垂直于弦的直径知识点总结
九年级数学垂直于弦的直径

在机械制造中应用
机械制造中的轴心定位
在机械制造中,垂直于弦的直径原理可用于轴心的定位。通过确保轴心与某个参考平面垂直,可以确保机械部件 的精确运动和定位。
机械制造中的切削工具设计
在切削工具的设计中,垂直于弦的直径可用于确定切削刃的角度和形状。这有助于确保切削工具在加工过程中能 够准确地去除材料,并获得所需的表面质量和精度。
九年级数学垂直于弦的直径
目
CONTENCT
录
• 垂直于弦的直径基本概念与性质 • 垂直于弦直径在圆中位置关系 • 垂直于弦直径判定方法 • 垂直于弦直径在几何证明中应用 • 垂直于弦直径在解决实际问题中应
用 • 总结回顾与拓展延伸
01
垂直于弦的直径基本概念与性质
定义及性质介绍
01
定义:垂直于弦的直径是指一 个圆的直径,它垂直于给定弦
80%
问题三
探讨垂径定理在解决实际问题中 的应用,如建筑设计、工程测量 等领域中如何利用垂径定理进行 计算和测量。
THANK YOU
感谢聆听
03
D、∵AB是⊙O的直径,AB⊥CD,∴DE=CE,故本选项正确;
04
故选C.
03
垂直于弦直径判定方法
利用垂径定理判定
垂径定理
垂直于弦的直径平分该弦,并且平分该弦所对的两条弧。
判定方法
若一条直径垂直于弦,则该直径平分该弦,且平分该弦所对的两条弧。因此, 我们可以通过观察图形或计算来验证这一条件,从而判断一条直径是否垂直于 弦。
解析
连接AC、FC,由于AB是⊙O的直径且AB⊥CD, 根据垂径定理可知弧AC=弧AD。因此, ∠AFC=∠ACF。又因为∠GFC是弧AC所对的圆周角, ∠ACF是弧AD所对的圆周角,所以∠GFC=∠ACF。 因此,∠AFD=∠GFC。
垂直于弦的直径

垂直于弦的直径简介在数学几何中,弦是圆上的线段,而直径是连接圆的两个点的线段,且经过圆心。
垂直于弦的直径指的是与弦互相垂直的直径。
本文将介绍垂直于弦的直径的性质和相关定理。
垂直于弦的直径的性质1.垂直性质:垂直于弦的直径与弦互相垂直。
也就是说,如果一条直径与一个弦相交,并且与这个弦的交点互相垂直,那么这条直径就是垂直于该弦的直径。
2.关于圆心的性质:垂直于弦的直径通过圆心。
由弦的性质可知,连接弦的两个端点和圆心的线段形成一个三角形,而垂直于弦的直径正好是这个三角形的高。
3.长度性质:垂直于弦的直径是所有以弦为直径的圆中最长的直径。
垂直于弦的直径的定理1.定理一:垂直于弦的直径平分弦如果一条直径垂直于计圆的一条弦,那么这条直径将会平分该弦。
即弦的两个端点到直径上的交点的距离相等。
2.定理二:以垂直于弦的直径为直径的圆相切于弦以垂直于弦的直径为直径的圆和原有的圆相切于弦的两个端点。
这意味着,以垂直于弦的直径为直径的圆与原有圆恰好有一个公共的切点。
3.定理三:垂直于弦的直径经过圆心垂直于弦的直径经过圆心,也就是说,垂直于弦的直径的两个端点和圆心三个点共线。
应用举例应用一:判定两条弦是否垂直对于给定的两条弦,如果它们的交点和圆心三点共线,那么这两条弦就垂直。
应用二:平分弦当我们需要将一条弦平分为两段时,可以通过构造垂直于弦的直径来实现。
只需在弦的中点上构造垂直于弦的直径,即可将弦平分为两段。
结论垂直于弦的直径在圆的几何性质中扮演着重要的角色。
它具有许多有趣的性质和定理,对于解决几何问题有着重要的作用。
通过理解垂直于弦的直径的性质,我们能够更深入地理解圆的几何特征,提升解题的能力。
Markdown文本格式的输出方便阅读和编辑,使得文档的格式整齐简洁。
你可以使用Markdown编辑器或文本编辑器来查看和编辑本文的Markdown代码。
九年级圆垂径定理知识点

九年级圆垂径定理知识点圆垂径定理是数学中的一个重要定理,它是研究圆的性质和应用的基础。
本文将详细介绍九年级圆垂径定理的相关知识点,帮助你更好地理解和应用这一定理。
一、圆垂径定理的概述圆垂径定理是指:在一个圆中,如果一条直径垂直于另一条弦,那么它一定是这条弦的垂直平分线。
二、圆垂径定理的证明为了证明圆垂径定理,我们可以采用几何证明和代数证明两种方法。
1. 几何证明假设圆的中心为O,半径为r,直径AB垂直于弦CD。
我们需要证明AO = BO。
首先,连接AC和BC,并设AC = x,BC = y。
根据圆的性质,我们知道AO = r,BO = r,AC = BC = r。
又因为AO垂直于CD,所以∠ACO = ∠BCO = 90°。
由三角形的性质可知,AO² = AC² - CO²,BO² = BC² - CO²。
代入已知条件,我们可以得到r² = x² - CO²,r² = y² - CO²。
通过这两个等式,我们可以得到x² - CO² = y² - CO²,即x² = y²。
进而,我们可以得知x = y,即AC = BC。
所以,根据直角三角形的特性,AO = BO,也就是说AO = BO = r。
因此,根据圆的定义,我们可以得出圆垂径定理的结论。
2. 代数证明我们也可以采用代数方法证明圆垂径定理。
设圆的方程为x² + y² = r²(其中,O为坐标原点)。
直径AB垂直于弦CD,且AB的斜率k存在。
根据直线的斜率公式,可以得到直线AB的方程为y = kx。
将直线AB的方程代入圆的方程中,我们可以得到x² + (kx)² =r²。
简化这个方程,可以得到x² + k²x² = r²。
24.垂直于弦的直径PPT课件(人教版)

(√ ) (√ ) (×)
轴
经过圆心
中心
圆心
垂直于弦的 直径平分弦,并且平分弦所对的两条弧
垂直
弦所对的两条弧
问题:你知道赵州桥吗?它是1300多年前我国隋代建 造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主 桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主 桥拱的半径吗?
∵AB∥CD,∴ON⊥CD于N
在RtAOM中,AM 5cm,OM OA2 AM2 12cm. 在RtOCN中,CN 12cm,ON OC2 CN 2 5cm.
∵MN=OM-ON,∴MN=7cm. (2)当AB、CD在O点异侧时,如图②所示,
由(1)可知OM=12cm,ON=5cm,MN=OM+ON,
(并2且)平A分M=A(BBM及,AA(DCB=.BC,AD=BD,即直径CD平分弦AB,
这样,我们就得到下面的定理:垂直于弦的直径平分弦, 并且平分弦所对的两条弧。进一步,我们还可以得到结论:平 分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 。
知识点一 垂径定理及其推论
C
知识点一 垂径定理及其推论
通过本节课的学习,我们就会很容易解决这一问题.
探究:1.圆是轴对称图形吗?如果是,它的对称轴是什 么?你能找到多少条对称轴?
分析讨论:圆是轴对称图形,它的对称轴是直径,我能找到 无数多条直径.
探究: 2.你是用什么方法解决上述问题的?与同伴进行 交流.
分析讨论我:是利用沿着圆的任意一条直径折叠的方法解决 圆的对称轴问题的.
.2垂直于弦的直径
判断:
(1)直径是弦.( √ )
(2)弦是直径. ( × )
垂直于弦的直径知识点 垂直于弦的直径教学反思

垂直于弦的直径知识点1. 弦和直径的定义弦:在圆上取两点A和B,并且A、B点都在圆上,这条线段AB称为弦,常用小写字母表示,例如ab。
直径:过圆心O的两个点,构成直径,常用大写字母表示,例如CD。
垂直于弦的直径:当弦ab与直径CD相交时,如果交点E在弦ab的中点上,则直径CD被称为垂直于弦ab的直径。
2. 垂直于弦的直径性质性质1:垂直于弦的直径的两条弦等长当弦ab与直径CD相交,交点E在弦ab的中点上时,有以下性质成立: - AE = BE - CE = DE - 弦ab与直径CD所在的扇形和面积相等性质2:垂直于弦的直径的两条弦垂直于彼此当弦ab与直径CD相交,交点E在弦ab的中点上时,有以下性质成立: -∠AED = 90° - ∠BEC = 90°性质3:垂直于弦的直径上的任意两点与圆心构成的直线垂直于弦当弦ab与直径CD相交,交点E在弦ab的中点上时,连接两点A、B与圆心O所构成的直线与弦ab垂直,即∠AOC = ∠BOC = 90°。
性质4:垂直于弦的直径上的任意两点与圆心构成的直线是等腰三角形的高当弦ab与直径CD相交,交点E在弦ab的中点上时,连接两点A、B与圆心O所构成的直线是等腰三角形AOC和BOC的高。
3. 实际应用圆的切线利用垂直于弦的直径的性质,可以辅助判断圆与直线的切点。
如果已知弦ab与直径CD相交,交点E在弦ab的中点上,同时弦与直线的交点为F,则EF是切线。
因为垂直于弦的直径与弦垂直,所以EF与切线是垂直的。
这个性质可以用于解决很多与圆相关的实际应用题。
4. 垂直于弦的直径教学反思在教学垂直于弦的直径相关知识时,可以采取以下教学策略,以提高学生的兴趣和理解程度:1.利用多媒体课件或实物演示工具展示圆、弦和直径的概念。
通过图像和实物的展示,引导学生理解弦、直径的概念。
2.引入具体问题或实际应用场景,让学生思考垂直于弦的直径的性质。
可以使用贴近学生生活的例子,如自行车轮胎、篮球等圆形物体。
垂直于弦的直径

④⑤
①②③
注意要点
根据垂径定理与推论可知:对于一个圆和一条直线来说,如果具备: ① 经过圆心 ② 垂直于弦 ③ 平分弦 ④ 平分弦所对的优弧 ⑤ 平分弦所对的劣弧 那么,由五个条件中的任何两个条件都可以推出其他三个结论。
圆的两条平行弦所夹的弧相等.
如图,CD为⊙O的直径,AB⊥CD,EF⊥CD, 你能得到什么结论?
垂径定理
垂直于弦的直径平分弦,并且平 分弦所对的两条弧。
C
∵ CD是直径,CD⊥AB
O · A
∴ AE=BE, AC =BC, AD =BD.
B
⌒
⌒
⌒
⌒
E D
垂径定理推论
平分弦(不是直径)的直径垂直 于弦,并且平分弦所对的两条弧。
C
∵ CD是直径, AE=BE
O · A
∴ CD⊥AB,AC =BC, AD =BD.
B
⌒
⌒
⌒
⌒
E D
知识点三:
垂径定理的推论
定理:如图,在下列五个条件中:
① CD是直径(一条直线过圆心) ② CD⊥AB, ③ AM=BM,
⌒ ⌒ ④AC=BC,
C
⌒ ⌒ ⑤AD=BD.
只要具备其中两个条件,就可推出其余三个结论.
A
M└
●
B
O
D
垂径定理的推论
条件
①③ ①④ ①⑤ ②③ ②④ ②⑤ ③④ ③⑤
结论
②④⑤ ②③⑤ ②③④ ①④⑤ ①③⑤ ①③④ ①②⑤ ①②④
命题
平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧. 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对 的另一条弧. 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧. 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平 分弦和所对的另一条弧. 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦 ,并且平分弦所对的另一条弧. 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
垂径定理知识点

垂径定理知识点1. 垂径定理说啦,垂直于弦的直径平分弦!就好像你有一根绳子,我拿一根直直的杆子从中间穿过,那这根杆子是不是就把绳子给平均分成两半啦!比如说,一个圆形的蛋糕,直径把它分成相等的两半,这就是垂径定理在起作用呀,是不是很神奇?2. 嘿,垂径定理还提到,平分弦的直径垂直于弦呢!这不就像拔河比赛,中间的红绳被公平地分成两半,那和地面肯定是垂直的呀!就像一个圆形的大饼,用刀平分它,这刀肯定和饼是垂直的呀,是不是很有意思呢?3. 你想想看呀,垂径定理告诉我们,垂直于弦的直径平分弦且平分这条弦所对的两条弧!好比一把撑开的伞,伞骨垂直伞面,把伞面分成相等的部分,那同时也把下面的空间也给平分啦!比如一个圆形的池塘,中间有根柱子垂直立着,那柱子两边的水面区域就是相等的,超厉害的吧!4. 不得了哦,垂径定理里说平分弦所对的一条弧的直径,必垂直平分这条弦!就好像英雄总是和他的武器相得益彰,武器能发挥最大威力,英雄也能更厉害!像个钟的指针,钟的中心轴线平分了指针划过的弧,那必然也和指针是垂直的呀,多形象呀!5. 哇塞,垂径定理也包括平分弦所对的两条弧的直径,垂直平分弦呢!这就好像有个神奇的魔法棒,只要一挥,就能让东西变得整齐有序!比如一个摩天轮,中间的轴既能把那些车厢走过的弧平分,又能让连接车厢的杆子垂直,这就是垂径定理的魅力呀!6. 哎呀呀,垂径定理还有哦,弦的垂直平分线经过圆心!这简直就像是给圆心找到回家的路一样清楚明白呀!好比你放风筝,线的垂直平分线肯定是要经过风筝的中心呀!像个圆形的轮子,轮子上一根线的垂直平分线肯定会经过轮子中心,是不是很明了?7. 最后呢,平分弦的直径,不一定垂直于弦哦!这就好像不是所有的好人都一定是强壮的一样。
比如有根不太直的棍子平分了一根线,但它们不一定是垂直的呀。
垂径定理真的很有趣呢,我们一定要好好掌握呀!我的观点结论就是:垂径定理非常的神奇和有趣,在很多方面都有重要的应用,我们要多多去理解和运用它呀!。
垂径定理3

垂径定理知识点 1. 垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦 所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 知识点1:垂径定理及其逆定理1.如图,MN 是⊙O 的直径,弦AB ⊥MN ,垂足为点C,则下列结论中不一定成立的是( ) A.AM =BM B.AN =BNC.AC =CBD.OC =CM2.如图所示,在中,弦AB 的长为,圆心0到AB 的距离为,则的半径长为( )A.3cmB.4cmC.5cmD.6cm3. 高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB=10米,净高CD=7米,则此圆的半径OA=( )DBA.5B.7C.D.4.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<55.如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸B.13寸C.25寸D.26寸6.如图所示,在⊙O内有折线OABC,其中0A=8,AB=12,∠A=∠B=60°,则BC的长为( )A.19B.16C.18D.207.已知半径为5的中,弦,弦,则的度数是( )A. B. C. 或 D. 或8.在直角坐标系中,以点O(﹣6,﹣2)为圆心的圆弧与x轴交于A,,B(A在B的右边)两点,点A的坐标为(﹣3,0),则点B的坐标为 .9.已知、两点,分别以A、B为圆心的两圆相交于和,则的值为10. 如图,的两条弦、互相垂直,垂足为,且,已知,,则的半径是_____ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1.2 垂直于弦的直径
【知能点分类训练】
知能点1 圆的对称性
1.圆是轴对称图形,它的对称轴是_______,圆还是中心对称图形,它的对称中心是_______.
2.两个同心圆的对称轴().
A.仅有1条 B.仅有2条 C.有无数条 D.仅有有限条
3.如图所示,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为E.(1)图是轴对称图形吗?如果是,它的对称轴是什么?
(3)①在图中,连接OA,OB,则△OAB是等腰三角形,那么
直径CD既是⊙O•的________,又是△OAB的________.
②把圆沿着直径CD折叠时,CD两侧的两个半圆重合,
点A与点B重合,AE与____•重合,AC与______重合,AD
与_____重合.
③同理可得到AE_____BE,AC=_______,AD=________.
知能点2 垂直于弦的直径
4.如图所示,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是().
A.∠COE=∠DOE B.CE=DE C.OE=BE D.BC BD
(第4题) (第5题) (第8题)
5.如图所示,在⊙O中,OD⊥AB于P,AP=4cm,PD=2cm,则OP的长等于().
A.9cm B.6cm C.3cm D.1cm
6.在⊙O中,CD为直径,AB为弦,且CD平分AB于E,OE=3cm,AB=8cm,则⊙O•的半径为________.
7.在⊙O中,直径AB垂直于弦CD于E,∠COD=100°,则∠COE=_______.
8.如图所示,已知AB是⊙O的直径,弦CD与AB相交于点E,当______时,CD•⊥AB.(填写一个你认为适当的条件)
9.如图所示,在△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA•为半径的圆与AB,BC分别交于点D,E,求AB,AD的长.
10.如图所示,在⊙O中,AB,CD为两条弦,且AB∥CD,直径MN经过AB中点E,交CD
吗?
于F,试问:(1)点F是CD的中点吗?(2)AC BD
【综合应用提高】
11.如图所示,圆弧形桥拱的跨度AB=12m,拱高CD=4m,则拱桥的直径为().A.6.5m B.9m C.13m D.15m
(第11题) (第12题)
12.如图,在直径为10m的圆柱形油槽内装入一些油后,油面宽AB=8m,•那么油的最大深度是_________.
13.如图所示,一条公路的转弯处是一段圆弧,即图中CD,点O是CD•的圆心,CD=600m,E为CD上一点,且OE⊥CD于F,EF=90m,则这段弯路的半径是多少?
14.一座桥,桥拱是圆弧形(水面以上部分),测量时只测到桥下水面宽AB为16m(•如图),桥拱最高处离水面4m.
(1)求桥拱半径;
(2)若大雨过后,桥下面河面宽度为12m,问水面涨高了多少.
15.如图所示,某地有一座圆弧形的拱桥,桥下的水平宽度为7.2m,•拱顶高出水面2.4m,现有一艘宽为3m,船舱顶部为长方形,并高出水面2m的货船要经过这里,此货船能顺利通过这座拱桥吗?用你所学的数学知识说明理由.
【开放探索创新】
16.不过圆心的直线L交⊙O于C,D两点,AB是⊙O的直径,AE⊥L,垂足为E,BF⊥L,• 垂足为F.
(1)在图所示的三个圆中分别补画出满足上述条件的具有不同位置关系的图形.(2)请你观察(1)中所画的图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母),找结论的过程中所连辅助线不能出现在结论中,不写推理过程.(3)请你选择(1)中的一个图形,证明(2)所得的结论.
【中考真题实战】
17.(黑龙江)如图所示,在⊙O中,AB,AC为互相垂直且相等的弦OD⊥AB,•OE⊥AC,垂足分别为D,E,若AC=2cm,则⊙O的半径为________.
(第17题) (第19题)
18.(武汉)过⊙O内一点M的最长弦为10cm,最短弦长为8cm,那么OM的长为().
A.3cm B.6cm C cm D.9cm
19.(南昌)如图所示,在平面直角坐标系中,⊙O•′与两坐标轴分别交于A,B,C,D四点,且AC=BD.已知A(6,0),B(0,-3),C(-2,0),则点D的坐标是().A.(0,2) B.(0,3) C.(0,4) D.(0,5)
20.(河北)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其中工件槽的两个底角均为90°,•尺寸如图(•单位:cm),将形状规则的铁球放入槽内时,若同时具有图(1)所示的A,E,B三个接触点,•该球的大小就符合要求.
图(2)是过球心O及A,B,E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD,BD⊥CD,请你结合图(1)中的数据,计算这种铁球的直径.
答案:
1.经过圆心的任意一条直线 圆心 2.C 3.(1)是.直径CD 所在的直线.
(2)相等的线段有AE=BE ;相等的弧有AB BC =,AD BD =.
根据此图形是轴对称图形,图形两侧部分重合.
(3)①对称轴 对称轴 ②BE BC BD ③= BC BD
4.C
5.C 提示:连结OA ,则O A 2+(OD-PD )2=AP 2,即OA 2+(OA-2)2=42, ∴OA=5,OP=OD-PD=OA-PD=3cm . 6.5cm 7.50°
8.BC BD =(或CE=DE ,或AC AD =)
9.解:如右图所示,作CP ⊥AB 于P . 在Rt △ABC 中,由勾股定理,得
=.
由S △ABC =
12AB ·CP=1
2AC ·BC , 得52CP=12×3×4,所以CP=125
.
在Rt △ACP 中,由勾股定理,得
=95.
因为CP ⊥AD ,所以AP=PD=1
2
AD , 所以AD=2AP=2×
95=185
.
10.解:如右图所示,(1)点F 是CD 的中点. ∵直径MN 平分不是直径的弦AB , ∴MN ⊥AB , ∵AB ∥CD , ∴MN ⊥CD , ∴CF=FD .
(2)由MN ⊥AB ,MN ⊥CD 得 AN BN =,CN DN =, ∴AN CN BN DN -=-, 即AC BD =.
11.C 12.2cm
13.解:如右图所示,连接OD .
∵OE ⊥CD ,∴DF=
1
2
×600m=300m . 在Rt △DOF 中,OD 2=OF 2+DF 2, ∴R 2=(R-90)2+3002, ∴R=545(m ).
∴这段弯路的半径是545m . 14.解:(1)如右图所示,设点O 为AB 的圆心,点C 为AB 的中点, 连接OA ,OC ,OC 交AB 于D ,由题意得AB=16m ,CD=4m ,
由垂径定理得OC ⊥AB ,AD=
12AB=12
×16=8(m ). 设⊙O 半径为xm ,则在Rt △AOD 中,
OA 2=AD 2+OD 2,即x 2=82+(x-4)2
解得x=10,所以桥拱的半径为10m . (2)设河水上涨到EF 位置(如上图所示),
这时EF=12m ,EF ∥AB ,有OC ⊥EF (•垂足为M ). ∴EM=
1
2
EF=6m . 连接OE ,则有OE=10m ,
(m ). OD=OC-CD=10-4=6(m ), OM-OD=8-6=2(m ).
15.解:如右图所示,作出AB 所在的圆心O ,连接OA ,ON . 设OA=r ,则OD=OC-DC=r-2.4,AD=
2
AB
=3.6. 在Rt △OAD 中,有OA 2=AD 2+OD 2, 即r 2=3.62+(r -2.4)2,解得r=3.9.
又在Rt△ONH中,有=3.6, FN=DH=OH-CD=3.6-(3.9-2.4)=2.1(m),
这里2m<2.1m,有0.1m的等量,因此货船可以通过这座拱桥.16.解:(1)
(2)结论:EC=FD或ED=FC.
(3)选择(1),证明:
过O作OG⊥CD于G,则CG=GD.
∵AE⊥CD,BF⊥CD,
∴AE∥OG∥BF,则四边形AEFB为梯形,
∵AB为⊙O的直径,∴OA=OB,
∴EG=GF,∴EG-CG=GF-GD,
即EC=DF.
17
18.A 19.D
20.解:连接OE,交AB于F,连接OA,由题意得四边形ABDC是矩形,• 由圆的轴对称性可知OE⊥CD.
∵CD∥AB,∴OE⊥AB.
且AF=1
2
AB=
1
2
×16=8(cm),
EF=AC=4cm,设⊙O的半径为r,在Rt△AFO中,OA2=OF2+AF2,即r2=(r-4)2+82,
解得r=10,∴2r=20.
所以这种铁球的直径为20cm.。