新型有机-无机杂化钙钛矿发光材料的研究进展

合集下载

钙钛矿太阳能电池研究进展

钙钛矿太阳能电池研究进展

钙钛矿太阳能电池研究进展一、本文概述随着全球对可再生能源需求的日益增长,钙钛矿太阳能电池作为一种新兴的光伏技术,近年来受到了广泛关注。

钙钛矿材料因其独特的光电性质和可调带隙结构,在太阳能电池领域展现出了巨大的应用潜力。

本文旨在全面综述钙钛矿太阳能电池的研究进展,从材料设计、电池结构、制备工艺到性能优化等方面进行深入探讨。

我们将首先回顾钙钛矿太阳能电池的发展历程,然后重点介绍其基本原理、关键材料和最新研究成果。

本文还将讨论钙钛矿太阳能电池当前面临的挑战,如稳定性、可重复性和大面积制备等问题,并展望未来的发展方向。

通过本文的综述,我们期望能为读者提供一个全面而深入的了解钙钛矿太阳能电池的研究进展和前景的视角。

二、钙钛矿太阳能电池的发展历程钙钛矿太阳能电池的发展历程可以追溯到21世纪初。

在2009年,日本科学家Miyasaka首次将钙钛矿材料应用于染料敏化太阳能电池中,实现了约8%的光电转换效率,这一开创性的研究为钙钛矿太阳能电池的发展奠定了基础。

然而,初期的钙钛矿太阳能电池效率较低,稳定性差,难以应用于实际生产中。

随后,科研人员通过不断改进材料组成、优化电池结构、提高制备工艺等方法,逐步提高了钙钛矿太阳能电池的光电转换效率和稳定性。

2012年,韩国科学家Park和Grätzel等人成功制备出了光电转换效率超过9%的钙钛矿太阳能电池,这一突破性的成果引起了全球科研人员的广泛关注。

进入21世纪10年代后期,钙钛矿太阳能电池的研究进入了快速发展阶段。

科研人员通过深入研究钙钛矿材料的物理化学性质、界面工程、载流子传输机制等方面,不断优化电池性能。

随着制备技术的不断进步,钙钛矿太阳能电池的尺寸逐渐增大,从最初的微米级发展到厘米级,甚至更大面积的柔性电池,使得钙钛矿太阳能电池在商业化应用中展现出巨大的潜力。

目前,钙钛矿太阳能电池的最高光电转换效率已经超过25%,并且在大面积模块制备、稳定性提升等方面也取得了显著进展。

有机-无机金属卤化物钙钛矿

有机-无机金属卤化物钙钛矿

有机-无机金属卤化物钙钛矿
有机-无机金属卤化物钙钛矿是由有机阳离子和无机阴离子组成
的混合物,其中最常见的有机阳离子是甲基铵(CH3NH3+),而无机阴
离子则通常是卤化物离子(如Cl-、Br-、I-)。

这种结构的材料具
有良好的光吸收特性和电荷传输性能,使其成为太阳能电池领域备
受瞩目的材料。

有机-无机金属卤化物钙钛矿太阳能电池的制备工艺相对简单,
成本较低,因此备受关注。

通过调控材料的结构和组分,可以实现
更高的光电转换效率和更长的使用寿命。

与传统的硅基太阳能电池
相比,有机-无机金属卤化物钙钛矿太阳能电池在光电转换效率和制
备成本上具有明显优势。

然而,有机-无机金属卤化物钙钛矿太阳能电池也面临着一些挑战,例如材料的稳定性和环境适应性等问题。

研究人员正在不断努
力解决这些问题,以推动该材料在太阳能电池领域的应用。

总的来说,有机-无机金属卤化物钙钛矿作为一种新型光伏材料,具有巨大的潜力。

随着对该材料的深入研究和技术的不断进步,相
信它将在未来的太阳能电池领域发挥重要作用。

有机钙钛矿材料研究进展ppt课件

有机钙钛矿材料研究进展ppt课件
Peidong Yang et al ,pnas ,2016 ,10,1073
钙钛矿材料的性质与应用
能带工程
杂化钙钛矿薄膜的一个优势是可以在分子水平上调控杂化 钙钛矿材料的组成成分, 从而有效调控其带隙.
Maksym V. Kovalenko通过阴离子交换改变钙钛矿中卤素原子 比例得到波长可调制的发光量子点(365nm紫外灯照射)
看起来MA对导带和价带不起什么作用,除 了贡献一个电子,稳定其结构。
考虑立方晶系下MA–PbI3的电子能态结构和分波态密度:MA取 向的不同会使得PbI6八面体发生扭曲,从而改变其电子结构
钙钛矿材料的性质与应用
近年来钙钛矿材料,特别是有机---无机钙钛矿材料正成为太阳能电池领域的新星, 其优异的光电转换效率吸引着人们的研究。
adv.optical mater. 2014,2,838-844
钙钛矿材料的性质与应用
发光原理及性能
ns
kBT ≈25 meV
共存
μs 不同钙钛矿材料的激子束缚能
竞争 钙钛矿材料光物理过程示意图
钙钛矿材料的性质与应用
钙钛矿材料具有高光吸收能力、高量子效率、高载流子迁移率以及发 射波长可进行调节等优点,非常适合作为激光增益介质.
• A、B位阳离子既可由单一离子也可由多种离子 占据,根据A、B位阳离子的种类及其离子半径 的不同 ,可以构筑出微结构特征各异、物理性 能千变万化的钙钛矿材料。
认识钙钛矿结构材料
有机-无机杂化钙钛矿 (Organic/Inorganic Hybrid Perovskite,OIHP)的 结构和物理性质最早由Weber(Naturforsch. 1978,33b, 1443)报道。它可看成是有机基团和无机部分的交替堆 叠.

有机无机杂化钙钛矿

有机无机杂化钙钛矿

有机无机杂化钙钛矿有机无机杂化钙钛矿是一种新型的光电材料,由有机和无机组成,具有优异的光电性能和稳定性。

近年来,随着人们对新能源和环境保护的重视,有机无机杂化钙钛矿被广泛应用于光伏领域、LED照明、传感器等领域。

本文将从杂化钙钛矿的结构、性质、制备方法以及应用领域等方面进行探讨。

一、杂化钙钛矿的结构杂化钙钛矿的结构一般由有机离子和无机离子交替排列而成,其中有机离子一般为有机阳离子,如甲基铵、乙基铵等,无机离子则为正四面体的钛离子(Ti4+)和八面体的铅离子(Pb2+)。

有机阳离子与无机离子通过离子键和氢键相互作用,形成了三维的网络结构。

此外,有机阳离子还可以通过氢键与其他有机阳离子相互作用,形成二维层状结构。

二、杂化钙钛矿的性质1. 光电性能杂化钙钛矿具有优异的光电性能,其带隙能量较小,能够吸收可见光和近红外光,对光的利用率高。

同时,杂化钙钛矿的电子迁移速度快,电荷迁移效率高,有利于提高光电转换效率。

2. 稳定性杂化钙钛矿的稳定性是其应用的关键之一。

传统的钙钛矿材料易受潮、氧化等环境因素的影响,导致光电性能下降。

而杂化钙钛矿通过有机离子的引入,增强了材料的稳定性,使其能够在潮湿、高温等恶劣环境下仍然保持较好的光电性能。

3. 可调性杂化钙钛矿的光电性能可以通过控制制备条件和组分比例等方法进行调节。

例如,通过改变有机阳离子的种类和长度,可以调节杂化钙钛矿的晶体结构和光电性能。

三、制备方法杂化钙钛矿的制备方法主要有溶液法、气相沉积法、旋涂法等。

其中,溶液法是最常用的制备方法之一。

具体步骤如下:1. 制备前驱体溶液:将钛酸四丁酯、铅醋酸、有机阳离子等化合物加入有机溶剂中,搅拌均匀得到前驱体溶液。

2. 沉淀制备:将前驱体溶液滴加到沉淀剂中,搅拌均匀后,离心分离得到沉淀。

3. 热处理:将沉淀置于高温炉中热处理,使其形成结晶态的杂化钙钛矿。

四、应用领域1. 光伏领域杂化钙钛矿因其优异的光电性能,被广泛应用于光伏领域。

有机无机杂化锰基钙钛矿磷光材料

有机无机杂化锰基钙钛矿磷光材料

有机无机杂化锰基钙钛矿磷光材料一、引言在当今科技发展日新月异的时代,新型材料的研究与开发已成为学术界和工业界的热点之一。

有机无机杂化锰基钙钛矿磷光材料作为一种新型发光材料,具有优异的光电性能和广泛的应用前景,备受研究者们的青睐。

二、有机无机杂化材料的特点1.有机无机杂化材料是指在无机基质中引入有机分子,并使其与无机相互作用形成一种新型功能材料。

这种材料不仅拥有无机材料的优良性能,还具有有机材料的柔韧性和可溶性,具有很高的应用潜力。

2.有机无机杂化材料的制备方法主要包括离子交换法、溶胶-凝胶法、表面修饰法等。

这些方法可以在一定程度上调控材料的结构和性能,为材料的优化提供了有力的手段。

三、钙钛矿磷光材料的应用前景1.钙钛矿磷光材料是一种新型的荧光功能材料,具有发光效率高、发光寿命长、发光波长可调等优点,广泛应用于LED照明、显示屏、生物成像等领域。

2.钙钛矿磷光材料的研究方向主要包括改善其发光效率、提高其光稳定性、拓展其在生物医学领域的应用等方面。

这些研究工作将为新型发光材料的开发和应用提供重要支撑。

四、有机无机杂化锰基钙钛矿磷光材料的研究进展1.近年来,许多学者对有机无机杂化锰基钙钛矿磷光材料展开了深入的研究。

他们通过有机分子对钙钛矿材料进行表面修饰,成功地调控了其光电性能,提高了其发光效率和光稳定性。

2.有机无机杂化锰基钙钛矿磷光材料的研究工作主要集中在提高其荧光量子产率、拓展其发光波长范围、增强其光稳定性等方面。

这些工作为该材料在LED照明、生物成像等领域的应用奠定了基础。

五、有机无机杂化锰基钙钛矿磷光材料的制备与表征1.目前,制备有机无机杂化锰基钙钛矿磷光材料的方法主要包括溶胶-凝胶法、离子交换法、旋涂法等。

这些方法可以有效地调控材料的结构和性能,为实现其在不同领域的应用提供可能。

2.对有机无机杂化锰基钙钛矿磷光材料进行表征,可以通过X射线衍射、傅里叶变换红外光谱、紫外-可见吸收光谱等手段对材料的结构、成分和光电性能等进行分析,为其性能优化和应用研究提供重要依据。

钙钛矿量子点的制备以及发光性质研究

钙钛矿量子点的制备以及发光性质研究

第19卷第3期南阳师范学院学报Vol.19No.32020年5月Journal of Nanyang Normal University May 2020收稿日期:2019-10-20基金项目:国家自然科学基金(61306007);河南省科技攻关计划项目(172102310682);河南省高等学校重点科研项目(17A510017)作者简介:刘旭焱(1983 ㊀),河南南阳人,博士,副教授,主要从事纳米发光及新型半导体研究.钙钛矿量子点的制备以及发光性质研究刘旭焱,祝博恒(南阳师范学院机电工程学院,河南南阳473061)㊀㊀摘㊀要:钙钛矿量子点由于其具有高量子效率㊁发光半高宽较窄以及高色纯度等优点,作为一种新型的发光材料受到了研究者越来越多的关注.本文采用热注入法合成了不同卤素的钙钛矿量子点,随后通过控制不同的反应温度以及油酸的量对其形貌以及发光性能进行测试,得到了较高结晶度㊁稳定发光效率的立方相钙钛矿量子点.之后基于蓝光LED 芯片,制备得到具有优越发光性能的白光LED 器件.关键词:热注入法;钙钛矿量子点;发光特性;白光LED中图分类号:O 482.31㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1671-6132(2020)03-0026-060㊀引言量子点作为一种新型的发光材料受到了越来越多的关注,相比于其他大尺寸发光材料而言,它具有很大的优越性,例如窄带发光,高的量子效率以及长的发光寿命[1-3].量子点材料主要有硒化镉㊁硫化镉㊁硫化铅㊁硅聚合物等.相比而言,钙钛矿量子点作为一种新型的纳米发光材料引起了人们更大的研究兴趣,而且卤素铅基钙钛矿量子点由于其具有高量子发光效率㊁较小的半高宽度㊁发射峰位可调(从蓝光到红光)以及高色纯度得到了研究者们更多的关注[4-7].20世纪90年代Mitzi 课题组首次实验得到有机-无机杂化钙钛矿材料,并制备得到具有较好电子跃迁的光电器件[8].随着进一步的研究,制备得到的钙钛矿材料应用于光伏太阳能电池中,提高了其光转换效率[9-11].随着体材料研究的不断深入,钙钛矿量子点同样得到很大的发展,南京理工大学曾海波课题组制备得到量子效率达到90%以上的量子点发光材料,并且分别在高温和室温下合成量子点发光材料[12-14].随后,通过控制不同的反应条件制备得到纳米线㊁纳米片㊁纳米棒等不同形貌的样品,而且分别研究了其发光性能[15-18].钙钛矿量子点的应用主要在于光致发光LED㊁太阳能电池㊁防伪标记以及细胞成像[19-20].与传统量子点相比,卤素铅基钙钛矿量子点的化学式为ABX 3(A:甲基铵,铯;B:铅;X:卤素Cl,Br,I),可以通过调节不同的卤素进而实现不同的发光波长.其中当A 位置为甲基铵基时,称为有机-无机杂化钙钛矿量子点;当A 位置为铯元素时,称为全无机钙钛矿量子点.通过实验研究得知,有机-无机杂化钙钛矿量子点对氧气和水分比较敏感,而且发光量子效率相对较低,制约了其进一步的研究以及应用[21].与此同时,全无机钙钛矿量子点显示出了更加稳定的发光性能和量子效率,其在一定的氧气和水分环境中,相比于有机-无机杂化钙钛矿量子点具有更好的发光性能[22].因此,本工作制备了具有优越发光性能的全无机钙钛矿量子点,并且研究了其发光性质以及稳定性,最终制备得到具有优越性能的白光光致发光器件.1㊀实㊀验1.1㊀实验材料碳酸铯(CsCO 3,AR)㊁氯化铅(PbCl 2,AR)㊁溴化铅(PbBr 2,AR)㊁碘化铅(PbI 2,AR)㊁十八烯(1-octade-cene,AR)㊁油酸(oleic acid,AR)㊁油胺(oleylamine,AR)㊁环己烷(cyclohexane,AR).1.2㊀实验过程首先,制备得到铯的前驱体溶液:将0.2g 的CsCO 3加入三颈瓶中(15mL 十八烯和0.5mL 油酸中),在油浴锅中,通入氮气的条件下反应2h 直至碳酸铯固体全部溶解.之后将PbX 2(PbCl 20.15g;PbBr 2㊀第3期刘旭焱,等:钙钛矿量子点的制备以及发光性质研究0.2g;PbI 20.16g)分别加入另一三颈瓶中(15mL 十八烯,0.2mL 油酸,0.2mL 油胺),在加热套中氮气保护下升温至120ħ反应2h.随后升温至180ħ,将适量铯的前驱体溶液快速注入反应溶液中,反应30s,取出后用冰水冷却直至室温.将得到的溶液溶于环己烷中,经过离心㊁分离,倒去上方清液,将得到的沉淀物溶于10mL 环己烷中保存.1.3㊀表征方法采用德国布鲁克D8ADVANCE 型X 射线多晶衍射仪(X-Ray Diffraction,XRD)分析材料物相从而确定样品内部结构和晶相构成,扫描范围为2θ=20ʎ~60ʎ;分别通过紫外-可见分光光度仪㊁荧光光谱仪对其发光性质进行测试;使用Technai F20型场发射透射电子显微镜(Transmission electron microscope,TEM)观察量子点的形貌;通过Ocean Optics 光谱仪测定粉末和白光LED 的发射光谱.2㊀结果讨论2.1㊀卤素变化对钙钛矿量子点形貌以及结构的影响量子点形貌对发光具有很大的影响,均匀的尺寸与合适的纳米形貌有助于其发光性能的提高.首先,我们合成不同卤族元素的全无机钙钛矿量子点.通过热注入法分别合成CsPbCl 3(图1a),CsPbBr 3(图1b),CsPbI 3(图1c),从图1的TEM 照片可以看出,实验获得了尺寸均匀的立方相量子点.随着卤素的变化,量子点的尺寸也发生了明显变化,这主要是由于卤素的离子半径逐渐增加.为了进一步说明尺寸的变化,图1(d ~f)展示了不同卤素钙钛矿量子点的尺寸分布情况,计算出各量子点平均尺寸分别为:CsPbCl 3~6.8nm,CsPbBr 3~8.7nm,CsPbI 3~10.2nm.图1㊀(a ~c )CsPbX 3(Cl ,Br ,I )量子点透射电镜形貌;(d ~f )量子点尺寸分布CsPbX 3(Cl ,Br ,I)图2㊀不同卤素的钙钛矿量子点的XRD 图谱对在相同的反应条件下,制备所得量子点样品进行XRD测试,如图2所示.通过对比标准卡片,发现CsPbCl 3量子点与标准卡片JCPDS:18-0365吻合良好,而CsPbBr 3和CsPbI 3量子点与标准卡片JCPDS:54-0752吻合很好,样品均为立方晶系.而且可以看出随着掺杂卤素原子半径的增大(Cl-Br-I),由于晶格尺寸发生了变化,XRD 图谱中,对应衍射峰逐渐向小角度方向移动.反应温度对于量子点的生长具有很大的影响.实验通过调节CsPbBr 3的反应温度,观察样品形貌的变化,结果如图3所示,当温度为140ħ时其量子点的尺寸相对较小,且存在一定量的未成核的部分.随着反应温度的升高,其量子点的结晶度不断增强.当温度为180ħ时,可以得到尺寸较为均匀的(~8.7nm)CsPbBr 3量子点阵列.㊃72㊃南阳师范学院学报㊀第19卷㊀图3㊀反应温度对CsPbBr 3量子点形貌的影响注:(a)140ħ;(b)160ħ;(c)180ħ图4㊀制备反应中油酸量对CsPbBr 3量子点形貌的影响注:(a)0.05mL;(b)0.1mL;(c)0.2mL为了研究表面基团对量子点纳米形貌和发光性质的影响,其他实验条件不变的前提下,改变油酸的量进行样品制备.图4展示了制备反应中不同油酸的量对样品相貌的影响.从图中可以得知,随着油酸量的增加,样品尺寸发生了变化,但其对表面形貌的影响并不明显.这主要是因为油酸的加入是为了促进量子点的成核,油酸在实验中一方面是为了加速溶解PbX 2固体,便于合成钙钛矿量子点,因而油酸量的增大会加速合成进程,从而导致量子点尺寸变大;另一方面,油酸作为一种长链有机配体,对于提高发光性能和发光稳定性具有很大的影响.制备反应中油酸的使用量对发光性能的影响将在下一部分进行讨论.2.2㊀发光性质2.2.1㊀不同卤素钙钛矿量子点的发光性质图5㊀不同卤素的钙钛矿量子点的发射和吸收光谱注:插图为在紫外灯照射下的发光实物图图5为不同卤素的全无机钙钛矿量子点发光光谱,从吸收光谱中可以得知CsPbCl 3钙钛矿量子点吸收峰位于409nm 处,而其发射峰位位于417nm 处,具有较小的斯托克斯位移,说明其具有较好的发光性质,从图中可以看出另两个样品也有相似的特征.当卤素发生变化时,样品的发射和吸收峰位也发生了不同程度的变化.从发光的半高宽而言,其CsPbBr 3量子点的半高宽最窄约为20nm,而且具有较好的色纯度.从图5插图可以看出,我们通过调节不同的卤素实现了蓝紫(CsPbCl 3)㊁绿(CsPbBr 3)㊁橙(近红,CsPbI 3)三种发光,从而使合成白光LED 成为可能.对不同卤素钙钛矿的量子点荧光寿命进行测试,结果如图6所示,三者均符合双指数衰减方程:τ=(A 1τ21+A 2τ22)/(A 1τ1+A 2τ2).拟合计算可知,CsPbCl 3量子点寿命为1.33ns,随着卤素原子半径的不断增加,其自身的荧光发射寿命在不断地增加,最终CsPbI 3量子点寿命为14.10ns.2.2.2㊀油酸对量子点发光性质的影响油酸作为一种长链表面修饰化合物,对于钙钛矿量子点的合成具有重要的影响.为了探究不同油酸的㊃82㊃㊀第3期刘旭焱,等:钙钛矿量子点的制备以及发光性质研究量对其发光性质的影响,我们在合成过程中分别加入0.05mL㊁0.1mL㊁0.2mL 油酸对CsPbBr 3量子点光学性能进行测试.图7可以得出,随着油酸量的不断增加,其发光强度不断地增加,而且发光的半高宽在变窄,说明随着油酸量的不断增加,其结晶度变得更加完美,与上边形貌的变化刚好吻合,进一步说明油酸对于钙钛矿量子点的合成以及发光性质具有很大的影响.图6㊀不同卤素的钙钛矿量子点的荧光寿命曲线注:(a)CsPbCl 3;(b)CsPbBr 3;(c)CsPbI3图7㊀不同油酸的量对发光性能的影响2.2.3㊀不同卤素量子点的稳定性众所周知,量子效率对于发光材料的性能具有重要的意义,是衡量发光材料性能的重要指标.我们通过光谱积分球分别对不同卤素的量子点进行量子效率的测试.可以得出,随着放置时间的增加其自身的发光量子效率都有一定的降低.但是对于CsPbBr 3量子点,随着时间的增加,其量子效率具有微弱的减小,说明CsPbBr 3量子点表面具有相对较少的缺陷,对于空气中的水分以及氧气具有一定的阻抗作用.从图8中可以看出,CsPbI 3量子点的稳定性最差,当放置10h 左右量子效率基本降为8%左右.主要是由于I -离子在空气中的稳定性最差,易被空气中氧气氧化,进而CsPbI 3量子点分解为PbI 2固体.我们也可以看出CsPbCl 3量子点具有最低的发光量子效率,仅仅为11.2%左右,这主要是由于CsPbCl 3量子点有较多的氯空位,对于发光性能具有淬灭作用.对于CsPbBr 3量子点而言,由于具有高的量子效率(85.4%)和窄的半高宽,是制备电致以及光致LED 很合适的替代品.图8㊀不同卤素钙钛矿量子点的量子效率随着时间的变化3㊀制备白光LED 器件为了获得白光LED,本实验基于蓝光LED 芯片,通过表面包覆法制备得到色纯度较好的白光器件.首先,我们合成CsPbCl 3量子点和CsPb(Br /I)3量子点.之后先将制备得到的CsPbCl 3量子点溶于PMMA 固体中,得到量子点与PMMA 胶体.通过旋涂法将得到的材料涂于蓝光LED 芯片表面,之后在真空干燥箱中60ħ烘干;随后再将得到的CsPb(Br /I)3量子点用同样的方法旋涂于芯片表面烘干,最后封装即可得到完整的白光LED 器件.图9(a)为基于蓝光芯片所制备的白光LED 器件的发射光谱,可以看出器件具有蓝绿红三原色发光.之后对其色纯度进行计算,如图9(b)所示,发现制备所得白光LED 具有很好的色纯度,㊃92㊃南阳师范学院学报㊀第19卷㊀色坐标为(0.30,0.31)且发光效率为33.4lm㊃W -1.稳定性测试显示,该器件具有很好的热稳定性和发光稳定性,对于取代现有的白光LED 具有很大的应用前景.图9㊀(a )白光LED 器件发射光谱,其中插图为白光LED 器件实物照片;(b )白光LED 的色坐标图谱4㊀结论本文采用热注入法制备得到不同卤素的钙钛矿量子点,通过改变不同的卤素元素实现全光谱发射.通过实验分析表明,反应条件对钙钛矿量子点形貌具有一定的影响,油酸的量主要对发光性能影响较大.通过实验得出,当反应温度为180ħ,油酸的量为0.2mL 时,可以制备得到形貌完整,发光性能良好的钙钛矿量子点发光材料.特别是对于CsPbBr 3钙钛矿量子点而言,其具有高的发光量子效率(85.4%)和发光稳定性.随后基于蓝光芯片制备得到了白光LED,并对其色纯度以及发光效率进行测试,得到了优异的白光LED 器件.随着研究的不断深入,钙钛矿量子点会有更大的应用前景和价值.参㊀考㊀文㊀献[1]㊀PROTESESCU L,YAKUNIN S,BODNARCHUK M I,et al.Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3),X =Cl,Br,and I):Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut[J].Nano Lett,2015,15(6):3692.[2]㊀LIGNOS I,PROTESESCU L,EMIROGLU D B,et al.Unveiling the Shape Evolution and Halide-Ion-Segregation in Blue-Emit-ting Formamidinium Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform[J].Nano Lett,2018,18(2):1246-1252.[3]㊀GANGISHETTY M K,HOU S,QUAN Q,et al.Reducing Architecture Limitations for Efficient Blue Perovskite Light-Emitting Diodes[J].Adv Mater,2018:1706226.[4]㊀LIN C C,JIANG D H,KUO C C,et al.Water-Resistant Efficient Stretchable Perovskite-Embedded Fiber Membranes for Light-Emitting Diodes[J].ACS Appl Mater Interfaces,2018,10(3):2210-2215.[5]㊀SHENG X,CHEN G,WANG C,et al.Polarized Optoelectronics of CsPbX 3(X =Cl,Br,I)Perovskite Nanoplates with Tunable Size and Thickness[J].Advanced Functional Materials,2018:1800283.[6]㊀CHEN X,ZHANG F,GE Y,et al.Centimeter-Sized Cs 4PbBr 6Crystals with Embedded CsPbBr 3Nanocrystals Showing Superior Photoluminescence:Nonstoichiometry Induced Transformation and Light-Emitting Applications[J].Advanced Functional Ma-terials,2018,28(16):1706567.[7]㊀CHA W,KIM H J,LEE S,et al.Size-controllable and stable organometallic halide perovskite quantum dots /polymer films [J].Journal of Materials Chemistry C,2017,5(27):6667-6671.[8]㊀LEE Y,MITZI D B,BARNES P W,et al.Pressure-induced phase transitions and templating effect in three-dimensional organ-ic-inorganic hybrid perovskites[J].Physical Review B,2003,68(2):366-369.[9]㊀ZHOU D,LIU D,PAN G,et al.Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots:A Novel and Efficient ㊃03㊃㊀第3期刘旭焱,等:钙钛矿量子点的制备以及发光性质研究㊃13㊃Downconverter for Improving the Performance of Silicon Solar Cells[J].Adv Mater,2017,29(42):1704149. [10]㊀CHEN C,LI H,JIN J,et al.Highly enhanced long time stability of perovskite solar cells by involving a hydrophobic holemodification layer[J].Nano Energy,2017,32:165-173.[11]㊀CHEN C,LI H,JIN J,et al.Long-Lasting Nanophosphors Applied to UV-Resistant and Energy Storage Perovskite Solar Cells[J].Advanced Energy Materials,2017,7(20):1700758.[12]㊀LI X,WU Y,ZHANG S,et al.CsPbX3Quantum Dots for Lighting and Displays:Room-Temperature Synthesis,Photolumines-cence Superiorities,Underlying Origins and White Light-Emitting Diodes[J].Advanced Functional Materials,2016,26(15): 2435-2445.[13]㊀CHO H,KIM Y H,WOLF C,et al.Improving the Stability of Metal Halide Perovskite Materials and Light-Emitting Diodes[J].Adv Mater,2018,30(42):e1704587.[14]㊀LI X,WANG Y,SUN H,et al.Amino-Mediated Anchoring Perovskite Quantum Dots for Stable and Low-Threshold RandomLasing[J].Adv Mater,2017,29(36):1701185.[15]㊀HAN Q,WU W,LIU W,et al.Two-photon absorption and upconversion luminescence of colloidal CsPbX3quantum dots[J].Optical Materials,2018,75:880-886.[16]㊀WU L,HU H,XU Y,et al.From Nonluminescent Cs4PbX6(X=Cl,Br,I)Nanocrystals to Highly Luminescent CsPbX3Nanocrystals:Water-Triggered Transformation through a CsX-Stripping Mechanism[J].Nano Lett,2017,17(9): 5799-5804.[17]㊀LIU Z,BEKENSTEIN Y,YE X,et al.Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals toLead Depleted Cs4PbBr6Nanocrystals[J].J Am Chem Soc,2017,139(15):5309-5312.[18]㊀KUMAR S,JAGIELSKI J,YAKUNIN S,et al.Efficient Blue Electroluminescence Using Quantum-Confined Two-DimensionalPerovskites[J].ACS Nano,2016,10(10):9720-9729.[19]㊀WEI Y,DENG X,XIE Z,et al.Enhancing the Stability of Perovskite Quantum Dots by Encapsulation in Crosslinked Polysty-rene Beads via a Swelling-Shrinking Strategy toward Superior Water Resistance[J].Advanced Functional Materials,2017,27(39):1703535.[20]㊀ZHANG H,WANG X,LIAO Q,et al.Embedding Perovskite Nanocrystals into a Polymer Matrix for Tunable LuminescenceProbes in Cell Imaging[J].Advanced Functional Materials,2017,27(7):1604382.[21]㊀SU Y,CHEN X,JI W,et al.Highly Controllable and Efficient Synthesis of Mixed-Halide CsPbX3(X=Cl,Br,I)PerovskiteQDs toward the Tunability of Entire Visible Light[J].ACS Appl Mater Interfaces,2017,9(38):33020-33028. [22]㊀PAN G,BAI X,YANG D,et al.Doping Lanthanide into Perovskite Nanocrystals:Highly Improved and Expanded OpticalProperties[J].Nano Lett,2017,17(12):8005-8011.Research on the preparation and luminescence properties of perovskite quantum dotsLIU Xuyan,ZHU Boheng(School of Mechanical and Electrical Engineering,Nanyang Normal University,Nanyang473061,China)Abstract:Perovskite quantum dots have attracted more and more attention as a new luminescent material due to their advantages of high quantum efficiency,narrow luminescent full width at half maximum and high color purity. In this paper,perovskite quantum dots with different halogenates are synthesized by hot-injection method,and their morphology and luminescence performance are tested by controlling different reaction temperatures and oleic acid quantities,and cubic phase perovskite quantum dots with high crystallinity and stable luminescence efficien-cy are obtained.Finally,based on the blue LED,white light LED with a superior luminescent property is ob-tained.Key words:hot-injection method;perovskite quantum dots;luminescent properties;white LED。

钙钛矿材料在激光领域的研究进展

钙钛矿材料在激光领域的研究进展
2010年,ZiyongCheng等 人[8]报 道 了 层 状 有 机无机杂化钙钛矿的光学性质,通过采用合成薄 膜制备,图案化方法研制新型 <110>和 <111> 取向的钙钛矿结构,并对这种混合钙钛矿的光电 性能进行了分析。同时这种具有自然形成层状结 构的独特材料可以被用作模板产生新的衍生物并 具有独特的物理性质。研究发现二维钙钛矿的激 发吸收和光辐射与金属卤化物密切相关,通过不 同的卤素取代,观察(C5H4CH2NH3)2PbI4 、(C5H4 CH2NH3)2PbBr4、(C5H4CH2NH3)2PbCl4的吸收和 光致发光,发射光由绿光变为蓝光再变为紫外光, 从而验证了钙钛矿材料可以同时被一个波长激发 发射出多种颜色的可见光。
2015年,HaimingZhu[9]等人报道了单晶卤化 铅钙钛矿纳米线在室温下具有极低的激光阈值 (220nJ/cm2)和高品质因子(Q~3600)以及波长 可调节激光。利用 402nm波长、250kHz频率、 150fs脉冲持 续 时 间 的 激 发 光 进 行 照 射,得 到 从 近红外光到蓝光范围具有可调节性的波长输出 (如图 1所示);并基于时间分辨荧光分析法的动 力学分析显示,激光量子产率接近 100%;同时对 激光 输 出 进 行 了 进 一 步 分 析,通 过 测 量 单 个 MAPbI3纳米线 (NW)(L=75μm)的 发 射 光 谱, 如图 2所示,表明激光输出是线性极化的,正交偏
第 12卷 第 5期
中国光学 Vol.12Fra bibliotekNo.52019年 10月
ChineseOptics
Oct.2019
文章编号 20951531(2019)05099322
钙钛矿材料在激光领域的研究进展
王 兰1,2 ,董 渊1,高 嵩2,陈奎一2,房法成2,金光勇1

有机无机杂化钙钛矿材料的电子应用

有机无机杂化钙钛矿材料的电子应用

有机无机杂化钙钛矿材料的电子应用有机无机杂化钙钛矿材料是一种具有卓越光电性能的新型材料,近年来在电子领域引起了广泛关注。

它们融合了有机和无机组分的优点,具备了高效的光电转换效率和优异的稳定性,因此在太阳能电池、光电器件等领域有着巨大的应用潜力。

一、太阳能电池领域有机无机杂化钙钛矿材料在太阳能电池领域发挥重要作用。

传统的硅太阳能电池受到了成本高昂、重量大、制造过程复杂等问题的限制,而有机无机杂化钙钛矿太阳能电池则具备了制造成本低、重量轻、制备工艺简单等优势。

这些材料通过特殊的晶体结构和电子传输机制,能够有效地吸收和利用光能,从而将太阳能高效地转化为电能。

研究表明,有机无机杂化钙钛矿太阳能电池的转换效率已经达到了20%以上,且还具备较好的稳定性和长期可靠性。

二、光电器件领域除了在太阳能电池领域,有机无机杂化钙钛矿材料还在其他光电器件领域展示了广阔的应用前景。

例如,它们可以用于光电探测器的制备。

有机无机杂化钙钛矿材料的能带结构和电子传输性质使其具备了优异的光电探测性能,能够高效地吸收和转换光信号。

这种材料的光电探测器在低成本、高灵敏度和快速响应速度等方面具备优势,因此在光通信、光传感等领域有着广泛的应用前景。

三、发光器件领域有机无机杂化钙钛矿材料还可用于发光器件的制备。

这些材料的优点在于发光效率高且色纯度好。

通过调控材料的组分和结构,可以实现不同波长的发光,因此在显示器件、照明器件等领域具备了广泛的应用潜力。

此外,有机无机杂化钙钛矿材料还具备易于制备、成本低廉等特点,使其在替代传统发光材料方面有着巨大的优势。

综上所述,有机无机杂化钙钛矿材料在电子领域具备广泛的应用前景。

通过利用这些材料的独特性质和优势,可以实现高效能源转换、高灵敏探测和高亮度发光等应用。

因此,加大对于有机无机杂化钙钛矿材料的研究和开发,将有助于推动电子领域的创新和发展,为可持续发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档