【精品】液压传动系统设计计算

合集下载

液压系统设计计算实例

液压系统设计计算实例

12.13,液压缸的工况图如图12.8所示。
➢ 设计内容与方法
4.拟定液压系统原理图
➢ 设计内容与方法 5.液压元件选择
(1)选择液压泵 ①液压泵最高工作压力 管路总压力损失ΣΔp初步按
0.6MPa估算,有Pp≥pmax+ΣΔp=(4.5+0.6)MPa=5.1MPa ②液压泵最大供油量 取K=1.1,有
➢ 设计内容与方法
3.液压缸参数确定
(5) 采最用低无稳杆定腔速进度油验,算单向最行低程速调度速为阀工调进速时,vm查in=得5最0m小m稳/m定in流,量工进时,
qmin=0.1×10-3m3/min,则
A1≥ qmin 0.1106
vm in
ቤተ መጻሕፍቲ ባይዱ
50
mm2=2 000mm2 满足最低速度要求。
(6) 绘制液压缸工况图 计算各工况下的压力、流量和功率汇总于表
液压与气动控制
F 33667 p 4.5106
4A 4 7482106
3.14
➢ 设计内容与方法
3.液压缸参数确定
( (12) )选 确4 定 定工 液作 压4压 缸力 有效p 工根作据面表积1A2.3和表12.4,初选工作压力p=4.5MPa。
4
4
A= 4 m24=7 482×10-6m2
(3)确定缸筒内径D、活塞杆直径d
➢ 设计内容与方法 5.液压元件选择
①油管 初步选取v=4m/s,则d=m=14.5×103m=14.5mm 查手册确定采用φ18×1.5的紫铜管。 ②滤油器 采用XU-J40×80型过滤器。 ③油箱容积的确定 V=(5~7)qP=(5~7)×20L=(100~140)L
➢ 设计内容与方法

液压传动系统设计计算例题

液压传动系统设计计算例题

液压传动系统设计计算例题1. 引言液压传动系统是一种常用的能量传递和控制系统,广泛应用于工程机械、航空航天、冶金、石油化工等领域。

本文将通过一个设计计算例题,介绍液压传动系统的设计过程和计算方法。

2. 设计要求设计一个液压传动系统,满足以下要求:•最大输出功率为100kW•最大工作压力为10MPa•最大转速为1500rpm•传动比为5:13. 功率计算根据设计要求,最大输出功率为100kW,转速为1500rpm,可以通过以下公式计算液压机的排量:功率(kW)= 排量(cm^3/rev) × 转速(rpm) × 压力(MPa) × 10^-6由于传动比为5:1,液压泵的排量为液压马达的5倍,因此液压泵的排量为:排量(cm^3/rev) = 功率(kW) / (转速(rpm) × 压力(MPa) × 10^-6 × 5)= 100 / (1500 × 10 × 10^-6 × 5)= 0.133 cm^3/rev4. 泵和马达的选择根据计算结果,液压泵的排量为0.133 cm^3/rev。

在实际中,可以选择一个接近或等于该排量的标准泵来满足需求。

假设我们选择了一台0.15 cm^3/rev的液压泵。

由于传动比为5:1,液压马达的排量为液压泵的1/5,因此液压马达的排量为:排量(cm^3/rev) = 液压泵排量 / 5= 0.15 / 5= 0.03 cm^3/rev同样地,我们可以选择一个接近或等于该排量的标准马达。

5. 油液流量计算油液流量可以通过以下公式计算:流量(L/min) = 排量(cm^3/rev) × 转速(rpm) / 1000液压泵的流量为:流量(L/min) = 0.15 × 1500 / 1000= 0.225 L/min液压马达的流量为:流量(L/min) = 0.03 × 1500 / 1000= 0.045 L/min6. 液压系统元件选择在设计液压传动系统时,除了液压泵和液压马达,还需要选择其他的液压元件,如油箱、油管、阀门等。

液压传动系统设计

液压传动系统设计

液压传动系统设计
1. 引言
液压传动系统是一种常用的工程装置,用于转换和控制液体能量,实现机械运动。

本文将讨论液压传动系统的设计原理和步骤,以及液压元件的选型和系统参数的计算。

2. 液压传动系统设计原理
液压传动系统的设计基于帕斯卡定律,即压力在液体中均匀传递。

通过应用力学和流体力学原理,可以实现各种类型的液压传动系统,包括液压缸、液压马达和液压泵等。

3. 液压元件选型
在设计液压传动系统时,需要选择合适的液压元件来满足系统的要求。

常见的液压元件包括液压缸、液压马达、液压泵、液压阀等。

选型时应考虑以下因素:
- 载荷和工作压力
- 流量和速度需求
- 空间和尺寸限制
- 可靠性和维护性
4. 液压系统参数计算
设计液压传动系统时,需要计算和确定一些基本参数,以保证系统的性能和稳定性。

这些参数包括:
- 液压流量:根据工作负荷和速度需求计算
- 压力损失:考虑管道和元件的摩擦损失
- 油液温升:根据功率损失和流量计算
- 液压缸和液压马达的力和速度关系:根据帕斯卡定律计算
5. 结论
通过本文的讨论,我们了解了液压传动系统设计的基本原理和步骤。

在实际设计中,应根据具体要求选择合适的液压元件,同时进行必要的参数计算,以确保系统的性能和可靠性。

> 注意:本文所提供的信息仅供参考,具体设计时还需考虑其他因素,并进行详细分析和验证。

参考文献
- [reference 1]
- [reference 2]
- [reference 3]。

液压传动系统的设计与计算

液压传动系统的设计与计算

液压传动系统的设计与计算[原创2006-04-09 12:49:44 ] 发表者: yzc741229液压传动系统设计与计算液压系统设计的步骤大致如下:1.明确设计要求,进行工况分析。

2.初定液压系统的主要参数。

3.拟定液压系统原理图。

4.计算和选择液压元件。

5.估算液压系统性能。

6.绘制工作图和编写技术文件。

根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。

第一节明确设计要求进行工况分析在设计液压系统时,首先应明确以下问题,并将其作为设计依据。

1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。

2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。

3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。

图9-1位移循环图在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。

一、运动分析主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。

1.位移循环图L—t图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。

该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。

2.速度循环图v—t(或v—L)工程中液压缸的运动特点可归纳为三种类型。

图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,图9-2 速度循环图最后匀减速运动到终点;第二种,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。

液压系统的设计计算举例

液压系统的设计计算举例

作缸的小腔,即从泵的出口到缸小腔之间的压力损失 Δp = 5.5×105 MPa ,于是小泵出
口压力 pp1 = 21.56×105 MPa (小泵的总效率 η 1 = 0.5 ),大泵出口压力 pp2 =
23.06×105 MPa (大泵的总效率 η 2 = 0.5 )。故电机功率为
P pp1q1 pp2q2 21.56 105 0.167 103 W 23.06 105 0.267 103 W 1 951.5 W
= 0.5 ,大泵出口压力 pp2 = 15.18×105 MPa (大泵的总效率 η 2 = 0.5 )。故电机功率

P1
pp1q1 1
pp 2 q2 2
13.68 105 0.167 103 0.5
W 15.18 105 0.267 103 0.5
W
1 267.5 W
(2)工进
小泵的出口压力 pp1 = p1 +Δp1 = 32.19×105 MPa ,大泵卸载,卸载压力取 pp2 =
液压传动
液压系统的设计计算举例
1.1 分析工况及主机工作要求,拟定液压系统方案 1.2 参数设计 1.3 选择元件 1.4 液压系统性能验算
液压系统的设计计算举例
1.1 液分析工况及主机工作要求,拟定液压系统方案
(一) 确定执行元件类型
(二) 确定执行元件的负载、速度变化范围
Fw 18 000 N
1
2
0.5
0.5
综合比较,快退时所需功率最大。据此查产品样本选用Y112M—6型异步电机,
电机功率2.2 kW,额定转速为940 r/min。
(三) 选择液压阀
根据液压阀在系统中的最高工作压力与通过该阀的最大流量,可选出这些元件的 型号及规格。选定的元件列于表中。

液压机构传动效率计算公式

液压机构传动效率计算公式

液压机构传动效率计算公式液压传动是一种常见的动力传动方式,它利用液体的压力来传递动力。

液压传动系统通常由液压泵、液压缸、液压阀等组成,其中液压机构是实现动力传递和控制的重要部分。

在液压机构中,传动效率是一个重要的性能指标,它反映了液压机构在能量传递过程中的损失情况。

传动效率的计算对于液压机构的设计和优化具有重要意义。

传动效率的计算公式可以通过能量平衡来推导。

液压机构的传动效率可以定义为输出功率与输入功率的比值,即:η = (输出功率 / 输入功率) × 100%。

其中,η表示传动效率,输出功率和输入功率分别表示液压机构的输出功率和输入功率。

在液压机构中,输出功率可以通过液压缸的工作速度和工作压力来计算,输入功率则可以通过液压泵的流量和压力来计算。

因此,传动效率的计算公式可以进一步表示为:η = (输出流量×输出压力×缸有效面积 / 输入流量×输入压力×泵有效面积) × 100%。

在这个公式中,输出流量表示液压缸的工作流量,输出压力表示液压缸的工作压力,缸有效面积表示液压缸的有效工作面积;输入流量表示液压泵的流量,输入压力表示液压泵的压力,泵有效面积表示液压泵的有效工作面积。

传动效率的计算公式可以帮助工程师和设计师在液压机构的设计和优化过程中进行合理的能量平衡分析,从而选择合适的液压元件和参数,提高液压机构的传动效率。

传动效率的计算公式也可以用于液压机构的性能测试和评估,帮助用户了解液压机构的实际工作情况。

在实际工程应用中,传动效率的计算还需要考虑一些实际因素的影响,例如液压元件的摩擦损失、密封件的泄漏损失、管路的压降损失等。

这些因素会对传动效率产生影响,因此在进行传动效率计算时需要进行适当的修正和补偿。

除了传动效率的计算公式外,还可以通过实验方法来测定液压机构的传动效率。

通过在实验台上搭建液压传动系统,可以通过测量输入功率和输出功率来计算传动效率,从而验证计算公式的准确性,并对液压机构的传动效率进行评估和优化。

液压传动系统设计与计算

液压传动系统设计与计算

液压传动系统设计与计算一、液压缸的设计计算1.初定液压缸工作压力液压缸工作压力主要根据运动循环各阶段中的最大总负载力来确定,此外,还需要考虑以下因素:(1)各类设备的不同特点和使用场合。

(2)考虑经济和重量因素,压力选得低,则元件尺寸大,重量重;压力选得高一些,则元件尺寸小,重量轻,但对元件的制造精度,密封性能要求高。

所以,液压缸的工作压力的选择有两种方式:一是根据机械类型选;二是根据切削负载选。

如表9-2、表9-3所示。

表9-2 按负载选执行文件的工作压力表9-3 按机械类型选执行文件的工作压力2.液压缸主要尺寸的计算缸的有效面积和活塞杆直径,可根据缸受力的平衡关系具体计算,详见第四章第二节。

3.液压缸的流量计算液压缸的最大流量:qmax=A·vmax (m3/s) (9-12)式中:A为液压缸的有效面积A1或A2(m2);vmax为液压缸的最大速度(m/s)。

液压缸的最小流量:qmin=A·vmin(m3/s) (9-13)式中:vmin为液压缸的最小速度。

液压缸的最小流量qmin,应等于或大于流量阀或变量泵的最小稳定流量。

若不满足此要求时,则需重新选定液压缸的工作压力,使工作压力低一些,缸的有效工作面积大一些,所需最小流量qmin也大一些,以满足上述要求。

流量阀和变量泵的最小稳定流量,可从产品样本中查到。

二、液压马达的设计计算1.计算液压马达排量液压马达排量根据下式决定:vm=6.28T/Δpm*ηmin(m3/r) (9-14)式中:T为液压马达的负载力矩(N·m);Δpm为液压马达进出口压力差(N/m3);ηmin为液压马达的机械效率,一般齿轮和柱塞马达取0.9~0.95,叶片马达取0.8~0.9。

2.计算液压马达所需流量液压马达的最大流量:qmax=vm·nmax(m3/s)式中:vm为液压马达排量(m3/r);nmax为液压马达的最高转速(r/s)。

液压传动系统设计与计算-说明书

液压传动系统设计与计算-说明书

如果忽略切削力引起的颠覆力矩对导轨摩擦力的影响,并设液压缸的机械效率=0.9,根据上述负载力计算结果,可得出液压缸在各个工况下所受到的负载力和液压缸所需推力情况,如表1所示。

表1 液压缸总运动阶段负载表〔单位:N〕3 负载图和速度图的绘制根据负载计算结果和的个阶段的速度,可绘制出工作循环图如图1〔a〕所示,所设计组合机床动力滑台液压系统的速度循环图可根据的设计参数进行绘制,快进和快退速度3.5快进行程L1=100mm、工进行程L2=200mm、快退行程L3=300mm,工进速度80-300mm/min 快进、工进和快退的时间可由下式分析求出。

快进工进快退根据上述数据绘制组合机床动力滑台液压系统绘制负载图〔F-t〕b图,速度循环图c图.ab c在此处键入公式。

4 确定液压系统主要参数4.1确定液压缸工作压力由表2和表3可知,组合机床液压系统在最大负载约为16000时宜取3MPa。

表2按负载选择工作压力表3 各种机械常用的系统工作压力4.2计算液压缸主要结构参数根据参数,液压缸无杆腔的有效作用面积可计算为A1=Fmas/P1-0.5P2=16000/3X10^6那么活塞直径为mm根据经验公式,因此活塞杆直径为d=58.3mm,根据GB/T2348—1993对液压缸缸筒内径尺寸和液压缸活塞杆外径尺寸的规定,圆整后取液压缸缸筒直径为D=80mm,活塞杆直径为d=56mm。

此时液压缸两腔的实际有效面积分别为:根据计算出的液压缸的尺寸,进一步计算液压缸在各个工作阶段中的压力、流量和功率值,如表4所示。

表4 各工况下的主要参数值5 液压系统方案设计根据组合机床液压系统的设计任务和工况分析,所设计机床对调速范围、低速稳定性有一定要求,因此速度控制是该机床要解决的主要问题。

速度的换接、稳定性和调节是该机床液压系统设计的核心。

此外,与所有液压系统的设计要求一样,该组合机床液压系统应尽可能结构简单,本钱低,节约能源,工作可靠5.1确定调速方式及供油形式由表4可知,该组合机床工作时,要求低速运动平稳行性好,速度负载特性好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压传动系统设计计算液压系统的设计步骤与设计要求液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行.着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。

1.1设计步骤液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。

一般来说,在明确设计要求之后,大致按如下步骤进行。

1)确定液压执行元件的形式;2)进行工况分析,确定系统的主要参数;3)制定基本方案,拟定液压系统原理图;4)选择液压元件;5)液压系统的性能验算;6)绘制工作图,编制技术文件。

1.2明确设计要求设计要求是进行每项工程设计的依据。

在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。

1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等;2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何;3)液压驱动机构的运动形式,运动速度;4)各动作机构的载荷大小及其性质;5)对调速范围、运动平稳性、转换精度等性能方面的要求;6)自动化程序、操作控制方式的要求;7)对防尘、防爆、防寒、噪声、安全可靠性的要求;8)对效率、成本等方面的要求。

制定基本方案和绘制液压系统图3。

1制定基本方案(1)制定调速方案液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题.方向控制用换向阀或逻辑控制单元来实现。

对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。

对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。

速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现.相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。

节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。

此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。

容积调速是靠改变液压泵或液压马达的排量来达到调速的目的。

其优点是没有溢流损失和节流损失,效率较高。

但为了散热和补充泄漏,需要有辅助泵。

此种调速方式适用于功率大、运动速度高的液压系统.容积节流调速一般是用变量泵供油,用流量控制阀调节输入或输出液压执行元件的流量,并使其供油量与需油量相适应。

此种调速回路效率也较高,速度稳定性较好,但其结构比较复杂。

节流调速又分别有进油节流、回油节流和旁路节流三种形式.进油节流起动冲击较小,回油节流常用于有负载荷的场合,旁路节流多用于高速.调速回路一经确定,回路的循环形式也就随之确定了。

节流调速一般采用开式循环形式。

在开式系统中,液压泵从油箱吸油,压力油流经系统释放能量后,再排回油箱。

开式回路结构简单,散热性好,但油箱体积大,容易混入空气。

容积调速大多采用闭式循环形式。

闭式系统中,液压泵的吸油口直接与执行元件的排油口相通,形成一个封闭的循环回路。

其结构紧凑,但散热条件差。

(2)制定压力控制方案液压执行元件工作时,要求系统保持一定的工作压力或在一定压力范围内工作,也有的需要多级或无级连续地调节压力,一般在节流调速系统中,通常由定量泵供油,用溢流阀调节所需压力,并保持恒定。

在容积调速系统中,用变量泵供油,用安全阀起安全保护作用。

在有些液压系统中,有时需要流量不大的高压油,这时可考虑用增压回路得到高压,而不用单设高压泵。

液压执行元件在工作循环中,某段时间不需要供油,而又不便停泵的情况下,需考虑选择卸荷回路.在系统的某个局部,工作压力需低于主油源压力时,要考虑采用减压回路来获得所需的工作压力.(3)制定顺序动作方案主机各执行机构的顺序动作,根据设备类型不同,有的按固定程序运行,有的则是随机的或人为的。

工程机械的操纵机构多为手动,一般用手动的多路换向阀控制。

加工机械的各执行机构的顺序动作多采用行程控制,当工作部件移动到一定位置时,通过电气行程开关发出电信号给电磁铁推动电磁阀或直接压下行程阀来控制接续的动作。

行程开关安装比较方便,而用行程阀需连接相应的油路,因此只适用于管路联接比较方便的场合。

另外还有时间控制、压力控制等.例如液压泵无载启动,经过一段时间,当泵正常运转后,延时继电器发出电信号使卸荷阀关闭,建立起正常的工作压力.压力控制多用在带有液压夹具的机床、挤压机压力机等场合。

当某一执行元件完成预定动作时,回路中的压力达到一定的数值,通过压力继电器发出电信号或打开顺序阀使压力油通过,来启动下一个动作。

(4)选择液压动力源液压系统的工作介质完全由液压源来提供,液压源的核心是液压泵。

节流调速系统一般用定量泵供油,在无其他辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经溢流阀流回油箱,溢流阀同时起到控制并稳定油源压力的作用。

容积调速系统多数是用变量泵供油,用安全阀限定系统的最高压力。

为节省能源提高效率,液压泵的供油量要尽量与系统所需流量相匹配。

对在工作循环各阶段中系统所需油量相差较大的情况,一般采用多泵供油或变量泵供油.对长时间所需流量较小的情况,可增设蓄能器做辅助油源。

油液的净化装置是液压源中不可缺少的。

一般泵的入口要装有粗过滤器,进入系统的油液根据被保护元件的要求,通过相应的精过滤器再次过滤.为防止系统中杂质流回油箱,可在回油路上设置磁性过滤器或其他型式的过滤器。

根据液压设备所处环境及对温升的要求,还要考虑加热、冷却等措施。

3。

2绘制液压系统图整机的液压系统图由拟定好的控制回路及液压源组合而成.各回路相互组合时要去掉重复多余的元件,力求系统结构简单。

注意各元件间的联锁关系,避免误动作发生.要尽量减少能量损失环节。

提高系统的工作效率。

为便于液压系统的维护和监测,在系统中的主要路段要装设必要的检测元件(如压力表、温度计等)。

大型设备的关键部位,要附设备用件,以便意外事件发生时能迅速更换,保证主要连续工作。

各液压元件尽量采用国产标准件,在图中要按国家标准规定的液压元件职能符号的常态位置绘制。

对于自行设计的非标准元件可用结构原理图绘制.系统图中应注明各液压执行元件的名称和动作,注明各液压元件的序号以及各电磁铁的代号,并附有电磁铁、行程阀及其他控制元件的动作表。

液压元件的选择与专用件设计4。

1液压泵的选择1)确定液压泵的最大工作压力ppp p ≥p1+Σ△p (21)式中p1——液压缸或液压马达最大工作压力;Σ△p——从液压泵出口到液压缸或液压马达入口之间总的管路损失.Σ△p的准确计算要待元件选定并绘出管路图时才能进行,初算时可按经验数据选取:管路简单、流速不大的,取Σ△p=(0.2~0.5)MPa;管路复杂,进口有调阀的,取Σ△p=(0。

5~1。

5)MPa。

2)确定液压泵的流量QP多液压缸或液压马达同时工作时,液压泵的输出流量应为Q P ≥K(ΣQmax)(22)式中K——系统泄漏系数,一般取K=1.1~1.3;ΣQmax—-同时动作的液压缸或液压马达的最大总流量,可从(Q—t)图上查得。

对于在工作过程中用节流调速的系统,还须加上溢流阀的最小溢流量,一般取0。

5×10-4m3/s。

系统使用蓄能器作辅助动力源时式中K——系统泄漏系数,一般取K=1。

2;Tt--液压设备工作周期(s);Vi——每一个液压缸或液压马达在工作周期中的总耗油量(m3);z—-液压缸或液压马达的个数。

3)选择液压泵的规格根据以上求得的pp 和Qp值,按系统中拟定的液压泵的形式,从产品样本或本手册中选择相应的液压泵。

为使液压泵有一定的压力储备,所选泵的额定压力一般要比最大工作压力大25%~60%。

4)确定液压泵的驱动功率在工作循环中,如果液压泵的压力和流量比较恒定,即(p—t)、(Q—t)图变化较平缓,则式中pp——液压泵的最大工作压力(Pa);QP——液压泵的流量(m3/s);ηP--液压泵的总效率,参考表9选择.表9液压泵的总效率限压式变量叶片泵的驱动功率,可按流量特性曲线拐点处的流量、压力值计算。

一般情况下,可取pP =0.8pPmax,QP=Qn,则式中—-液压泵的最大工作压力(Pa);——液压泵的额定流量(m3/s)。

在工作循环中,如果液压泵的流量和压力变化较大,即(Q-t),(p—t)曲线起伏变化较大,则须分别计算出各个动作阶段内所需功率,驱动功率取其平均功率式中t1、t2、…tn--一个循环中每一动作阶段内所需的时间(s);P1、P2、…Pn-—一个循环中每一动作阶段内所需的功率(W)。

按平均功率选出电动机功率后,还要验算一下每一阶段内电动机超载量是否都在允许范围内。

电动机允许的短时间超载量一般为25%。

4.2液压阀的选择1)阀的规格,根据系统的工作压力和实际通过该阀的最大流量,选择有定型产品的阀件.溢流阀按液压泵的最大流量选取;选择节流阀和调速阀时,要考虑最小稳定流量应满足执行机构最低稳定速度的要求.控制阀的流量一般要选得比实际通过的流量大一些,必要时也允许有20%以内的短时间过流量。

2)阀的型式,按安装和操作方式选择。

4。

3蓄能器的选择根据蓄能器在液压系统中的功用,确定其类型和主要参数。

1)液压执行元件短时间快速运动,由蓄能器来补充供油,其有效工作容积为式中A——液压缸有效作用面积(m2);l-—液压缸行程(m);K——油液损失系数,一般取K=1。

2;——液压泵流量(m3/s);QPt——动作时间(s)2)作应急能源,其有效工作容积为:式中--要求应急动作液压缸总的工作容积(m3)。

有效工作容积算出后,根据第8章中有关蓄能器的相应计算公式,求出蓄能器的容积,再根据其他性能要求,即可确定所需蓄能器。

4.4管道尺寸的确定(1)管道内径计算式中Q——通过管道内的流量(m3/s);υ—-管内允许流速(m/s),见表10。

计算出内径d后,按标准系列选取相应的管子。

(2)管道壁厚δ的计算表10允许流速推荐值式中p-—管道内最高工作压力(Pa);d——管道内径(m);[σ]--管;道材料的许用应力(Pa),[σ]=——管道材料的抗拉强度(Pa);σbn—-安全系数,对钢管来说,p<7MPa时,取n=8;p<17.5MPa 时,取n=6;p>17。

5MPa时,取n=4。

4.5油箱容量的确定初始设计时,先按经验公式(31)确定油箱的容量,待系统确定后,再按散热的要求进行校核.油箱容量的经验公式为(31)V=αQV-—液压泵每分钟排出压力油的容积(m3);式中QVα—-经验系数,见表11.表11 经验系数α在确定油箱尺寸时,一方面要满足系统供油的要求,还要保证执行元件全部排油时,油箱不能溢出,以及系统中最大可能充满油时,油箱的油位不低于最低限度.液压系统性能验算液压系统初步设计是在某些估计参数情况下进行的,当各回路形式、液压元件及联接管路等完全确定后,针对实际情况对所设计的系统进行各项性能分析。

相关文档
最新文档