成后自动恢复到装载状态。
四、结论本文通过分析自卸汽车的使用环境和性能要求,设计了基于液压系统的平推式自卸汽车。
在该设计中,液压泵组、液压缸和液压控制阀构成了液压系统的核心部件。
自卸汽车举升机构的机械及液压系统设计

摘要自卸汽车是利用发动机动力驱动液压举升机构,将货箱倾斜一定角度从而达到自动卸货的目的,并依靠货箱自重使其复位。
因此,液压举升机构是自卸汽车的重要工作系统之一,其结构形式、性能好坏直接影响自卸汽车的使用性能和安全性能。
本论文首先对自卸式汽车进行了说明,同时根据设计需要对液压系统进行了简要的阐述,并设计液压举升机构及液压系统。
液压缸是一种配置灵活、设计制造比较容易而应用广泛的液压执行元件。
尽管液压缸有系列化标准的产品和专用系列产品,但由于用户对液压机械的功能要求千差万别,因而非标准液压元件的设计是不可避免的。
本次毕业设计的主要内容集中于自卸汽车液压缸的机械结构和液压系统的设计,介绍了自卸汽车的整个工作原理以及举升机构的工作原理,按照设计的一般原则和步骤对液压缸的机械结构和液压系统进行了详细的设计计算,并对其附属部件也进行了合适的选择。
最终得到一整套符合要求的汽车自卸系统。
关键词:自卸汽车,液压缸机械设计,液压系统设计目录1 绪论 (1)1.1 自卸汽车的作用 (1)1.2 自卸汽车的分类 (1)1.3 常见自卸汽车分类举例 (2)1.4 自卸汽车的举升机构 (3)1.5 自卸汽车的结构特点 (3)1.6 小结 (4)2 液压系统设计 (5)2.1 液压概述 (5)2.1.1 液压技术的发展 (5)2.1.2 液压传动 (5)2.2 自卸汽车液压系统设计 (6)2.2.1 液压缸概述 (6)2.2.2 液压系统原理图 (7)2.2.3 液压系统图 (8)2.3 小结 (9)3 液压缸结构设计 (10)3.1 液压缸结构设计的依据、原则和步骤 (11)3.1.1 设计依据 (11)3.1.2 设计的一般原则 (12)3.1.3 设计的一般步骤 (12)3.2 液压缸基本结构参数及相关标准 (13)3.2.1 液压缸的液压力分析和额定压力的选择 (14)3.2.2 液压缸内径D和外径D (16)13.2.3 活塞杆外径(杆径)d (17)3.2.4 液压缸基本参数的校核 (18)3.3 液压缸综合结构参数及安全系数的选择 (19)3.3.1 液压缸综合结构参数 (19)3.3.2 安全系数的选择 (19)3.4 液压缸底座结构设计 (21)3.5 缸体设计与计算 (22)3.5.1 缸筒设计 (23)3.5.2 缸头和油口设计 (26)3.6 活塞组件设计 (28)3.6.1 活塞杆设计 (28)3.6.2 活塞设计 (30)3.6.3 活塞与活塞杆的连接结构 (31)3.7 缸盖设计 (32)3.7.1缸盖材料和技术要求 (32)3.7.2 缸盖的结构设计 (33)3.8 焊接强度及螺纹连接计算 (34)3.8.1焊接强度计算 (32)3.8.2缸盖螺栓连接强度计算 (35)2.9 小结 (35)4 液压原件选择 (36)4.1 液压泵的确定 (36)4.2 阀类元件的确定 (37)4.2.1 选择阀类元件应注意的问题 (37)4.2.2 阀类元件的选择 (38)4.3 油箱的选择 (39)4.4 滤油器的选择 (39)4.5 管路的选择 (39)4.6 小结 (40)设计小结 (41)致谢辞 (42)参考文献 (44)1 绪论1.1 自卸汽车的作用自卸车的出现是随着时代的发展,搬运工作已经不是人力可以解决的情况下,使用高科技而开发的搬运器械。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大型矿用自卸车是现代矿山企业重要的运输工具之一,目前普遍使用的是大型电动轮自卸车,已暴露出其体积庞大、重量大、故障率高等缺点。由于静液压传动具有工作平稳、冲击小、重量轻、无级调速及调速范围大、易于实现自动化、在恶劣工作条件下相对电传动性能更可靠等优点,近年来发展迅速,已受到车辆传动领域的广泛重视。在分析了矿用电动轮自卸车电动轮传动型式、工作条件及负载变化后,参考由湘潭电机集团有限公司生产的108t电动轮自卸车,结合静液压传动的优点,设计了大型矿用自卸车的静液压传动系统,驱动是由四个液压马达输出扭矩驱动车辆的四轮驱动型式,采用双泵供油的闭式变量系统;鉴于转向和举倾不同时发生,在设计中采用举倾时双泵合流的供油方式,从而充分利用了发动机功率,减少了能量损耗;同时还对大型矿用自卸车的制动性能进行了分析,能够满足其制动要求。
Keywords: dump truck; electric wheel dump truck; hydrostatic transmission
目录
摘要Ⅰ
AbstractⅡ
第1章绪论1
1.1大型矿用电动轮自卸车的现状及发展1
1.2现代液压技术的发展2
1.3大型矿用自卸车用静液压驱动的可行性与优越性3
3统传动方案12
3.5液压传动系统的设计计算12
3.5.1确定液压系统的工作压力13
3.5.2液压传动参数及性能的计算13
3.5.3辅助装置21
3.6拟定驱动液压系统工作原理图23
3.7液压元件的选择和设计25
第4章液压转向系统的设计27
4.1转向系统的基本要求27
第5章液压举倾系统的设计35
5.1概述35
5.2举倾系统的限速措施35
5.3液压举倾系统的设计计算36
5.3.1倾卸油缸行程及内径的计算37
5.3.2倾卸油缸容积及油泵的计算39
5.4拟定液压举倾系统工作原理图39
4.2转向方式及转向随动系统方框图27
4.2.1轮式车辆转向方式27
4.2.2转向随动系统方框图28
4.3液压转向系统方案的选择28
4.4液压转向系统设计计算29
4.4.1转向阻力矩的计算29
4.4.2转向油缸参数的确定30
4.4.3转向器参数的确定32
4.4.4油泵参数的确定33
4.5拟定液压转向系统工作原理图33
1.4本设计的任务和目标4
第2章主要技术参数及对液压系统的要求5
2.1主要技术参数5
2.2主机对液压系统的要求5
第3章静液压驱动系统的设计6
3.1车辆行走机构对液压传动系统的要求6
3.2液压驱动系统的型式6
3.2.1容积调速系统6
3.2.2功率分流液压调速系统7
3.3行走驱动系统性能的主要参数7
3.4静液压驱动系统方案的确定8
关键词:矿用自卸车;电动轮自卸车;静液压传动
Abstract
Large mining dump truck is one of the modern mining enterprises an important means of transportation, the popular use of large electric wheel dump truck, has exposed its huge size, heavy weight, high rate of breakdown. Because of the hydrostatic transmission with stable, the impact of small, light weight, stepless speed regulation and wide range of speed regulation, easy to realize automation, relative in the harsh working conditions of electric transmission more reliable performance and other advantages, the rapid development in recent years, has received wide attention in the field of automobile transmission. In the analysis of the electric wheel dump truck electric wheel drive type, working conditions and load changes, reference produced by Xiangtan Electric Group Co., Ltd. 108t electric wheel dump truck, combining the advantages of the design of the hydrostatic transmission, large mining dump truck hydrostatic transmission system, drive four wheel drive type consists of four hydraulic motor output torque to drive the vehicle, using closed variable system with double pump oil; in view of steering and lift does not occur at the same time, the supply mode of lift double pump confluence in the design, so as to make full use of the engine power, reduce energy loss; also the braking performance for large dump truck is analyzed, can meet the braking requirements.