九年级数学教学大纲

合集下载

湘教版九年级上册数学教学大纲(8篇)

湘教版九年级上册数学教学大纲(8篇)

湘教版九年级上册数学教学大纲(8篇)第一篇:教学目标一、知识与技能1. 掌握实数、代数式、方程、不等式、函数等基本概念及其相互关系。

2. 学会运用实数、代数式、方程、不等式、函数等知识解决实际问题。

3. 掌握平面几何、立体几何的基本知识和解题方法。

4. 了解概率统计的基本概念和方法,学会运用概率统计解决实际问题。

二、过程与方法1. 培养学生的逻辑思维能力、抽象思维能力、创新能力和解决实际问题的能力。

2. 学会运用数学知识和方法分析问题、解决问题。

3. 培养学生的团队合作精神、交流与表达能力。

三、情感、态度与价值观1. 培养学生对数学学科的兴趣和好奇心,激发学生的学习热情。

2. 培养学生勇于探索、坚持真理的精神。

3. 培养学生面对困难,积极进取,克服困难的精神。

第二篇:教学内容一、实数与代数式1. 实数的概念、分类和性质。

2. 代数式的概念、运算和应用。

二、方程和不等式1. 方程的概念、解法和应用。

2. 不等式的概念、解法和应用。

三、函数1. 函数的概念、性质和图像。

2. 一次函数、二次函数、反比例函数的定义、性质和图像。

四、平面几何1. 点、线、面的基本概念和性质。

2. 平行线、相交线、三角形、四边形、圆的性质和应用。

五、立体几何1. 空间点、线、面的基本概念和性质。

2. 平面与平面、直线与直线、直线与平面、平面与立体的位置关系。

3. 三角形、四边形、圆柱、圆锥、球的性质和应用。

六、概率统计1. 随机事件的概念和性质。

2. 概率的计算方法和应用。

3. 统计量的概念和计算方法。

第三篇:教学方法与手段1. 采用问题驱动、案例教学、小组合作等教学方法,激发学生的学习兴趣,培养学生的自主学习能力。

2. 利用多媒体教学手段,如PPT、网络资源等,提高教学效果,增加学生的学习兴趣。

3. 注重启发式教学,引导学生主动思考,提高学生的逻辑思维能力和创新思维能力。

第四篇:教学评价1. 采用课堂问答、作业批改、测验考试等多种评价方式,全面评价学生的知识与技能掌握情况。

初三数学课程大纲

初三数学课程大纲

初三数学课程大纲一、引言数学是一门系统研究数量、结构、变化以及空间关系等的学科,它是一门综合性强、实用性广的学科。

初中数学课程作为学生数学素养的基础,对学生的思维能力、逻辑思维以及问题解决能力的培养起着重要作用。

本大纲将详细介绍初三数学课程的教学目标与内容、教学方法以及考核方式。

二、教学目标1.知识与技能目标:掌握初中数学的基本概念、基本技能与基本方法;熟练运用基本概念、基本技能与基本方法解决与学习内容相关的实际问题。

2.过程与方法目标:培养学生良好的数学思维习惯和工作方法;培养学生观察问题、分析问题、解决问题的能力;培养学生自主学习、协作学习的能力。

3.情感态度及价值观目标:培养学生数学学科兴趣,增强数学学科的学习动机;培养学生正确认识数学的价值,形成积极向上、勇于思考的数学学习态度。

三、教学内容1.数与式1.1 整数的加减乘除1.2 分数的加减乘除1.3 百分数的应用2.代数与方程式2.1 一元一次方程与方程应用2.2 相似与相等2.3 等腰三角形与等边三角形3.图形的认识与计算3.1 多边形的认识与计算3.2 圆的计算3.3 根据图形问题制表和绘图4.测量4.1 长度与时间的计算4.2 面积与体积的计算4.3 平面角的计算5.统计与概率5.1 平均数的计算与一致情形5.2 统计调查与简单统计资料的整理与分析5.3 简单事件的概率与算法四、教材与参考资料1.教材:《初中数学》第三册2.参考资料:《初中数学课程标准》五、教学方法1.课堂讲授:通过教师讲解,引导学生了解数学概念、技能和方法。

2.示范演算:教师通过示范演算、引导学生模仿并练习,提高学生的解题能力。

3.问题导入:教师通过设计启发性问题,激发学生的学习兴趣和思维能力。

4.讨论合作学习:组织学生进行小组合作学习,互相交流,共同解决问题。

5.实践操练:组织学生通过实际问题的探索和解决,培养学生的实践能力。

六、考核方式1.日常作业与练习2.单元测试3.期中考试4.期末考试七、总结初三数学课程大纲是指导教师开展数学教学的重要依据,它明确了教学目标与内容,规范了教学方法与考核方式。

初中数学人教版教学大纲

初中数学人教版教学大纲

初中数学人教版教学大纲第一部分:教学大纲概述一、教学目标1. 知识与技能:(1)掌握有理数、实数的概念和运算法则;(2)熟练运用代数式、方程、不等式解决实际问题;(3)掌握几何图形的基本性质、判定方法及应用;(4)理解函数的概念、性质、图像,并能解决简单的实际问题;(5)掌握概率初步知识,了解统计的基本方法。

2. 过程与方法:(1)培养学生运用数学语言进行表达、交流、合作的能力;(2)培养学生分析问题、解决问题的能力;(3)培养学生逻辑思维、空间想象和数学运算能力;(4)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)激发学生学习数学的兴趣,增强学习数学的自信心;(2)培养学生严谨、细致、踏实的科学态度;(3)培养学生合作交流、勇于探索的精神;(4)使学生认识到数学在科技、经济、社会等方面的价值。

二、教学内容1. 有理数与实数:(1)有理数的概念、分类、运算法则;(2)实数的概念、分类、运算法则;(3)实数与数轴的关系。

2. 代数式:(1)整式的概念、分类、运算法则;(2)分式的概念、分类、运算法则;(3)代数式的化简、求值、因式分解。

3. 方程与不等式:(1)一元一次方程、一元二次方程的解法;(2)不等式的性质、解法;(3)方程与不等式在实际问题中的应用。

4. 几何图形:(1)三角形、四边形、圆的基本性质、判定方法;(2)相似、全等图形的判定与性质;(3)勾股定理、解直角三角形。

5. 函数:(1)函数的概念、性质、图像;(2)一次函数、二次函数的解析式、性质、图像;(3)函数在实际问题中的应用。

6. 概率初步:(1)概率的概念、计算方法;(2)事件的独立性、互斥性;(3)概率在实际问题中的应用。

7. 统计:(1)数据的收集、整理、描述;(2)平均数、中位数、众数的计算;(3)频数分布、频数分布表、频率分布直方图。

三、教学安排1. 有理数与实数:1课时;2. 代数式:2课时;3. 方程与不等式:3课时;4. 几何图形:4课时;5. 函数:5课时;6. 概率初步:2课时;7. 统计:2课时。

数学鲁教版九年级上学期教学大纲

数学鲁教版九年级上学期教学大纲

数学鲁教版九年级上学期教学大纲一、教学内容1. 整数的加减乘除2. 分数的四则运算3. 一元一次方程4. 平面直角坐标系5. 相交线和平行线的性质6. 三角形的性质7. 相似三角形8. 分析与统计二、教学目标1. 掌握整数加减乘除的基本运算方法和技巧,能够灵活运用于实际问题中。

2. 理解分数的概念,能够进行分数的加减乘除运算,并能将分数与整数相互转换。

3. 理解一元一次方程的概念,能够解一元一次方程并应用于实际问题中。

4. 理解平面直角坐标系的概念,能够通过坐标系表示点的位置,并进行简单的坐标计算。

5. 掌握相交线和平行线的性质,能够判断两条线是否相交或平行,并应用于解题中。

6. 了解三角形的性质,包括三角形的边长关系、内角和等于180度等,能够运用这些性质解题。

7. 理解相似三角形的概念,能够判断两个三角形是否相似,并应用相似三角形的性质解题。

8. 掌握分析与统计的基本方法,包括数据的收集、整理、表示和分析,能够对某些数据进行统计和分析。

三、教学重点1. 整数的运算和应用。

2. 分数的运算和应用。

3. 一元一次方程的解法和应用。

4. 平面直角坐标系的应用。

5. 相交线和平行线的判断和应用。

6. 三角形的性质和相关定理的应用。

7. 相似三角形的判断和应用。

8. 分析与统计的基本方法和应用。

四、教学方法1. 讲授法:通过讲解理论知识和解题方法,引导学生掌握知识点和技巧。

2. 实践操作法:通过实际问题的解决,让学生运用所学知识解决实际问题,加深理解。

3. 合作研究法:鼓励学生在小组内合作研究,相互交流讨论,提高研究效果。

4. 案例分析法:通过实际例子的分析,让学生理解知识的实际应用,培养问题解决能力。

五、评价方法1. 课堂表现:包括学生的听讲情况、积极回答问题的态度和能力、课堂参与情况等。

2. 作业完成情况:包括课堂练、作业本的完成情况和正确率。

3. 期中、期末考试:通过考试测试学生对知识点的掌握情况和能力。

2024年初中数学最新教学大纲【整理】

2024年初中数学最新教学大纲【整理】

2024年初中数学最新教学大纲【整理】
引言
本文档旨在整理2024年初中数学最新教学大纲,为教师和学生提供参考。

以下是教学大纲的主要内容:
一、课程目标
- 培养学生的数学思维和解决问题的能力
- 培养学生的数学基本概念和基本技能
- 培养学生的数学模型建立和应用能力
- 培养学生的数学沟通和合作能力
二、教学内容
1. 数与代数
- 数的认识和大小比较
- 整数与有理数的加减乘除
- 代数表达式的认识和运算
- 一元一次方程与一元一次不等式的解法
2. 几何与图形
- 角的认识和性质
- 三角形的认识和性质
- 平行线与三角形的关系
- 圆的认识和性质
3. 数据与概率
- 数据的收集和整理
- 数据的统计和分析
- 概率的认识和计算
三、教学方法
- 基于问题的教学:通过引入实际问题,培养学生的解决问题的能力。

- 探究式学习:通过学生自主探索和合作学习,培养学生的数学思维和合作能力。

- 创设情境:通过创设具体情境,激发学生学习兴趣和动力。

四、教学评价
- 统一命题测试:通过命题测试,全面评价学生的数学知识和能力。

- 作业和小组合作:通过作业和小组合作,评价学生的解决问
题和合作能力。

- 学习记录和反思:通过学习记录和反思,评价学生的学习过
程和思维能力。

结论
本文档整理了2024年初中数学最新教学大纲,包括课程目标、教学内容、教学方法和教学评价。

希望本文档能为教师和学生提供
参考,促进数学教学的发展和提高。

初中数学大纲及教案

初中数学大纲及教案

初中数学教学大纲及教案示例如下:一、教学大纲1. 教学目标初中数学教学旨在让学生掌握必要的数学知识,培养学生的逻辑思维、创新意识和解决问题的能力。

通过教学,使学生能够熟练运用数学知识解决实际问题,为高中阶段的学习打下坚实基础。

2. 教学内容初中数学教学内容包括:数与代数、几何、统计与概率、综合与应用四个方面。

(1) 数与代数:有理数、整式、分式、方程、不等式、函数等。

(2) 几何:平面几何、立体几何、几何变换、几何证明等。

(3) 统计与概率:数据收集、数据分析、概率计算等。

(4) 综合与应用:数学阅读、数学建模、数学探究等。

3. 教学方法采用启发式教学、情境教学、分组合作学习等方法,激发学生的学习兴趣,培养学生的动手操作能力和团队合作精神。

4. 教学评价采用课堂表现、作业完成情况、考试成绩等多种方式进行评价,关注学生的全面发展。

二、教案示例课题:勾股定理教学目标:1. 理解勾股定理的表述;2. 学会运用勾股定理解决实际问题;3. 培养学生的逻辑思维和解决问题的能力。

教学内容:1. 介绍勾股定理的发现历程;2. 讲解勾股定理的表述及证明;3. 运用勾股定理解决直角三角形的相关问题。

教学过程:1. 导入:通过讲解古代数学家毕达哥拉斯的故事,引导学生思考勾股定理的发现过程。

2. 新课:介绍勾股定理的表述,讲解勾股定理的证明方法。

3. 练习:让学生运用勾股定理解决一些直角三角形的问题,如求边长、面积等。

4. 拓展:引导学生思考勾股定理在现实生活中的应用,如测量、建筑设计等。

5. 小结:对本节课的主要内容进行总结,强调勾股定理的重要性。

6. 作业:布置一些有关勾股定理的练习题,巩固所学知识。

教学评价:通过课堂讲解、练习题完成情况、学生提问等方式,评价学生对勾股定理的理解和运用能力。

关注学生在解决问题时的思维过程,培养学生的逻辑思维和创新能力。

以上仅为初中数学教学大纲和教案的简要示例,实际教学中需根据学生的实际情况进行调整。

九年级数学上学期课程纲要

九年级数学上学期课程纲要

《九年级数学上学期》课程纲要课程名称:九年级数学(上册)教学材料:北京师范大学出版社义务教育课程标准实验教科书授课时间:50--55课时授课教师:授课对象:九年级课程目标:第一章证明(二)1.掌握综合法的证明方法,结合实例体会反证法的含义.2.了解作为证明基础的几条公理,能够证明与三角形,线段垂直平分线,角平分线等有关性质定理及判定定理.3.能够利用尺规作已知线段的垂直平分线和已知角的平分线;已知底边及底边上的高,能用尺规作出等腰三角形.第二章一元二次方程1.了解一元二次方程及其相关概念,会用配方法,公式法,分解因式法解简单的一元二次方程(数字系数).2.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果合理性.3.经历在具体情境中估计一元二次方程解的过程,发展估算能力.第三章证明(三)进一步掌握综合法的证明方法,能够证明与平形四边形,等腰梯形,矩形,菱形,以及正方形等有关性质定理及判定定理,并能够证明其它相关的结论.第四章视图与投影1.能够判断简单物体的三种视图,能够根据三种视图描述基本几何体或实物原型,实现简单物体与其三种视图之间的相互转化.2.会画圆柱、圆锥、球的三种视图.3.了解中心投影、平行投影、视点、视线、盲区的含义及其简单应用.第五章反比例函数1.体会反比例函数的意义,能根据已知条件确定反比例函数表达式.2.能画出反比例函数的图象,根据图象和解析表达式探索并理解反比例函数的性质.3.能利用反比例函数解决某些实际问题。

第六章频率与概率1.理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的数学模型.2.能运用用树状图和列表法计算简单的事件发生的概率,能用试验或模拟试验的方法估计一些复杂的随机事件发生的概率.课程内容及课时安排课程实施:(一)教学方式:以导学案为载体的课堂教学以明确目标自主学习展示成果教师点拨知识应用小组合作个人展示达标反馈归纳总结布置作业的过程展开1.问题驱动教学.教师创设问题情境,设置问题链,学生生成、探究、交流的问题.2.讲授和训练:精讲精练,少讲多练,及时掌握学情,调整教学.充分利用班班通资源,采用直观演示、启发点拨讲解、师生互动交流、讲练结合等方式进行教学。

初三数学课程大纲

初三数学课程大纲

初三数学课程大纲一、引言初三数学课程大纲旨在为初三学生提供系统、全面的数学学习指导,帮助学生掌握数学基本概念、解题方法和数学思维,为高中数学学习奠定坚实基础。

二、课程目标1. 发展数学思维和解决问题的能力;2. 培养数学学科素养和学习兴趣;3. 掌握基本的数学知识和技能;4. 培养逻辑推理和数学证明的能力;5. 建立正确的数学价值观念和学习态度。

三、课程内容1. 数的认识与应用1.1 自然数、整数、有理数和实数的认识及其加减乘除运算;1.2 百分数、比例与比例方程;1.3 分数与分数方程;1.4 负数与负数的运算。

2. 代数的认识与应用2.1 代数基本概念与代数式的计算;2.2 一元一次方程与解方程的基本方法;2.3 一元一次不等式与解不等式的基本方法;2.4 二次根式与二次方程及应用。

3. 几何的认识与应用3.1 平面与空间图形的认识;3.2 相似与全等的判定与应用;3.3 三角形与平行线的性质;3.4 圆的性质及相关计算。

4. 统计与概率的认识与应用4.1 统计图及其应用;4.2 数据分析与概率的基本概念;4.3 事件、频率与概率的计算。

四、教学方法1. 创设情境,引发学生兴趣;2. 引导发现,激发求知欲;3. 提供示例,演示解题过程;4. 引导思考,培养逻辑推理能力;5. 多样化的练习,帮助巩固知识。

五、课程评价与考核1. 课堂作业与小测试:用于检测学生对知识的掌握程度和对解题方法的运用能力;2. 平时表现与课堂参与度:用于评估学生的学习态度和合作精神;3. 中期考试和期末考试:用于全面评价学生对数学知识的理解和应用能力。

六、教材参考《初中数学(九年级)》(人教版)、《数学参考书》、《数学习题集》等。

七、教学资源支持1. 使用电子白板、多媒体课件等教具辅助教学;2. 利用互联网资源,提供相关数学学习视频和练习资源;3. 设置数学学习小组,促进学生之间互相交流合作。

八、总结初三数学课程大纲旨在帮助学生掌握数学的基本知识和解题方法,培养学生的数学思维和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章 一元二次方程1. 一元二次方程的定义及一般形式:(1) 等号两边都就是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。

(2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。

其中a 为二次项系数,b 为一次项系数,c 为常数项。

注意:三个要点,①只含有一个未知数;②所含未知数的最高次数就是2;③就是整式方程。

2. 一元二次方程的解法 (1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a +=或者x a +=∴x a =-注意:若b<0,方程无解 (2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0; ②将方程左边分解为两个一次因式相乘的形式; ③令每个因式分别为零,得到两个一元一次方程; ④解这两个一元一次方程,她们的解就就是原方程的解。

(3) 配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤①二次项系数化为1:方程两边都除以二次项系数; ②移项:使方程左边为二次项与一次项,右边为常数项; ③配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。

注意:当0n <时,方程无解 (4) 公式法:一元二次方程20(0)ax bx c a ++=≠ 根的判别式:24b ac ∆=-0∆>⇔方程有两个不相等的实根:x =(240b ac -≥)⇔()f x 的图像与x 轴有两个交点0∆=⇔方程有两个相等的实根⇔()f x 的图像与x 轴有一个交点0∆<⇔方程无实根⇔()f x 的图像与x 轴没有交点3. 韦达定理(根与系数关系)我们将一元二次方程化成一般式ax 2+bx+c =0之后,设它的两个根就是1x 与2x ,则1x 与2x 与方程的系数a,b,c 之间有如下关系:1x +2x =b a -; 1x •2x =c a4、一元二次方程的应用列一元二次方程解应用题,其步骤与二元一次方程组解应用题类似 ①“审”,弄清楚已知量,未知量以及她们之间的等量关系; ②“设”指设元,即设未知数,可分为直接设元与间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。

④“解”就就是求出说列方程的解;⑤“答”就就是书写答案,检验得出的方程解,舍去不符合实际意义的方程。

注意:一元二次方程考点:定义的考察;解方程及一元二次方程的应用。

第二十二章 二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,就是常数,0a ≠)的函数,叫做二次函数。

强调:与一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域就是全体实数.2、 二次函数2y ax bx c =++的结构特征:⑴ 等号左边就是函数,右边就是关于自变量x 的二次式,x 的最高次数就是2. ⑵ a b c ,,就是常数,a 就是二次项系数,b 就是一次项系数,c 就是常数项. 二、二次函数的基本形式1、 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质:上加下减。

3. ()2y a x h =-的性质:左加右减4. ()2y a x h k =-+的性质:5.二次函数的图象与性质附图如下:a 的符号 开口方向 顶点坐标 对称轴 性质0a > 向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x的增大而减小;x h =时,y 有最小值k .0a < 向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x的增大而增大;x h =时,y 有最大值k .函数的图象图象特点函数性质①当a>O 时向上无限伸展; 当a<O 时向下无限伸展. ①自变量x 的取值范围就是全体实数.②a>O 时开口向上; a<O 时开口向下;顶点为(-ab 2,a b ac 442-).②a>O 时,当x=-ab2时, y 有最小值为ab ac 442-;a<O 时,当x=-ab2时, y 有最大值为ab ac 442-.③对称轴为x=-ab 2, a>O 时, 对称轴左侧图象从左到右下降,对称轴右侧图象从左到右上升;③a>O 时,当x<-ab2时, y 随x 的增大而减小;当x>-ab 2时,y 随x 的增大而增大;a<O 时,当x<-ab2时,三、二次函数图象的平移 1、 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2、 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上瞧,()2y a x h k =-+与2y ax bx c =++就是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图、一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点)、画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点、 六、二次函数2y ax bx c =++的性质1、 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2、 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a>-时,y 随x 的增大而减小; 当2bx a =-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1、 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2、 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3、 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 就是抛物线与x 轴两交点的横坐标)、 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化、 八、二次函数的图象与各项系数之间的关系1、 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小与方向,a 的正负决定开口方向,a 的大小决定开口的大小.2、 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 3、 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1、已知抛物线上三点的坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4、已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1、关于x轴对称2=---;y ax bx c=++关于x轴对称后,得到的解析式就是2y ax bx c()2=---;y a x h k=-+关于x轴对称后,得到的解析式就是()2y a x h k2、关于y轴对称2=-+;y ax bx c=++关于y轴对称后,得到的解析式就是2y ax bx c()2=++;y a x h k=-+关于y轴对称后,得到的解析式就是()2y a x h k3、关于原点对称2=-+-;y ax bx c=++关于原点对称后,得到的解析式就是2y ax bx c()2y a x h k =-+关于原点对称后,得到的解析式就是()2y a x h k =-+-;4、 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式就是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式就是()2y a x h k =--+. 5、 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式就是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上就是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 十、二次函数与一元二次方程:1、 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=就是二次函数2y ax bx c =++当函数值0y =时的特殊情况、 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,就是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点、1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2、 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3、 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2=++中a,b,c的符号,或由二次函y ax bx c数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求与已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标、⑸与二次函数有关的还有二次三项式,二次三项式2(0)++≠本身就就是所含字母ax bx c aa>时为例,揭示二次函数、二次三项式与一元二次方程之间的内在x的二次函数;下面以0联系:十一、实际问题与二次函数1.利用二次函数求几何图形面积的最值问题2.利用二次函数求最大利润问题3.建立适当的坐标系解决实际问题4.利用二次函数解决图形运动问题第二十三章旋转一、图形的旋转1、图形旋转有关的概念2、旋转的性质及其应用3、图形旋转的作图步骤4、旋转、平移与轴对称的异同点5、利用旋转巧添辅助线解题6、旋转问题中的常见图形二、中心对称1.中心对称的概念2.中心对称的性质3.中心对称的作图方法4.中心对称图形5.关于原点对称的点的坐标6.中心对称与中心对称图形的区别与联系7.对称图形在平面直角系中的综合应用第二十四章圆一、圆的概念集合形式的概念: 1、圆可以瞧作就是到定点的距离等于定长的点的集合;2、圆的外部:可以瞧作就是到定点的距离大于定长的点的集合;3、圆的内部:可以瞧作就是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

相关文档
最新文档