第9章液压传动系统的设计计算
液压与气压传动(本科)模拟试题集

62、解决齿轮泵困油现象的最常用方法是(B) A、减少转速 B、开卸荷槽 C、加大吸油口 D、降低气体温度
63、下列液压泵可做成变量的是(B) A、齿轮泵 B、单作用叶片泵 C、双作用叶片泵 D、 B+C 73.为了使齿轮泵的齿轮子稳地啮合运转、吸压油腔严格地密封以及均匀连续地供油, 必须使齿轮啮合的重叠系数 r(A)1。 A、大于 B、等于 C、小于 D、无法判断
85.液压传动中所用的油液,随着油液温度的升高,其粘度将(D) A、不变 B、略有上升 多顶选择 10、11、21、 C、显著上升 D、显著下降
10.根据度量基准的不同,液体压力分为(A、B) A、绝对压力 D、表压力 B、相对压力 E、真空度 C、大气压力
11.粘性的大小用粘度表示。常用的粘度包括(A、B、C) A、动力粘度 D、赛式粘度 B、运动粘度 E、雷氏粘度 C、恩式粘度
第二章 液压油与液压流体力学基础
第一节 液体的物理性质 第二节 液体静力学基础 第三节 液体动力学基础 第四节 液体流动时的压力损失 第五节 液体流经小孔和缝隙的流量 第六节 液压冲击和空穴现象 单项选择 1、28、42、50、52、71、85、
第 1 页 共 28 页
四川航天职业技术学院
1.当温度升高时,油液的粘度(A)。 A、下降 B、增加 C、没有变化 D、不确定
液压传动系统的设计与计算

液压传动系统的设计与计算[原创2006-04-09 12:49:44 ] 发表者: yzc741229液压传动系统设计与计算液压系统设计的步骤大致如下:1.明确设计要求,进行工况分析。
2.初定液压系统的主要参数。
3.拟定液压系统原理图。
4.计算和选择液压元件。
5.估算液压系统性能。
6.绘制工作图和编写技术文件。
根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。
第一节明确设计要求进行工况分析在设计液压系统时,首先应明确以下问题,并将其作为设计依据。
1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。
2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。
3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。
图9-1位移循环图在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。
一、运动分析主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。
1.位移循环图L—t图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。
该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。
2.速度循环图v—t(或v—L)工程中液压缸的运动特点可归纳为三种类型。
图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,图9-2 速度循环图最后匀减速运动到终点;第二种,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。
第9章液压系统设计与计算

要求,即
V q min n min
(9-7)
式中 qmin——输入液压马达的最低稳定流量。
排量确定后,可从产品样本中选择液压马达的型号。
(Hale Waihona Puke )执行元件最大流量的确定对于液压缸,它所需的最大流量qmax 就等于液压缸有效工作
面积A与液压缸最大移动速度vmax的乘积,即
qmax=A vmax
(9-8)
积)。
• 快进时:
差动系统
p F A1 A2
qv快 (A1A2)
非差动系统
p1
F A1
A2 A1
p2
q v快A1
P pq
•工进时:
p1
A2 A1
F pb A1
q v工A1
P p工q工
• 快退
p1
A2 A1
pb
F A1
qv快退A2
P pq
图9-2 组合机床执行元件工况图
压力图9-2a,流量图9-2b,功率图9-2c。
求出了平均功率,还要验算每个阶段电机的超载量是否在
允许的范围内,一般允许短期超载25%。在范围内时,可根据 平均功率P和泵的转速n从产品样本中选择。
对于限压式变量泵系统,按(9-13)式分别计算快速与慢速 两种工况时所需要的驱动功率,计算后按较大的作为选择电机
的依据。由于限压式变量泵在快速与慢速转换过程中,必须经
图9-1a)是机床的动作循环图。 由图可见,工作循环为快进→工进 →快退;
图9-1b )是完成一个工作循环的 速度→位移曲线,即速度图。
图9-1c)是该组合机床的负载图。
2. 负载分析
图9-1c)是该组合机床的负载图,按设备的工艺要求,把执 行元件在各阶段的负载用曲线表示出来,可直观地看出在运动 过程中何时受力最大、最小等各种情况,作为以后的设计依据。
液压传动第9章 其他基本回路

2)、慢进: 进油路: 换向阀3(右)、换向阀2(左)→ 活 塞缸7(左)和增速缸→活塞慢速向右移动; 回油路:活塞缸7(右)→换向阀2(左)→油箱。 3)、返回: 进油路:换向阀2(右)、换向阀3(右) →活塞缸7(右)→活塞快速向左返回;
27
回油路: • 增速缸6→换向阀2(右)→油箱; • 活塞缸7(左)→液控单向阀→副油箱; • 活塞缸7(左) →换向阀3(右)→换向阀 2(右)→油箱。 特点 这种回路可以在不增加液压泵 流量的情 况下获得较快的速度, 使功率利用比较合理,但结构比较复 杂。
48
三、多缸快慢速互不干扰回路
功用
防止液压系统中的几个液压缸因 速度快慢的不同(因而是工作压力不 同)而在动作上相互干扰。
特点
1)、液压缸6、7各自要完成“快进→工进→快退”的 自动工作循环。 2)、这个回路之所以能实现快慢运动互不干扰,是由 于快速和慢速各由一个液压泵来分别供油,再通过相 应电磁阀进行控制的缘故。
16
1、溢流阀 2、换向阀 3、单向顺序阀
五、保压回路
功 用
使系统 在液压缸不 动或仅有极微小 的位移下稳定地 维持住压力。
1、溢流阀 2、换向阀 3、液控单 向阀 4、电接触 式压力表
17
1、工作原理 • 当换向阀右位接入回路时→缸上腔成为 压力腔→压力到达预定上限值时→电接 触式压力表发生信号→换向阀切换成中 位→这时液压泵卸荷→液压缸由液控单 向阀保压; • 当液压缸上腔压力下降到预定下限值时 →压力表发出信号→换向阀右位接入回 路→泵给缸上腔补油,使其压力上升。 2、特点: 这种回路保压时间长,压力稳定性 高,适用于保压性能较高的高压系统。
24
3、通过增速缸来实现快速运动的回路
机械基础课件——液压传动

§9-1液压传动概述
②可压缩性。液体的可压缩性比钢铁大。纯油的可压缩性随压缩
过程、温度及其压力的变化而变动,但变动量不大,可不予考虑。在一 般情况下,油的可压缩性对液压系统的性能影响不大,但在高压情况下 以及在研究系统动态性能时则不能忽略。
③粘性。流体流动时,在流体内部产生内摩擦力的性质称为粘性。
粘性的大小可用粘度来衡量,粘度是选择流体的主要指标,是影响流动
流体的重要物理性质。粘度大,液层的内摩擦力就大,油液就“稠”;
反之,油液就“稀”。油液的粘度对温度的变化很敏感。当温度升高时,
粘度显著下降。当压力升高时,油液的分子间距离缩小,粘度提高。
(2)液压油的选择。液压油的质量及其各种性能将直接影响液压系 统的工作。选择液压油时,应考虑工作压力、环境温度以及工作部件的 运动速度等因素。工作压力高,应用粘度高的油,以减小泄漏,提高容 积效率。环境温度高时,应用粘度较高的油;反之,环境温度较低时, 应用粘度较低的油。当工作部件的运动速度较高时,为了减少压力损失, 应用粘度较低的油;反之,应用粘度较高的油。
v=Q/A 式中,v为液体的平均流速,m/s;Q为流入液压缸或管道的流量,m3/s;A为
活塞的有效作用面积或管道的流通面积,m2。
1,2—活塞 3,4—油腔 5—油管
图9-4活塞运动速度与流量的关系
§9-1液压传动概述
④活塞运动速度与流量的关系。如图9-4所示,假定在时间t内,
活塞2移动的距离为H2,则:
此外,选择液压油时还应该注意油的润滑性能,良好的化学稳定性,
对金属材料具有防锈性和防腐性,比热、热传导率大,热膨胀系数小,
油液质地纯净,不含或含有极少量的杂质、水分和水溶性酸碱等。
§9-1液压传动概述
液压传动系统设计与计算

液压传动系统设计与计算一、液压缸的设计计算1.初定液压缸工作压力液压缸工作压力主要根据运动循环各阶段中的最大总负载力来确定,此外,还需要考虑以下因素:(1)各类设备的不同特点和使用场合。
(2)考虑经济和重量因素,压力选得低,则元件尺寸大,重量重;压力选得高一些,则元件尺寸小,重量轻,但对元件的制造精度,密封性能要求高。
所以,液压缸的工作压力的选择有两种方式:一是根据机械类型选;二是根据切削负载选。
如表9-2、表9-3所示。
表9-2 按负载选执行文件的工作压力表9-3 按机械类型选执行文件的工作压力2.液压缸主要尺寸的计算缸的有效面积和活塞杆直径,可根据缸受力的平衡关系具体计算,详见第四章第二节。
3.液压缸的流量计算液压缸的最大流量:qmax=A·vmax (m3/s) (9-12)式中:A为液压缸的有效面积A1或A2(m2);vmax为液压缸的最大速度(m/s)。
液压缸的最小流量:qmin=A·vmin(m3/s) (9-13)式中:vmin为液压缸的最小速度。
液压缸的最小流量qmin,应等于或大于流量阀或变量泵的最小稳定流量。
若不满足此要求时,则需重新选定液压缸的工作压力,使工作压力低一些,缸的有效工作面积大一些,所需最小流量qmin也大一些,以满足上述要求。
流量阀和变量泵的最小稳定流量,可从产品样本中查到。
二、液压马达的设计计算1.计算液压马达排量液压马达排量根据下式决定:vm=6.28T/Δpm*ηmin(m3/r) (9-14)式中:T为液压马达的负载力矩(N·m);Δpm为液压马达进出口压力差(N/m3);ηmin为液压马达的机械效率,一般齿轮和柱塞马达取0.9~0.95,叶片马达取0.8~0.9。
2.计算液压马达所需流量液压马达的最大流量:qmax=vm·nmax(m3/s)式中:vm为液压马达排量(m3/r);nmax为液压马达的最高转速(r/s)。
液压课程设计-平面磨床工作台往复运动液压系统

液压课程设计——平面磨床工作台往复运动液压系统学校:广西科技大学院系:机械工程学院班级:学号:指导老师:目录引言 (3)设计内容及要求 (6)液压系统的设计与计算 (7)液压系统油箱容量与结构设计与计算 (10)结束语 (17)参考文献 (18)引言磨床工作台的运动是一种连续往复直线运动,它对调速、运动平稳性、换向精度、换向频率都有较高的要求,因广泛采用液压传动。
磨床是一种精密加工机床,对液压系统有着较高的要求。
磨床中的平面磨床为精加工机床,磨削力及变化量不大,工作台往复速度较高,调速范围较广,要求换向灵敏迅速,冲击小换向精度要求不高。
液压技术作为一门新兴应用学科,虽然历史较短,发展的速度却非常惊人。
液压设备能传递很大的力或力矩,单位功率重量较轻,结构尺寸小,在同等的功率下,起重量的尺寸仅为直流电机的10%~20%左右;反应速度快、准、稳;又能在大范围内方便的实现无级变速;易实现功率放大;易进行过载保护;能自动润滑,寿命长,制造成本较低。
因此,世界各国均已广泛的应用在锻压机械、工程机械、机床工业、汽车工业、冶金工业、农业机械、船舶交通、铁道车辆和飞机、坦克、导弹、火箭、雷达等国防工业中。
液压传动设备一般由四大元件组成,及动力元件——液压泵;执行元件——液压缸和液压马达;控制元件——各种液压阀;辅助元件——邮箱、蓄能器等。
液压阀的功用是控制液压传动系统的油流方向,压力和流量;实现执行元件的设计动作以及控制、实施整个液压系统及设备的全部工作功能。
(一)现今液压系统的优缺点液压传动的特点:液压传动技术与传统的机械传动相比,液压传动操作方便简单,调速范围广,很容易实现直线运动,具有自动过载保护功能。
液压传动容易实现自动化操作,采用电液联合控制后,可以实现更高程度的自动控制以及远程遥控。
液压传动系统可以灵活的布置各个元件,由于工作介质为矿物油,良好的润滑条件延长了元件的使用寿命。
由于液压传动的工作介质是流体矿物油,因而沿程、局部阻力损失和泄露较大,泄露的矿物油将直接对环境造成污染,有时候还容易引发各种安全事故。
液压系统的设计计算步骤和内容

• 最大负载值是初步确定执行元件工作压力和结构尺寸的依据。 • 液压马达的负载力矩分析与液压缸的负载分析相同,只需将上述负载
设计计算
步骤和内容
4~5
>5~7
18
系统工作压力的确定
表9-3 按主机类型选择系统工作压力
设备 类型
磨床
机床
组合机床 牛头刨床
插床 齿轮加工
机床
车床 铣床 镗床
珩磨 拉床 机 龙门 床 刨床
农业机械 汽车工业 小型工程 机械及辅 助机械
工程机械 重型机械 锻压设备 液压支架
船用 系统
压力 /MPa
摆动缸
单叶片缸转角小于300°,双叶片缸转角小于150°
往复摆动运动
齿轮、叶片马达 轴向柱塞马达 径向柱塞马达
结构简单、体积小、惯性小 运动平稳、转大、转速范围宽 结构复杂、转大、转速低
设计计算
步骤和内容
高速小转矩回转运动 大转矩回转运动 低速大转矩回转运动
7
负载分析
• 负载分析就是通过计算确定各液压执行元件的负载大小和方向,并分 析各执行元件运动过程中的振动、冲击及过载能力等情况。
设计计算
步骤和内容
2
1.1 液压系统的设计依据和工况分析
液压系统的设计依据
• 设计要求是进行工程设计的主要依据。设计前必须把主机对液压系统 的设计要求和与设计相关的情况了解清楚,一般要明确下列主要问题:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(9.1)
① 工作负载 Fw。工作负载与主机的工作性质有关,它可能是定值,也可能是变值。
一般工作负载是时间的函数,即 Fw=f (t),需根据具体情况分析决定。 ② 惯性负载 Fm。惯性负载是运动部件在启动加速或减速制动过程中产生的惯性力,
其值可按牛顿第二定律求出
Fm
=
ma
=
m
Δv Δt
(9.2)
式中 m——运动部件总质量;
对于平导轨 对于 V 形导轨
Ff = f (mg + FN )
Ff
=
f (mg + FN ) sin(α / 2)
(9.3) (9.4)
式中 FN——作用在导轨上的垂直载荷; α ——V 形导轨夹角,通常取α =90°;
f——导轨摩擦系数,其值可参阅相关设计手册。
④ 重力负载 Fg。当工作部件垂直或倾斜放置时,自重也是一种负载,当工作部件水
结构简单
长行程、单向工作
单叶片缸转角小于 300°,双叶片缸转角小于 150° 往复摆动运动
结构简单、体积小、惯性小
高速小转矩回转运动
运动平稳、转矩大、转速范围宽
大转矩回转运动
结构复杂、转矩大、转速低
低速大转矩回转运动
2. 负载分析
负载分析就是通过计算确定各液压执行元件的负载大小和方向,并分析各执行元件运 动过程中的振动、冲击及过载能力等情况。
设计要求是进行工程设计的主要依据。设计前必须把主机对液压系统的设计要求和与 设计相关的情况了解清楚,一般要明确下列主要问题:
(1) 主机用途、总体布局与结构、主要技术参数与性能要求、工艺流程或工作循环、 作业环境与条件等。
(2) 液压系统应完成哪些动作,各个动作的工作循环及循环时间;负载大小及性质、 运动形式及速度快慢;各动作的顺序要求及互锁关系,各动作的同步要求及同步精度;液 压系统的工作性能要求,如运动平稳性、调速范围、定位精度、转换精度,自动化程度、 效率与温升、振⑤ 背压负载 Fb。液压缸运动时还必须克服回油路压力形成的背压阻力 Fb,其值为
作用在执行元件上的负载有约束性负载和动力性负载两类。 约束性负载的特征是其方向与执行元件运动方向永远相反,对执行元件起阻止作用, 不会起驱动作用。例如库仑固体摩擦阻力、粘性摩擦阻力是约束性负载。 动力性负载的特征是其方向与执行元件的运动方向无关,其数值由外界规律所决定。 执行元件承受动力性负载时可能会出现两种情况:一种情况是动力性负载方向与执行元件 运动方向相反,起着阻止执行元件运动的作用,称为阻力负载(正负载);另一种情况是动 力性负载方向与执行元件运动方向一致,称为超越负载(负负载)。超越负载变成驱动执行 元件的驱动力,执行元件要维持匀速运动,其中的流体要产生阻力功,形成足够的阻力来 平衡超越负载产生的驱动力,这就要求系统应具有平衡和制动功能。重力是一种动力性负 载,重力与执行元件运动方向相反时是阻力负载;与执行元件运动方向一致时是超越负载。 对于负载变化规律复杂的系统必须画出负载循环图。不同工作目的的系统,负载分析的着 重点不同。例如,对于工程机械的作业机构,着重点为重力在各个位置上的情况,负载图 以位置为变量;机床工作台的着重点为负载与各工序的时间关系。
(3) 液压系统的工作温度及其变化范围,湿度大小,风沙与粉尘情况,防火与防爆要 求,安装空间的大小、外廓尺寸与质量限制等。
(4) 经济性与成本等方面的要求。 只有明确了设计要求及工作环境,才能使设计的系统不仅满足性能要求,且具有较高 的可靠性、良好的空间布局及造型。
第 9 章 液压传动系统的设计计算
液压系统设计步骤如下: (1) 明确液压系统的设计要求及工况分析。 (2) 主要参数的确定。 (3) 拟定液压系统原理图,进行系统方案论证。 (4) 设计、计算、选择液压元件。 (5) 对液压系统主要性能进行验算。 (6) 设计液压装置,编制液压系统技术文件。
9.1 液压系统的设计依据和工况分析
9.1.1 液压系统的设计依据
a——加速度;
Δv——Δt 时间内速度的变化量; Δt——启动或制动时间。一般机械系统取 0.1s~0.5s ;行走机械系统取 0.5s~1.5s;
机床运动系统取 0.25s~0.5s;机床进给系统取 0.05s~0.2s。工作部件较轻或
运动速度较低时取小值。
③ 导向摩擦阻力 Ff。摩擦阻力是指液压缸驱动工作机构所需克服的导轨摩擦阻力,其 值与导轨形状、安放位置和工作部件的运动状态有关。
·251·
·252·
液压传动
1) 液压缸的负载计算
一般说来,液压缸承受的动力性负载有工作负载 Fw、惯性负载 Fm、重力负载 Fg,约
束性负载有摩擦阻力 Ff、背压负载 Fb、液压缸自身的密封阻力 Fsf。即作用在液压缸上的外
负载为
F = ±Fw ± Fm ± Ff ± Fg ± Fb ± Fsf
·251·
9.1.2 液压系统的工况分析
工况分析的目的是明确在工作循环中执行元件的负载和运动的变化规律,它包括运动 分析和负载分析。
1. 运动分析
运动分析就是研究工作机构根据工艺要求应以什么样的运动规律完成工作循环、运动 速度的大小、加速度是恒定的还是变化的、行程大小及循环时间长短等。为此必须确定执 行元件的类型,并绘制位移―时间循环图或速度―时间循环图。
液压执行元件的类型可按表 9-l 进行选择。
表 9-1 液压执行元件的类型
名称 双杆活塞缸
单杆活塞缸
柱塞缸 摆动缸 齿轮、叶片马达 轴向柱塞马达 径向柱塞马达
特点
应用场合
双向输出力、输出速度一样,杆受力状态一样
双向工作的往复运动
双向输出力、输出速度不一样,杆受力状态不同。差 往复不对称直线运动
动连接时可实现快速运动
第 9 章 液压传动系统的设计计算
液压传动系统是机械设备动力传动系统,因此,它的设计是整个机械设备设计的一部 分,必须与主机设计联系在一起同时进行。一般在分析主机的工作循环、性能要求、动作 特点等基础上,经过认真分析比较,在确定全部或局部采用液压传动方案之后才会提出液 压传动系统的设计任务。
液压系统设计必须从实际出发,注重调查研究,吸收国内外先进技术,采用现代设计 思想,在满足工作性能要求、工作可靠要求的前提下,力求使系统结构简单、成本低、效 率高、操作维护方便、使用寿命长。