电液控系统优点

合集下载

煤矿液压支架电液控制系统

煤矿液压支架电液控制系统

系统软件设计
操作系统
采用嵌入式操作系统,如Linux 或RTOS,实现多任务管理和调
度。
编程语言
采用C或C语言进行编程,实现控 制算法和逻辑运算。
人机界面
采用触摸屏或上位机界面,实现 用户与系统的交互。
系统实现的关键技术
实时性
系统需要实时响应液压支架的状态变化,因此需要采用实时操作 系统和优化算法。
煤矿液压支架电液控制系统
汇报人: 日期:
目录
• 煤矿液压支架电液控制系统概述 • 煤矿液压支架电液控制系统的组成与工作原理 • 煤矿液压支架电液控制系统的功能与优点 • 煤矿液压支架电液控制系统的设计与实现 • 煤矿液压支架电液控制系统的调试与测试 • 煤矿液压支架电液控制系统的应用实例与效果分

对系统的各项性能指标进行测试,如响应时间、精度等;
测试方法与数据分析
对系统的稳定性和可靠性进行测试。 对测试数据进行记录和分析,评估系统性能;
数据分析 对测试结果进行总结和评价,提出改进意见。
系统优化建议与改进方向
系统优化建议 根据实际需求调整控制逻辑,优化系统性能;
采用更先进的传感器、执行器等部件,提高系统性能;
传感器
04
电液阀组
由多个液压阀组成,用于控制支架的升降、 推拉等动作。其中,主控阀是核心元件,根 据电信号控制阀门的开启和关闭;单向阀用 于保持液压缸内的压力;安全阀用于防止过 载和溢流。
监测支架的状态和位置,将信号反馈给控制 器。例如,压力传感器监测液压缸内的压力 ;位置传感器监测支架的位置。
泵站
初始阶段
早期的煤矿液压支架电液控制 系统主要依赖于进口设备,国
内研发能力较弱。
发展阶段

电液伺服控制系统

电液伺服控制系统

组成电液比例控制系统的基本元件: 1)指令元件 2 比较元件 3 电控器 4 比例阀 5 液压执行器 6 检测反馈元件
第6章 电液伺服控制系统
4
6.1 概述
6.1.2 电 液 比 例 控 制 系 统 的 特 点 及 组成
第6章 电液伺服控制系统
5
6.1 概述
电液比例控制的主要优点是: 1)操作方便,容易实现遥控 2 自动化程度高,容易实现编程控制 3 工作平稳,控制精度较高 4 结构简单,使用元件较少,对污染不敏感 5 系统的节能效果好。
6.功率放大级
功率放大级式比例控制放大器的 核心单元。由信号放大和功率驱动电路 组成。
根据功率放大级工作原理不同,分 为:模拟式和开关式。
第6章 电液伺服控制系统
29
6.3 电液比例电控技术
(1)模拟式功率放大级
第6章 ห้องสมุดไป่ตู้液伺服控制系统
30
6.3 电液比例电控技术
(2)开关式功率放大级
第6章 电液伺服控制系统
比例放大器根据受控对象、功率级工作原理不同,分为: 1 单路和双路比例控制放大器 2 单通道、双通道和多通道比例控制放大器 3 电反馈和不带电反馈比例控制放大器 4 模拟式和开关式比例控制放大器 5 单向和双向比例控制放大器 6 恒压式和恒流式比例控制放大器
第6章 电液伺服控制系统
16
6.3 电液比例电控技术
第6章 电液伺服控制系统
18
6.3 电液比例电控技术
第6章 电液伺服控制系统
19
6.3 电液比例电控技术
2.输入接口单元 (1)模拟量输入接口
2 数字量输入接口 3 遥控接口
第6章 电液伺服控制系统
20

机电一体化——电液控制系统设计

机电一体化——电液控制系统设计

6.电液控制系统设计6.1概述电液控制系统是常用机电一体化系统之一。

它是将计算机电控和液压传动结合在一起,既发挥了计算机控制或电控制技术的灵活性,又体现了液压传动的优势,充分显示出大功率机电控制技术的优越性。

电液控制系统的种类很多,可以从不同的角度分类,而每一种分类方法都代表一定的特征:1)根据输入信号的形式和信号处理手段可人为数字控制系统、模拟控制系统、直流控制系统、电液开关控制系统。

2)根据输入信号的形式和信号处理手段可分为数字控制系统、模拟控制系统、直流控制系统、交流控制系统、振幅控制系统、相位控制系统。

3)根据被控量的物理量的名称可分为置控制系统、速度控制系统、力或压力控制系统等。

4)根据动力元件的控制方式可分为阀控系统和泵控系统。

5)根据所采用的反馈形式可分为开环控制系统、闭环系统和半闭环控制系统。

本章主要介绍电液控制系统的组成、控制元件,系统数字模型以及系统的设计。

6.2电液控制元件电液控制元件主要包括电液伺服阀、电液比例阀、电液数字阀以及由数字阀组成的电液步进缸、步进马达、步进泵等。

它胶是电液控制系统中的电-液能量转换元件,也是功率放大元件,它能够将小功率的电信号输入转换为大功率的液压能(流量与压力)或机械能的输出。

在电液控制系统中,将电气部分与液压部分连接起来,实现电液信号的转换与放大,主要有电液伺服阀、电液比例阀、电液数字阀以及各种电磁开关阀等。

电液控制阀是电液控制系统的核心,为了正确地设计和使用电液控制系统,就必须掌握不同类型电液控制阀的原理和性能。

6.2.1控制元件的驱动6.2.1.1电气—机械转换器电气—机械转换器有“力电机(马达)”、“力矩电机(马达)”以及直流伺服电动机和步进电动机等,它将输入的电信号(电流或电压)转换为力或力矩输出,去操纵阀动作,推行一个小位移。

因此,电气-机械转换器是电液控制阀中的驱动装置,其静态特性和动态特性在电液控制阀的设计和性能中都起着重要的作用。

液压支架电液控制系统概述

液压支架电液控制系统概述

3、加快动作速度
4、提高对复杂地质条件的适应能力,扩大适 用范围。
BG
12
(1)降低成本
目前支架电液控制生产批量不大,标准化程度 低,工艺要求和生产成本较高,影响其大量 推广。 因此降低成本,尤其是传惑器、控制装置和 电磁阀等关键元部件,是今后面临的重要问 题。
BG
13
(2)提高可靠性
由于井下作业环境和维修困难,要求发展 可靠性高的元部件。
BG
22
操纵阀
带压移架
节 流 孔(立柱上 下腔乳化液压力相等)
立柱
控制阀 推移千斤顶 支撑保持阀
BG
系统自动适应煤层厚度的变化。
如果煤层变薄,顶板压力通 过活塞杆使立柱下腔压力升 高,打开支撑保持阀进行回 液,立柱就降低,直到立柱 下腔压力与支撑保持阀整定 压力相等为止。
如果煤层变厚,立柱 支撑力推活柱上升,高 压乳化液通过节流孔补 入立柱下腔,从而保证 顶梁始终与顶板接触, 移架时,使顶板受到一
按阀芯在阀体内的工作位置可分为二位、 三位、四位等。
按操作阀芯运动的方式可分为手动、机动、 电磁动、液动、电液动等。
利用电磁铁推动阀
芯来控制液流方向
的。操作轻便,容 易实现自动化操作。BG
三位四通阀
25
保证初撑力
对于坚硬顶板,①导致顶板下沉 增大,造成煤壁处切顶或漏顶;② 导致顶板来压对支架产生动负荷, 形成冲击压力,恶化了支架的工况。 ③支架与顶、底板ห้องสมุดไป่ตู้摩擦力小,冲 击载荷瞬间作用于推移系统和输送 机上,造成支架推移系统损坏。
例如:
①发展无接触式传感器,装在油缸内,受到 保护免受机械损坏和磨损。
②压力传感器要提高抗干扰能力,过载保护, 阀门和电子元器件要有足够的使用寿命和 抗污染能力。

电液伺服控制系统概述

电液伺服控制系统概述

电液伺服控制系统概述摘要:电液伺服控制是液压领域的重要分支。

多年来,许多工业部门和技术领域对高响应、高精度、高功率——重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。

特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在原件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。

目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。

关键词:电液伺服控制液压执行机构伺服系统又称随机系统或跟踪系统,是一种自动控制系统。

在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。

液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。

一、电液控制系统的发展历史液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构——水钟。

而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。

18世纪出现了泵、水压机及水压缸等。

19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。

第二次世界大战期间及战后,电液技术的发展加快。

出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。

20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。

这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。

电液伺服驱动器也被用于空间运载火箭的导航和控制。

电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。

在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。

液压支架电液控制系统在煤矿采煤工作面中的应用

液压支架电液控制系统在煤矿采煤工作面中的应用

液压支架电液控制系统在煤矿采煤工作面中的应用发布时间:2021-12-08T01:46:38.464Z 来源:《科学与技术》2021年第7月19期作者:刘杰[导读] 随着煤矿行业技术水平的不断提高,液压支架电液控制系统已被广泛应用于实现综采工作面的自动化生产管理和自动控制。

液压支架电液控制系统不仅可以提高支架的移动速度和操作灵活性,刘杰科兴煤炭实业有限责任公司新疆阿克苏地区库车市 842000摘要:随着煤矿行业技术水平的不断提高,液压支架电液控制系统已被广泛应用于实现综采工作面的自动化生产管理和自动控制。

液压支架电液控制系统不仅可以提高支架的移动速度和操作灵活性,还可以实现综采工作面支架的无人或少人操作和远程控制,有效保障操作人员的生命财产安全。

研究表明,液压支架电气工控系统能够取得良好的检测和控制效果,从而保证综采工作面在监督期间的工作状态,进而保证矿山建设的顺利进行。

鉴于此,本文结合作者多年的工作经验,对煤矿液压支架电液控制系统的应用提出了一些建议,仅供参考。

关键词:煤矿;液压支架电液控制系统;应用当前,液压支架电液控制系统是液压支架最先进的控制方式,它集成了机械、液压、电子、计算机、通信网络等技术,是一种技术含量高、难度大,用于煤矿井下的井下高新技术产品。

液压支架电液控制系统不仅能自动控制液压支架的动作,还能实现液压支架的邻架或远程控制。

此外,还可对工作面液压支架进行监控,使液压支架与其他采煤设备配合,实现高效采煤。

一、液压支架电液控制系统的概述液压支架控制的传统方式是用手动操纵阀直接切换被控液压缸的主液路。

手动操纵阀伴随液压支架的发展历程,技术已十分成熟。

但随着综采工作面向高产高效的更高目标迈进,手动操纵阀控制方式的不足之处就愈显突出了。

速度较慢,效率不高,操作劳动量大,支架动作难以规范,安全保障手段欠缺等都是手动液压控制本身的局限。

手动阀的邻架操作会导致管路布置繁乱,手动阀控制更无法实现自动化,要实现进一步高产高效的目标,支架的控制这一环节也必须有新的突破,使支架的动作与工作面装备能力及生产过程的效率相适应。

液压支架电液控制系统概述

液压支架电液控制系统概述

根据国外估计,今后主要会发展分散式单架 控制系统,提高适应性,加强编程,数据采 集处理、显示和通讯的能力。例如控制程序 可远距离装入或修改。使电液控制系统的程 序适应不同的地质条。
请大家提出宝贵意见
优点1---保证额度初撑力
保证液压支架额定初撑力,电液控制系统可 以通过压力传感器反馈信号或通过延长控制 电磁先导阀的供电时间来实现支架初撑力自 保。保证额定初撑力,减少了立柱的增阻所 需时间,提高了支护效率,而且全工作面支 架初撑力均匀一致,改善了顶板的管理。
注:德国的PM4电液控制系 统初撑力保证功能就是这样实现的
优点2—带压移架
采用电液控制系统,在移架过程中,易于实 现带压移架,减少了工作面顶板对液压支架 产生频繁的冲击载荷,保护顶板围岩的稳定, 延长液压支架的使用寿命。
优点3—改善采煤机与刮板机的工况
移架步距准确,切顶线整齐,改善了支护效 果,并且使刮板输送机和整个工作面直线性 好,采煤机截深准确。改善了刮板输送机和 采煤机的工况。另外多架同时推溜,使刮板 输送机缓慢弯曲,避免溜槽连接处产生过大 的应力。
压力传感器
主控阀
来 自 泵 站
先导阀
电 控 箱
● ● ●
左 邻 架



右 邻 架
来自电源箱
电磁先导阀的动作
①系统正常工作——靠 电磁线圈的吸力 ②系统异常——直接按 压推杆的外端,推杆带动 先导阀芯动作
杆外端封有胶护罩,供手动按压。 在停电、电控系统有故 障或其 他临时不使用电控系统的情况下, 作为应急操作,可直接按推杆使 先导阀动作,但不允许经常这样 操作,因为易导致损坏。
电液控制系统的发展方向
1、降低成本
2、提高可靠性 3、加快动作速度 4、提高对复杂地质条件的适应能力,扩大适 用范围。

液压支架电液控制系统原理及应用

液压支架电液控制系统原理及应用

(3)承载恒阻阶段:随着顶板压力的进 一步增加,立柱下腔的液体压力越来越高 。由于安全阀的作用,支架的支撑力维持 在某一恒定数值上.
(4)降柱移架阶段:随工作面的推进,支 架需要前移。移架前 需要将支架的立柱 卸载收缩,使支架撤出支撑状态.
液压支架工作特性曲线 :横坐标表示时间,纵坐 标 表 示 支 撑 力 。 t0 、 t1 、 t2 、 t3 分 别 表 示 支 架 的 初 撑、增阻、恒阻和卸载降 柱、移架阶段.
电液控制系统的技术核心是,通过电液阀 将过去人工控制操作变为由计算机程序控 制的电子信号操作,液压支架不同位置的 传感器将工作环境和不同状态的信号传输 给计算机,计算机将根据不同的工作状态 和工艺的要求,对电液阀发出控制信号, 达到对工作面设备进行控制的目的。
上个世纪80年代初德国、英国开始研究液压 支架电液控制技术。80年代中期进行了产品的井 下小批量实验。80年代末期开始在全工作面液压 支架上使用,并达到成熟和广泛运用的程度。在 地质条件较优越的美国和澳大利亚,其长壁采煤 工作面的液压支架几乎全部采用电液控制系统。
电液控制系统的功能
(1) 本架单动和降升移组合动作的控制。 (2) 双向单动和降移升组合动作邻架控制; (3) 双向多架单动和降移升组合动作的成组控制; (4) 双向采煤机位置和按键自动控制; (5) 全工作面支架立柱压力的自动检测和初撑力自
保升柱的自动控制; (6) 支架升柱、降柱、推溜、移架动作和系统通信
电液阀市场情况
当今的电液阀市场中,主要以德、美两国为主, 其中DBT、德国MARCO与美国JOY等公司的产 品在市场上有极高的占有率,以及蒂芬巴赫、 OHE 等。主要代表产品有:DBT的直动平面塑 料密封的电磁先导阀,德国MARCO的放大杠杆 推动的陶瓷密封结构电磁先导阀以及美国JOY公 司的直动式陶瓷密封结构电磁先导阀。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电液控系统优点 Last updated on the afternoon of January 3, 2021
液压支架的电液控制系统:
1304工作面液压支架采用蒂芬巴赫ASG 5 型电液控制系统,以实现单架手动动作、单架自动动作、成组自动动作和跟机自动动作,实现地面通讯和远程监测。

电液控制系统含主阀、支架控制器、电源、压力传感器、位移传感器、红外线接收器、顺槽主控计算机、数据通讯装置。

支架所配置的电液控制系统能完成支架的各种动作功能。

它和手动控制系统相比有以下优点:
(1)单台或成组支架“降、移、升”工作循环自动控制,可实现成组自动移架和推溜,又可实现本架、邻架的手动、自动操作,并具有工作面支架集中控制功能。

(2)自动控制顶梁喷雾装置。

当采煤机通过时,分别与采煤机前后滚筒相对应的两台支架的顶梁喷雾装置开始(电液控程序已可以实现)。

(3)电液主控阀组在电气故障处于修理状态时,可以直接手动操作阀组,实现支架的各种单动作操作。

(4)可实现成组自动移架和推溜,又可实现本架、邻架的手动、自动操作,并具有工作面支架集中控制功能。

(5)数据监测和传输方式:通过压力传感器和位移传感器监测工作面支架的立柱下腔压力和推移行程,通过安装在采煤机上的红外线发射器和安装在支架上的红外线接收器监测采煤机的位置和方向。

支架与采
煤机的运行状态和数据可以传输到巷道中主控制台和地面中央控制中心便于实现整个矿井的自动化管理。

(6)电液控制系统设有语音报警、急停、本架闭锁及故障自诊断显示功能,并方便的进行人工手动操作。

急停装置:控制器内有“急停按钮”。

当工作面发生可能危及安全生产的紧急情况,需要立即停止或禁止工作面支架的自动动作时,可按压任意一个支架控制器上的紧急停止按钮,全工作面支架动作立即停止,并在急停解除前自动控制功能被禁止。

闭锁开关:控制器配置有“闭锁开关”。

当某台支架出现故障,或需要修理时,按下该支架的闭锁开关,该支架停止动作,以便操作维修人员进行故障处理;
(7)自动补压功能:煤矿井下综采工作面,液压支架在支撑中若因某种原因发生压力降落,当压力降至某一设定值时,系统具备自动执行升柱,补压到规定压力的功能,并可执行多次,保证支护质量。

如多次补压后立柱压力仍未达到规定值,但已达到规定补压次数后,即为补压失败,系统报警。

使用过程中出现的故障:
1、支架电液控制系统对水质精密度要求高,1304工作面安装调试过程中,由于支架管路里有杂物,堵塞电液控制系统的电磁阀,导致支架无法操作。

2、电液控制系统支架控制器程序易丢失,现1304工作面有两架支架控制器程序丢失,邻架程序无法传送至本架厂家正处理,但不影响手动操作支架。

3、由于开关列出出轨,电液控制系统的顺槽电缆(SKK28-20m)损坏,导致顺槽控制台的主机无法连接支架控制器,无法定位采煤机位置,所以电液控制系统随采煤机自动喷雾无法实现。

相关文档
最新文档