微积分十大经典问题

合集下载

微积分中10大经典问题

微积分中10大经典问题

微积分中10大经典问题最初的想法来自大一,当时想效仿100个初等数学问题,整理出100个经典的高等数学问题(这里高等数学按广义理解)。

可惜的是3年多过去了,整理出的问题不足半百。

再用经典这把尺子一量,又扣去了一半。

这里入选原则是必须配得起“经典”二字。

知识范围要求不超过大二数学系水平,尽量限制在实数范围内,避免与课本内容重复。

排名不分先后。

1)开普勒定律与万有引力定律互推。

绝对经典的问题,是数学在实际应用中的光辉典范,其对奠定数学科学女皇的地位起着重要作用。

大家不妨试试,用不着太多的专业知识,不过很有挑战性。

重温下牛顿当年曾经做过的事,找找当牛人的感觉吧,这个问题是锻炼数学能力的好题!2)最速降线问题。

该问题是变分法中的经典问题,不少科普书上也有该问题。

答案是摆线(又称悬轮线),关于摆线还有不少奇妙的性质,如等时性。

其解答一般变分书上均有。

本问题的数学模型不难建立,即寻找某个函数,它使得某个积分取最小值。

这个问题往深层次发展将进入泛函领域,什么是泛函呢?不好说,一个通俗的解释是“函数的函数”,即“定义域”不是区间,而是“一堆”函数。

最速降线问题通过引入光的折射定律可以直接化为常微分方程,大大简化了求解过程。

不过变分法是对这类问题的一般方法,尤其在力学中应用甚广。

3)曲线长度和曲面面积问题。

一条封闭曲线,所围面积是有限的,但其周长却可以是无限的,比如02年高中数学联赛第14题就是这样一条著名曲线-----雪花曲线。

如果限制曲线是可微的,通过引入内折线并定义其上确界为曲线长度。

但把这个方法搬到曲面上却出了问题,即不能用曲面的内折面的上确界来定义曲面面积。

德国数学家H.A.Schwarz举出一个反例,说明即使像直圆柱面这样的简单的曲面,也可以具有面积任意大的内接折面。

4)处处连续处处不可导的函数。

长久以来,人们一直以为连续函数除了有限个或可数无穷个点外是可导的。

但是,魏尔斯特拉斯给出了一个函数表达式,该函数处处连续却处处不可导。

微积分知识要点与答案

微积分知识要点与答案

“微积分”知识要点及答案(最后一页)一、单项选择1.函数24x x f -=)(有界且单调增加的区间是( ). A .),(22- B .),(02- C .)2,0( D . ),(+∞22.当0→x 时,x x sin +2是关于x 的( ). A .高阶无穷小量 B .低阶无穷小量 C .同阶但不等价无穷小量 D .等价无穷小量 3.=+'⎰dx x f x f 24)]([)(( ).A .C x f +221)(arctanB .C x f +441)(arctan C .C x f ++)(ln 221D . C x f ++)(ln 24.设10=')(x f ,则=∆-∆-→∆x x f x x f x )()3(lim 000( ). A . 4- B .3- C . 2-D .1-45.在] ,[11-上满足罗尔定理的函数是( ). A .2x e y -=B .32x y =C .211xy -=D .xxy sin =6. 下列等式中正确的是( ). A .C x f dx x f +='⎰)(])([ B .)()(x f x df =⎰C .)(])([x f dx x f d =⎰D .C x f dx x f +='⎰)()(7.由曲线21x y -=与直线x y =,y 轴所围平面图形绕x 轴旋转一周生成的旋转体体积等于( ). A .dx x x 222021)(--⎰πB .dx x x 222021)(⎰--π C .dx x x ])[(2222021--⎰πD .dx x x ])([2222201--⎰π8.函数x x x f arctan )sin()(+=2在),(+∞-∞内是( ). A .无界奇函数 B .无界偶函数 C .有界奇函数 D .有界偶函数9.当0→x 时,x x arcsin -3是关于x 的( ). A .高阶无穷小量 B .低阶无穷小量 C .同阶但不等价无穷小量 D .等价无穷小量 10.设10=')(x f ,则=∆-∆-→∆x x f x x f x )()3(lim 000( ). A . 4- B .3- C . 2-D .1-411. 下列命题中正确的是( ).A .极小值必小于极大值B .若)(x f 在0x x =处有00=')(x f ,则)(0x f 必为极值 C. 若)(0x f 为)(x f 的极值,则必有00=')(x fD. 若)(0x f 为可导函数)(x f 的极值,则必有00=')(x f12.=+'⎰dx x f x f 24)]([)(( ).A .C x f +221)(arctan B .C x f +441)(arctan C .C x f ++)(ln 221D . C x f ++)(ln 213.函数x x x f arctan )sin()(+=2在),(+∞-∞内是( ). A .无界奇函数 B .无界偶函数 C .有界奇函数 D .有界偶函数 14.设00=)(f ,10=')(f ,则=→xx f x 2)(lim( ). A . 0 B .21 C . 1D .不存在15.当0→x 时,x x arcsin -3是关于x 的( ). A .高阶无穷小量 B .低阶无穷小量 C .同阶但不等价无穷小量 D .等价无穷小量16.设x sin 是)(x f 一个原函数,则='⎰dx x f x )(( ).A .C x x x +-sin cosB .C x x x +-sin cos C .C x x x +-cos sinD .C x x x +-cos sin17.设10=')(x f ,则=∆-∆-→∆x x f x x f x )()3(lim 000( ). A . 4- B .3- C . 2-D .1-418. 下列命题中正确的是( ). A .极小值必小于极大值B .若)(x f 在0x x =处有00=')(x f ,则)(0x f 必为极值 C. 若)(0x f 为)(x f 的极值,则必有00=')(x fBWME200901D. 若)(0x f 为可导函数)(x f 的极值,则必有00=')(x f19. 下列等式中正确的是( ). A .C x f dx x f +='⎰)(])([ B .)()(x f x df =⎰C .)(])([x f dx x f d =⎰D .C x f dx x f +='⎰)()(20.=+'⎰dx x f x f 24)]([)(( ).A .C x f +221)(arctan B .C x f +441)(arctan C .C x f ++)(ln 221D . Cx f ++)(ln 2 21. 曲线x xe x f 2)(=在)1,2(--内( ).A. 单减且凹B. 单减且凸C. 单增且凹D. 单增且凸22.在] ,[11-上满足罗尔定理的函数是( ). A .2x e y -=B .32x y =C .211x y -=D .xxy sin =二、判断题(每题3分,共30分)1.若k xx e x =-→201)(lim ,则=k 2. 答案:2.设函数⎪⎩⎪⎨⎧=≠-=0021x a x x e x f x , ,)(在点0=x 连续,则=a 1. 答案:3.微分方程y x e dxdy+=的通解是C e e y x =+- 答案:4.曲线x xe y 2-=的拐点坐标是),(211e . 答案:5.3 122 1cos (3)11x xx dx x -+=+⎰ 答案:6.设yxe z =,则=∂∂∂y x z 2y xe y x y)(+-31. 答案:7. 设平面区域D 由直线x y =,1=x 与x 轴所围,则12Ddxdy =⎰⎰. 答案:8. 132 11(cos )2x x x dx -+=⎰. 答案:9.更换积分次序,dy y x f dx dx y x f dy xx yy⎰⎰⎰⎰=10102),(),(. 答案:10.微分方程y x e dxdy-=满足初始条件01=)(y 的特解是)ln(e e y x -+=1. 答案:11.若13lim(13)xx x e-→-=. 答案:12.设函数⎪⎩⎪⎨⎧<<≤-=10 20 3x axx x x e x f x ,tan sin ,cos )(在点0=x 连续,则0a =. 答案:13.曲线352)(-=x y 的拐点坐标是(2,1). 答案:14.设)sin(2+=y x z ,则=∂∂∂yx z2)cos(2+y . 答案:15.微分方程y x e dxdy-=满足初始条件01=)(y 的特解是)ln(e e y x -+=1 答案: 16.3 1421sin 2()31x x x dx x -+=+⎰. 答案:17.设平面区域D 由直线x y =,1=x 与x 轴所围,则12Ddxdy =⎰⎰. 答案:18.若k xx e x =-→201)(lim ,则2k =. 答案:19.微分方程y x e dxdy+=的通解是dx e dy e x y =-. 答案:20、曲线x xe y 3-=的拐点坐标是),(23232-e . 答案:21、若1lim()1n n n n e-→∞=-. 答案:22、设函数⎪⎩⎪⎨⎧>+-+≤+=0 ,110,)(2x xx x x x a x f 在点0=x 连续,则1a =. 答案:23、设平面区域D 由直线x y =,1=y 与y 轴所围,则21Ddxdy =⎰⎰. 答案:24、曲线x xe y 3-=的拐点坐标是),(23232-e . 答案:25、13lim(13)xx x e-→-=答案:26、设2y x e z +=,则=∂∂∂yx z22x y ye +. 答案:27、更换积分次序,dy y x f dxdx y x f dyxx yy⎰⎰⎰⎰=112),(),(. 答案:28、3 1221cos (3)11x x x dx x -+=+⎰答案:29、微分方程y x y x '=-)(22的通解是222x eCx y -=. 答案:30、曲线352)(-=x y 的拐点坐标是(2,1). 答案:三、解答题1、求微分方程122--='xy x y x 满足初始条件11=)(y 的特解.2、求极限.arctan lim2x tdt xx ⎰→3、求曲线)sin(xy e e y x =-在),(00点的切线方程.4、设函数),(y x z z =由方程xyz z =sin 确定,求dz .5、求微分方程x y x y =-'1的通解.6、求函数x x x f 2332-=)(在],[21-上的最大值和最小值.7、计算.dx e x ⎰-18、计算dxdy y x D⎰⎰+22sin,其中{}22224ππ≤+≤=y x y x D ),(.9、求极限.limcos 212x dt e xt x ⎰-→10、求曲线0=-+e e xy y 在),(10点的切线方程.11、设函数),(y x z z =由方程333a xyz z =-确定,求dz .12、求微分方程xxx y y sin =+'满足初始条件1=)(πy 的特解. 13、求函数1)(2+=x x x f 在]1,21[-的最大值和最小值.14、求dx x x ⎰-123 .15、计算D dxdy y yD其中,sin ⎰⎰由曲线x y x y ==,所围的闭区域. 16、求极限.sin lim3x tdt t xx ⎰→17、求曲线021=+-y y x sin 在),(00点的切线方程.18、设函数),(y x z z =由方程y x e xyz -=确定,求.dz19、求微分方程122--='xy x y x 满足初始条件11=)(y 的特解.20、求函数)1ln(2+=x y 在]3,1[-的最大值和最小值. 21、求dx x x ⎰-23231.22、计算,⎰⎰Ddxdy xy其中D 由21x ≤+2y 4≤,x x y ,=轴所围一、选择题答案 1 2 3 4 5 6 78 9 10 B D A B A D C CC B 11 12 13 14 15 16 17 18 19 20 21 22D A C B C A B DDABA二、判断题答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 × × √ √ × √ √ × √ √ √ × × √ √ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 × √ × √ √ √ × √ √ √ × √ × √ ×三、简答题答案1、解:将所求微分方程变形为,212xx y x y -=+'此方程为一阶非齐次线性微分方程.,)(x x P 2=,)(21xx x Q -=)())(()()())((ln )()(C x x x C dx x x C dx x x x e C dx e xx e C dx e x Q e y x dx x dx xdx x P dxx P +-=+-=+⋅-=+-=+=⎰⎰⎰⎰---⎰⎰⎰⎰211111222222222将初始条件11=)(y 代入上式,得23=C故所求微分方程在初始条件11=)(y 下的特解为:223121xx y +-=2、解:.lim arctan lim arctan lim2121122002=+==→→→⎰x x x x tdt x x xx3、解: 方程)sin(xy e e y x =-两边同时对x 求导,可得))(cos(y x y xy y e e y x '+='⋅-化简可得yx e xy x xy y e y +-='cos cos100000000=+-='ee y cos cos ),( 故曲线)sin(xy e e y x =-在),(00点的切线方程为 )(010-=-x y即 x y =.4、解:设xyz z z y x F -=sin ),,(,yz F x-=',,xz F y -=',cos xy z F z -=' xyz yz F F x zz x -=''-=∂∂cos ; xyz xz F F y z z y -=''-=∂∂cos ; 所以dy xyz xz dx xy z yz dz -+-=cos cos5、解:由题意知,,)(xx P 1-=x x Q =)(, 则 )()())(()()()()(C x x C dx xe e C dx e x Q e y dx x dx x dxx P dxx P +=+=+=⎰⎰⎰⎰⎰⎰----11所以原方程通解为:.Cx x y +=26、解:求函数的一阶导数,得)()(3131311222x xxx f -=-='--因此x x x f 2332-=)(在),(21-内有不可导点01=x 和唯一的驻点12=x , 比较下列值:044325111003>-==-==)( ,)( ,)( ,)(f f f f故x x x f 2332-=)(在],[21-上的最大值为,)(51=-f 最小值为00=)(f .7、解:令,x t -=则,,tdt dx t x 22==且x 从10→时,t 从10-→. ee e dt e tetde tdt e dx ett tt tx421222210110111-=--=-===------⎰⎰⎰⎰)()(8、解:积分区域D 的图形为上图阴影所示圆环域,在极坐标下{}πππθθ220≤≤≤≤='r r D ,),(=+⎰⎰dxdy y x D22sin =⎰⎰'θdrd r r D sin ⎰⎰πππθ220rdr r d sin =.)cos (sin 2262ππππ-=-r r r9、解:.)sin (limlimcoscos ex x e x dt e xx xt x 2122221=-⋅-=-→-→⎰10、解: 方程0=-+e e xy y 两边同时对x 求导,可得:0='+'+y e y x y y化简可得ye x yy +-=' e ey 101110-=+-='),( 故曲线0=-+e e xy y在),(10点的切线方程为:)0(11--=-x ey即 .ex y -=111、解:设333a xyz z z y x F --=),,(,yz F x3-=',,xz F y 3-=',xy z F z 332-=' xyz yz xy z yz F F x zz x -=---=''-=∂∂22333; xyz xz xy z xz F F y z z y -=---=''-=∂∂22333. 所以 )(xdy ydx xyz zdz +-=2.12、解:由题意可知,所求微分方程变形为一阶非齐次线性微分方程,,)(xx P 1=,sin )(x xx Q =)cos ()sin ()sin ()sin ())((ln )()(C x xC xdx x C xdx x x e C dx e xx e C dx e x Q e y x dx x dx xdx x P dxx P +-=+=+=+=+=⎰⎰⎰⎰---⎰⎰⎰⎰1111将初始条件1=)(πy 代入上式,得 1-=πC故所求微分方程在初始条件11=)(y 下的特解为: )cos (x xy --=11π13、解:求函数的一阶导数,得22)1(2)(++='x x x x f因此1)(2+=x x x f 在)1,21(-内有唯一的驻点0=x .比较下列值:21)1(,0)0(,21)21(===-f f f故1)(2+=x x x f 在]1,21[-上的最大值为,21)1()21(==-f f 最小值为.0)0(=f14、解:令x t 23-=,则232t x -=,.tdt dx -=0=x 时,3=t ;1=x 时,1=t ..5233102)3(21)(2323315313314221 321 0 -=-=-=--=-⎰⎰⎰t t dt t t dt t t dx x x15、解:积分区域为右图所示阴影部分,则=⎰⎰dxdy y yD sin dyy y y dy y y y y dx y y dy y y ⎰⎰⎰⎰-=-==121 0 1 0 )sin (sin )(sin sin 21sin 1sin 1cos 1cos 1cos cos cos cos sin 10110101 01-=-+-=-+-=+=⎰⎰⎰y ydyy y y yyd ydy16、解:=⎰→3sin limx tdt t xx .313sin lim 3sin lim020==→→x x x x x x x17、解: 方程021=+-y y x sin 两边同时对x 求导,可得:0211='⋅+'-y y y cos化简可得yy cos -='22202200=-='cos ),(y故曲线021=+-y y x sin 在),(00点的切线方程为:)(020-=-x y 即 .x y 2=18、解:设y x e xyz z y x F --=),,(,y x xe yz F --=',,y x y e xz F -+=',xy F z =' xz xz xy yz xyz xy yz e xy e yz F F x zy x y x z x -=-=-=--=''-=∂∂--; yyz z xy xyz xz xy e xz F F y z y x z y +-=+-=+-=''-=∂∂-. 则 dy yz yz dx x zxz dz +--=.19、解:将所求微分方程变形为,212xx y x y -=+'此方程为一阶非齐次线性微分方程.,)(x x P 2=,)(21xx x Q -=)())(()()())((ln )()(C x x xC dx x x C dx x x x e C dx e xx e C dx e x Q e y xdx x dx xdx x P dxx P +-=+-=+⋅-=+-=+=⎰⎰⎰⎰---⎰⎰⎰⎰211111222222222将初始条件11=)(y 代入上式,得23=C故所求微分方程在初始条件11=)(y 下的特解为:223121xx y +-=20、解:求函数的一阶导数,得12)(2+='x xx f 因此)1ln(2+=x y 在)3,1(-内有唯一的驻点0=x .比较下列值:10ln )3(,0)0(,2ln )1(===-f f f ,故)1ln(2+=x y 在]3,1[-上的最大值为,10ln )3(=f 最小值为0)0(=f .21、解:令,sin t x = 则.cos tdt dx =0=x 时,0=t ;23=x 时,3π=t .2453221241)cos 3cos (cos )1(cos cos )sin (cos cos sin 13033023023032323=+-=-=-=-==-⎰⎰⎰⎰ππππt t t d t t d t tdt t t dx x x22、解:积分区域如下图所示,在极坐标系下,122=+y x 的方程化为1=r , 422=+y x 的方程化为2=r ,由图可知,⎭⎬⎫⎩⎨⎧≤≤≤≤='40 ,21 ),(πθθr r D=⎰⎰Ddxdy xy⎰⎰''D dr rd θθtan ⎰⎰⋅=4021tan πθθrdr d.2ln 43cos ln 23cos cos 232cos sin 404021240=-=-=⋅=⎰⎰πππθθθθθθd rd。

微积分练习100题及其解答

微积分练习100题及其解答
x 0 t x
2
1
x2

1
解: lim x e
x 0
2
1
lim
x2
et . t t
17.求极限: lim sin x ln x .
x 0
解: lim sin x ln x lim
x 0 x 0
1 ln x tan x sin x x lim lim 0. x 0 csc x x 0 csc x cot x x 1 x 2 1 x . 1 x2 lim x 1 1 x tan 2 1 x x
cos 2x 1 2 sin 2x lim 2 x 0 sin x 2 x sin 2 x x cos 2 x 2 sin 2x 6x cos 2x 2x2 sin 2x ; 2 sin 2x 1 2 x lim x 0 2 sin 2x 3 4 cos 2 x x sin 2 x 2x lim


2.求极限: lim
e x e sin x . x 0 x sin x
( x 0) ,∴ lim
解:∵ e x 1 ~ x
e x e sin x e x sin x 1 lim e sin x 1. x 0 x sin x x0 x sin x
x 0
2
13.求极限: lim
x1
1 1 . 1 x ln x
1 1 1 1 ln x 1 x x lim lim lim x 1 1 x x 1 x 1 1 x ln x (1 x) ln x ln x ; 解: x 1 x 1 1 lim lim x 1 1 x x ln x x 1 1 ln x 1 2

(整理)大学微积分(常见问题与解答)

(整理)大学微积分(常见问题与解答)

辅导答疑第一章微积分的基础和研究对象1. 问:如何理解微积分(大学数学)的发展历史?微积分与初等数学的主要区别是什么?答:微积分的基础是---集合、实数和极限,微积分的发展历史可追溯到17世纪,在物理力学等实际问题中出现大量的(与面积、体积、极值有关的)问题,用微积分得到了很好的解决。

到19世纪,经过无数数学家的努力,微积分的理论基础才得以奠定。

可以说,经过300多年的发展,微积分课程的基本内容已经定型,并且已经有了为数众多的优秀教材。

但是,人们仍然感到微积分的教与学都不是一件容易的事,这与微积分学科本身的历史进程有关。

微积分这座大厦是从上往下施工建造起来的。

微积分从诞生之初就显示了强大的威力,解决了许多过去认为高不可攀的困难问题,取得了辉煌的胜利,创始微积分数学的大师们着眼于发展强有力的方法,解决各式各样的问题,他们没来得及为这门学科建立起严格的理论基础。

在以后的发展中,后继者才对逻辑细节作了逐一的修补。

重建基础的细致工作当然是非常重要的,但也给后世的学习者带来了不利的影响,今日的初学者在很长一段时间内只见树木不见森林。

微积分重用极限的思想,重用连续的概念,主要是在研究函数,属于变量数学的范畴。

而初等数学研究不变的数和形,属于常量数学的范畴。

2.问:大学数学中研究的函数与初等数学研究的函数有何不同之处?答:在自然科学,工程技术甚至社会科学中,函数是被广泛应用的数学概念之一,其意义远远超过了数学范围,在数学中函数处于基础核心地位。

函数不仅是贯穿中学《代数》的一条主线,它也是《大学数学》这门课程的研究对象。

《大学数学》课程中,将在原有初等数学的基础上,对函数的概念、性质进行重点复习和深入的讨论,并采用极限为工具研究函数的各种分析性质,进而应用函数的性质去解决实际问题。

第二章微积分的直接基础-极限1.问:阿基里斯追赶乌龟的悖论到底如何解决的?答:阿基里斯追赶乌龟的悖论是一个很有趣的悖论。

如果芝诺的结论是正确的,则追赶者无论跑得多么快也追不上在前面跑的人,这显然与我们在生活中经常见到的现象相违背。

一元微积分高难度习题

一元微积分高难度习题

第一章、极限与连续 1.求21)]1x x x -→+∞+-。

2。

求n 0≥x )。

3. 设3214lim1x x ax x l x →---+=+,求常数,a l 。

4。

求已知()0lim x f x →存在,且3x →=,求()0lim x f x →.5。

极限sin sin sin lim sin x t xt xt x -→⎛⎫⎪⎝⎭,并记此极限为()f x ,求函数()f x 的间断点并指出其间断类型。

6。

求常数,a b ,使()1,0, 011arctan , 1-1x x f x ax b x x x ⎧<⎪⎪⎪=+≤≤⎨⎪⎪>⎪⎩在所定义的区间上连续. 7。

设()()21211lim ,1n n n n n x a x f x a x ax +→∞+--=--为常数,求()f x 的分段表达式,并确定常数a 的值,使()f x 在[0,)+∞上连续. 8.设101=x , n n x x +=+61( ,3,2,1=n ),试证数列{}n x 极限存在,并求此极限。

第二章、导数1.设⎪⎩⎪⎨⎧=≠=.0),0(,0,)()(x f x x x f x F 其中)(x f 在0=x 处可导,0)0(≠'f ,0)0(=f ,则的是 )( 0x F x =( )(A )连续点; (B )第一类间断点; (C )第二类间断点; (D )不能确定。

2.函数x x x x x f ---=32)2()(不可导点的个数是( ). (A)3; (B)2; (C)1; (D)0。

3.⎪⎩⎪⎨⎧≤>-=,0 ),(,0 ,cos 1)(2x x g x x xxx f 其中)(x g 是有界函数,则)(x f 在0=x 处( )(A )极限不存在;(B )极限存在但不连续;(C )连续但不可导;(D )可导。

4.设x x x x f -=2)(,则)(x f ( )(A )处处不可导;(B )处处可导;(C )有且仅有一个不可导点;(D )有且仅有两个不可导点。

大一微积分下册经典题目及解析

大一微积分下册经典题目及解析

微积分练习册[第八章]多元函数微分学习题8-1多元函数的基本概念1.填空题:(1)若yxxy y x y x f tan),(22-+=,则___________),(=ty tx f (2)若xy y x y x f 2),(22+=,则(2,3)________,(1,)________yf f x-==(3)若)0()(22 y yy x xyf +=,则__________)(=x f (4)若22),(y x xy y x f -=+,则____________),(=y x f(5)函数)1ln(4222y x y x z ---=的定义域是_______________(6)函数y x z -=的定义域是_______________(7)函数xyz arcsin=的定义域是________________ (8)函数xy xy z 2222-+=的间断点是_______________2.求下列极限: (1)xy xy y x 42lim0+-→→(2)x xyy x sin lim0→→(3)22222200)()cos(1lim y x y x y x y x ++-→→ 3.证明0lim22)0,0(),(=+→yx xy y x4.证明:极限0lim 242)0,0(),(=+→y x yx y x 不存在5.函数⎪⎩⎪⎨⎧=≠+=(0,0)),( ,0)0,0(),(,1sin ),(22y x y x y x x y x f 在点(0,0)处是否连续?为什么习题8-2偏导数及其在经济分析中的应用1.填空题 (1)设y x z tanln =,则__________________,=∂∂=∂∂yzx z ; (2)设)(y x e z xy+=,则__________________,=∂∂=∂∂yzx z ; (3)设zyxu =,则________,__________________,=∂∂=∂∂=∂∂z u y u x u ; (4)设x y axc z tan =,则_________________,_________,22222=∂∂∂=∂∂=∂∂y x zyz x z(5)设zyx u )(=,则________2=∂∂∂y x u ; (6)设),(y x f 在点),(b a 处的偏导数存在,则_________),(),(lim 0=--+→xb x a f b x a f x2.求下列函数的偏导数y xy z )1()1(+=z y x u )arcsin()2(-=3.设xy z =,求函数在(1,1)点的二阶偏导数4.设)ln(xy x z =,求y x z ∂∂∂23和23y x z∂∂∂5.)11(yx ez +-=,试化简yz y x z x∂∂+∂∂226.试证函数⎪⎩⎪⎨⎧=≠+=)0,0(),( ,0)0,0(),(,3),(22y x y x y x xyy x f 在点(0,0)处的偏导数存在,但不连续.习题8-3全微分及其应用1.X 公司和Y 公司是机床行业的两个竞争者,这两家公司的主要产品的需求曲线分别为:QY PY Qx Px 41600;51000-=-=公司X 、Y 现在的销售量分别是100个单位和250个单位。

微积分习题库有答案经典(可编辑)

微积分习题库有答案经典(可编辑)

微积分习题库有答案经典习题1―2 1.确定下列函数的定义域:(1);(2);(3);(4);(5) 2.求函数的定义域和值域。

3.下列各题中,函数和是否相同?(1);(2);(3);(4)。

4.设证明: 5.设且,试确定的值。

6.下列函数中哪些是偶函数?哪些是奇函数?哪些是既非奇函数又非偶函数?(1)(2);(3);(4);(5)(6)。

7.设为定义在上的任意函数,证明:(1)偶函数;(2)为奇函数。

8.证明:定义在上的任意函数可表示为一个奇函数与一个偶函数的和。

9.设定义在上的奇函数,若在上单增,证明:在上也单增。

10.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(1)(2);(3);(4);(5)(6)。

11.下列各组函数中哪些不能构成复合函数?把能构成复合函数的写成复合函数,并指出其定义域。

(1)(2);(3);(4)(5)(6)。

12.下列函数是由哪些简单函数复合而成的?(1)(2);(3)(4)。

13.求下列函数的反函数:(1);(2);(3)。

习题1―3 1.利用数列极限定义证明:如果,则,并举例说明反之不然。

习题1―4 1.设(1)作函数的图形;(2)根据图形求极限与;(3)当时,有极限吗? 2.求下列函数极限:(1);(2);(3)。

3.下列极限是否存在?为什么?(1);(2);(3);(4);(5);(6)。

习题1―5 求下列极限 1.; 2. ; 3. ;4.; 5. ; 6. 。

习题1―6 1.求下列极限:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)。

2.利用极限存在准则证明:(1);(2)数列,…的极限存在;(3)。

习题1―7 1.当无限增加时,下列整标函数哪些是无穷小?(1);(2);(3);(4)。

2.已知函数(1)当时,上述各函数中哪些是无穷小?哪些是无穷大?(2)当时,上述各函数中哪些是无穷小?哪些是无穷大?(3)“是无穷小”,这种说法确切吗? 3.函数在是是否有界?又当地,这个函数是否为无穷大?为什么? 4.求下列极限(1);(2);(3);(4);(5);(6); 5.求下列极限:(1);(2);;;;(3);(4);(5);(6)。

高中物理竞赛微积分例题

高中物理竞赛微积分例题

高中物理竞赛微积分例题伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。

微积分学是微分学和积分学的总称。

它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。

无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。

微积分堪称是人类智慧最伟大的成就之一。

在高中物理中,微积分思想多次发挥了作用。

1、解决变速直线运动位移问题匀速直线运动,位移和速度之间的关系x=vt;但变速直线运动,那么物体的位移如何求解呢?例1、汽车以10m/s的速度行驶,到某处需要减速停车,设汽车以等减速2m/s2刹车,问从开始刹车到停车,汽车走了多少公里?【解析】现在我们知道,根据匀减速直线运动速度位移公式就可以求得汽车走了0.025公里。

但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。

在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。

现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即。

【微积分解】汽车在减速运动这段时间内速度随时间变化的关系,从开始刹车到停车的时间t=5s,?所以汽车由刹车到停车行驶的位移小结:此题是一个简单的匀变速直线运动求位移问题。

对一般的变速直线运动,只要结合物理知识求速度关于时间的函数,画出v-t图像,找“面积”就可以。

或者,利用定积分就可解决.v2、解决变力做功问题恒力做功,我们可以利用公式直接求出;但对于变力做功,我们如何求解呢?例2:如图所示,质量为m的物体以恒定速率v沿半径为R的竖直圆轨道运动,已知物体与竖直圆轨道间的摩擦因数为,求物体从轨道最低点运动到最高点的过程中,摩擦力做了多少功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这里入选原则是必须配得起“经典”二字。

知识范围要求不超过大二数学系水平,
尽量限制在实数范围内,避免与课本内容重复。

排名不分先后。

1)开普勒定律与万有引力定律互推。

绝对经典的问题,是数学在实际应用中的光辉典范,其对奠定数学科学女皇的地位起着重要作用。

大家不妨试试,用不着太多的专
业知识,不过很有挑战性。

重温下牛顿当年曾经做过的事,找找当牛人的感觉吧,这个问题是锻炼数学能力的好题!
2)最速降线问题。

该问题是变分法中的经典问题,不少科普书上也有该问题。

答案是摆线(又称悬轮线),关于摆线还有不少奇妙的性质,如等时性。

其解答一般变分
书上均有。

本问题的数学模型不难建立,即寻找某个函数,它使得某个积分取最小值。

这个问题往深层次发展将进入泛函领域,什么是泛函呢?不好说,一个通俗的解释是“函数的函数”,即“定义域”不是区间,而是“一堆”函数。

最速降线问题通过引入光的折射定律可以直接化为常微分方程,大大简化了求解过程。

不过变分法是对这类问题的一般方法,尤其在力学中应用甚广。

3)曲线长度和曲面面积问题。

一条封闭曲线,所围面积是有限的,但其周长却可以是无限的,比如02年高中数学联赛第14题就是这样一条著名曲线-----雪花曲线。

如果限制曲线是可微的,通过引入内折线并定义其上确界为曲线长度。

但把这个方法搬到曲面上却出了问题,即不能用曲面的内折面的上确界来定义曲面面积。

德国数学家H.A.Schwarz 举出一个反例,说明即使像直圆柱面这样的简单的曲面,也可以具有面积任意大的内接折面。

4)处处连续处处不可导的函数。

长久以来,人们一直以为连续函数除了有限个或可数无穷个点外是可导的。

但是,魏尔斯特拉斯给出了一个函数表达式,该函数处处连续却处处不可导。

这个例子是用函数级数形式给出的,后来不少人仿照这种构造方式给出了许多连续不可导的函数。

现在教材中举的一般是范德瓦尔登构造的比较简单的例子。

至于魏尔斯特拉斯那个例子,可以在齐民友的《重温微积分》中找到证明。

其实上面那个雪花曲线也是一条处处连续处处不可导的曲线。

5)填满正方形的连续曲线。

数学总是充满神奇与不可思议,以前人们总是以为曲线是一维的,但是皮亚诺却发现了一条可以填满正方形的连续曲线。

结果人们不得不重新审视以往对曲线的看法。

BTW:先写到这里,明天接着写另外5个。

1345中的例子可以在《数学分析新讲》中找到。

6)重积分变量替换定理。

该定理可以说是数学分析中比较大的一个定理,选择它的理由是因为其具有微积分的显著特征,即用一般化的通法代替特殊化技巧性的方法。

微积分的出现解决了不少以前从为解决的难题,使数学一般化了。

比如求面积,你不再像以往那样使用特殊的分割技巧,然后求和求极限了,而且范围也更广泛了。

7)泰勒级数和傅立叶级数是如何发现的。

注意这里是发现,而不是证明。

教材中对于一个定理,往往是直接列出定理,接着证明,最后举例。

但是对于数学思想阐述不够,尤其是对定理的“发现”过程介绍甚少,而这和定理本身同样重要。

泰勒级数和傅立叶级数源自于人们这样朴素的思想,即用简单函数表示复杂函数。

而人们所熟悉的简单函数要数幂函数(整数次)和三角函数了。

泰勒级数来自泰勒多项式,而后者是泰勒从牛顿差分法中得到的,而且非常不严密。

傅立叶级数是傅立叶用分离变量法解热传导方程(二阶抛物型偏微分方程)时得到的。

此前欧拉等人也曾得到过类似结果,不过他们大都持怀疑态度。

谁会想到任意一个连续函数可以用和它根本不像的三角函数表示呢?人们对于无穷的认识还很少。

关于泰勒级数和傅立叶级数是如何发现,大家可以参考《古今数学思想》二三册。

8)多项式逼近连续函数。

泰勒级数提供了用简单函数研究复杂函数的方法,不过它对函数本身要求也高(要求无穷次可导),这就限制了它的应用范围。

后来人们想对于连续函数,是否存在多项式,使得该函数与多项式之差可以任意小,即用多项式逼近连续函数。

答案是存在的,魏尔斯特拉斯最早给出了存在性的证明,后来斯通又将其推广为更一般的形式。

值得一提的是伯恩斯坦的证明,他不但证明了逼近多项式的存在性,而且给出了多项式-----伯恩斯坦多项式的构造方法。

以上证明均可以在张筑生老师的《数学分析新讲》第三册中找到。

9)格林公式、高斯公式和斯托克斯公式的统一证明。

这三个公式是微积分中我最喜欢的公式之一,形式优美,含义深刻。

若将三者统一起来,就得引入外微分。

外微分可以说数学分析中最具有现代特色的内容之一了。

其本身既有抽象性,又有统一性,而且可以向高维情况,流形,微分几何,微分拓扑等进军。

陈省身老先生尤其喜欢用外微分。

外微分一般是数学系的必修课程。

国外比较不错的书推荐《流形上的微积分高等微积分中一些经典定理的现代化处理》(M.斯皮瓦克写的)。

不过该书写的比较简洁、难度很大,最好大二大三去看。

10)不动点定理。

布劳威尔的这个不动点定理可以说是名气大的下人,有个老外写了本科普书叫《20世纪数学的五大指导理论》,里面就有不动点定理。

而且也有专门的书,好象叫《不动点理论》,一般需要涉及拓扑理论。

据说不动点的应用范围远超出数学领域,有兴趣的可以看看《20世纪数学的五大指导理论》这本书。

不动点定理经过适当技术处理是可以放到微积分中的,就二、三维情况的可以看看张老师的《数学分析新讲》第三册。

对于一般的n 维情况,米尔诺曾给出一个比较初等的解析证明,该证明可以在齐民友的《重温微积分》(很不错的书)中找到。

相关文档
最新文档