微积分在实际中的应用
微积分的8种应用场景专题讲解

微积分的8种应用场景专题讲解微积分是数学中一门重要的学科,它在各个领域有着广泛的应用。
下面将介绍微积分在8个不同的应用场景中的具体应用。
1. 物理学微积分在物理学中有着重要的应用,特别是对于运动学和力学的研究。
微积分可以描述物体的运动、速度、加速度和力的变化等重要物理量。
2. 经济学经济学中的边际分析和优化问题离不开微积分的运用。
微积分可以帮助经济学家分析市场供求关系、均衡价格和最优决策等经济问题。
3. 工程学在工程学中,微积分被广泛用于建模和优化。
例如,在结构力学中,微积分可以用于求解梁的弯曲和变形问题,以及通过最小化能量来设计最优结构。
4. 生物学微积分在生物学中的应用涉及到生物体的增长、代谢和动力学等方面。
通过微积分,生物学家可以研究生物体的变化和响应,进而理解生物系统的工作原理。
5. 计算机科学微积分在计算机科学中的应用主要体现在数据分析和算法设计方面。
微积分可以帮助研究人员分析和优化算法的效率,同时也为机器研究和人工智能提供了理论基础。
6. 统计学微积分在统计学中的应用主要体现在连续分布函数的推导和概率密度函数的计算中。
统计学家利用微积分方法可以对各种概率分布进行分析和推断。
7. 化学在化学中,微积分广泛应用于化学反应动力学、物质转化和反应速率等方面。
通过微积分,化学家可以了解和预测化学反应的速度和趋势。
8. 经营管理在经营管理领域,微积分可以帮助管理人员做出最优决策。
例如,在市场营销中,微积分可以用于分析需求曲线和边际收益,从而制定出最佳的定价和市场策略。
以上是微积分在8个应用场景中的简要介绍。
微积分的广泛应用证明了其在各个领域中的重要性和价值。
微积分的应用实例

微积分的应用实例
微积分作为数学的一个重要分支,不仅仅存在于教科书中的理论知识中,更是广泛应用于现实生活和各个领域的实际问题中。
本文将介绍微积分在实际中的应用实例,以展示微积分的重要性和广泛性。
一、面积与体积的计算
微积分最常见的应用之一是计算面积和体积。
例如,通过定积分可以计算曲线与坐标轴之间的面积,从而求得边界形状的面积。
又如,利用三重积分可以计算立体图形的体积,为工程设计和建筑规划提供重要参考。
二、速度与加速度的分析
微积分还可以用于分析速度和加速度,通过导数和积分关系可以推导出质点的速度和加速度函数。
这对于物理学中的运动学问题和工程学中的运输问题都具有重要意义,在汽车设计、航天器发射等领域都有广泛应用。
三、最优化问题的求解
微积分还可以用于解决最优化问题,通过对函数的导数进行分析,可以找到函数的最大值和最小值,为工程优化和资源分配提供重要依据。
例如,为了最大化利润或最小化成本,可以利用微积分方法对生产过程进行优化。
四、概率与统计分析
微积分在概率与统计学中也有着广泛的应用。
例如,通过积分可以计算概率密度函数下的概率值,从而进行概率分布的分析。
又如,在统计学中,微积分方法可以用于计算变量之间的相关性和分布情况。
总而言之,微积分作为一门重要的数学工具,在各个领域中都有着重要的应用价值。
通过对微积分的深入理解和应用,我们能够更好地解决实际问题,推动科学技术的发展,促进社会经济的进步。
希望本文所述的微积分应用实例能够启发更多人对微积分的学习和研究,为未来的发展做出更大的贡献。
微积分在现实生活中的应用

微积分在现实生活中的应用微积分是数学中一门重要的分支,它是研究变化以及连续函数的研究。
无论是物理学、化学还是工程学,它都有着很重要的应用。
在现实生活中,微积分也有许多重要的应用。
首先,在运动学中,微积分有着重要的应用。
运动的一些精髓如加速度、办法和延伸等都可以通过微积分来求解。
由于它们之间有着紧密的联系,可以依靠微积分来算出它们之间的关系,并且可以用来研究物体运动的过程,计算物体在一定时间内运动的位置以及速度。
其次,在热力学中,微积分也有重要的应用。
热力学是研究物体内热能变化的原理,可以计算热能以及温度的变化。
热力学使用微积分来研究它们之间的联系,可以计算出温度随时间的变化。
此外,在电磁学中,微积分也有着重要的应用。
电磁学是研究电磁场的力和电磁波的传播原理,可以用来研究电流、电压以及电势等物理量之间的联系。
电磁学使用微积分来计算电场与磁场之间的关系,从而可以研究电场如何在各种不同情况下传播。
另外,在经济学中,微积分也有着重要的应用。
经济学是研究经济活动的学科,可以用来研究一个国家经济活动的规律。
经济学使用微积分来研究经济决策的最优化。
用微积分可以计算出一个经济参数如物价指数、失业率等随时间的变化,从而为决策者提供参考依据。
最后,微积分也可以用于其他学科,比如气候学、流体力学等。
由于微积分可以描述变量之间的关系,可以计算出某种变量随着其他变量变化产生的影响。
因此,它还可以用于预测大气环境变化,用来研究流体在各种不同情况下的运动,从而为科学研究提供依据。
总之,微积分可以广泛的应用于现实生活中的各个领域,它可以描述复杂的变量之间的关系,更好地研究和解释它们之间的联系。
应用微积分解决实际问题

应用微积分解决实际问题微积分是数学中的一门重要学科,广泛应用于科学、工程以及经济学等领域。
它能够帮助我们解决各种实际问题,从物理学中的运动分析到经济学中的最优化,都离不开微积分的应用。
本文将探讨一些常见的实际问题,并通过微积分的方法进行解决。
一. 物体的运动分析在物理学中,微积分被用来研究物体的运动。
以一维运动为例,假设一个物体在时间t时刻的位置为x(t),我们可以通过微积分求解物体的速度和加速度。
1. 速度:速度是物体位置随时间的变化率,即v(t) = dx(t)/dt。
通过微分计算,我们可以求解出速度函数v(t)。
2. 加速度:加速度是速度随时间的变化率,即a(t) = dv(t)/dt。
同样,通过微分计算,我们可以求解出加速度函数a(t)。
通过对速度和加速度的分析,我们可以得到物体运动的各种特性,比如最大速度、最大加速度等。
二. 经济学中的最优化问题微积分在经济学中也扮演着重要的角色。
许多经济现象都可以使用最优化问题来描述,通过微积分的方法,我们可以找到最优解。
1. 利润最大化问题:在市场经济中,一个企业的目标通常是追求利润最大化。
假设一个企业的成本函数为C(x),收入函数为R(x),则利润函数为P(x) = R(x) - C(x)。
我们可以通过微积分的方法,找到使利润函数取得最大值的产量水平x*。
2. 消费最优化问题:在经济学中,消费者通常追求利益最大化。
假设一个消费者的效用函数为U(x),约束条件为消费者的收入不超过一定的限制B。
我们可以通过微积分的方法,找到消费者在给定收入限制下,使效用函数取得最大值的最优消费组合。
三. 物理学中的积分应用在物理学中,微积分的积分部分也有广泛的应用。
1. 曲线长度计算:如果我们需要计算一个曲线的长度,可以通过对曲线方程进行积分来得到结果。
假设曲线方程为y=f(x),则曲线长度L可以表示为积分形式的定积分:L = ∫[a,b] √(1+(dy/dx)²)dx2. 质量中心计算:质量中心是一个物体在空间中的平衡点,可以通过对物体的质量分布进行积分来求解。
高等数学微积分在实际生活中的应用研究

高等数学微积分在实际生活中的应用研究引言:高等数学中的微积分是一门研究函数的变化率和积分的学科,它是数学的重要分支之一。
微积分的应用广泛涉及到物理、工程、经济学等领域。
本文将重点探讨高等数学微积分在实际生活中的应用研究。
1. 物理学中的应用:微积分在物理学中有广泛的应用,例如在运动学中,通过微积分可以求解物体的速度、加速度和位移。
在动力学中,微积分可以用来描述物体的运动和力的作用。
微积分还可以应用于电磁学中的电场和磁场的计算,以及光学中的光的传播和折射等现象的研究。
2. 工程学中的应用:微积分在工程学中也有广泛的应用,例如在结构力学中,通过微积分可以求解材料的应力分布和变形情况。
在电路分析中,微积分可以用来计算电流、电压和功率。
在控制系统中,微积分可以应用于系统的建模和优化控制。
3. 经济学中的应用:微积分在经济学中的应用主要体现在微观经济学和宏观经济学中。
在微观经济学中,微积分可以用来计算边际效用、边际成本和边际收益。
在宏观经济学中,微积分可以用来研究经济增长、通货膨胀和失业等宏观经济问题。
4. 生物学中的应用:微积分在生物学中也有重要的应用,例如在遗传学中,微积分可以用来建立遗传模型和计算基因的分布。
在生物化学中,微积分可以用来计算化学反应的速率和平衡常数。
在生态学中,微积分可以用来研究种群的增长和生态系统的稳定性。
5. 金融学中的应用:微积分在金融学中的应用主要体现在金融工程和风险管理中。
在金融工程中,微积分可以用来建立期权定价模型和衍生品的风险管理模型。
在风险管理中,微积分可以用来计算投资组合的价值和风险。
结论:高等数学微积分在实际生活中的应用研究非常广泛,涵盖了物理学、工程学、经济学、生物学和金融学等多个领域。
微积分的应用不仅在理论研究中起到重要作用,也在实际问题的解决中发挥着不可替代的作用。
因此,对微积分的深入理解和应用研究具有重要的意义。
微积分在实际中的应用案例

微积分在实际中的应用案例微积分在实际中有许多应用案例,以下是一些例子:1. 物理学的应用:微积分在物理学中有广泛的应用,例如计算物体在运动中的速度、加速度和位移,以及解决电磁学、光学和量子力学中的问题。
此外,在研究天文学、气象学和地球物理学等领域时,也需要用到微积分的知识。
2. 工程学的应用:在工程学中,微积分被用来解决各种实际问题,如结构设计、机械振动、热传导和流体动力学等问题。
微积分还被用于控制工程和信号处理等领域,以实现最优控制和信号传输。
3. 经济学的应用:微积分在经济学的应用非常广泛,例如计算边际成本、边际收入和边际利润等,以及进行投入产出分析和动态规划等。
此外,微积分也被用于金融学和保险精算等领域。
4. 社会学的应用:在人口统计学中,微积分被用来研究人口增长和减少的规律。
在心理学中,微积分也被用于研究人类行为的规律和预测未来的趋势。
5. 医学的应用:在医学领域,微积分被用来研究生物系统的生理变化和药物动力学等。
例如,通过微积分的方法可以模拟药物在体内的扩散和代谢过程,为新药的研发提供重要的参考依据。
6. 环境科学的应用:在环境科学中,微积分被用来研究环境污染物的扩散和传播过程,以及生态系统的平衡和可持续发展等问题。
7. 计算机科学的应用:在计算机科学中,微积分被用来优化算法和提高计算机的性能。
例如,通过微积分的方法可以优化图像处理和语音识别等算法的性能。
8. 化学工程的应用:在化学工程中,微积分被用来描述化学反应速率和传质传热等过程,并优化反应器的操作条件。
9. 生物学中的应用:在生物学中,微积分被用来描述生物体的生理特征和行为特征,如呼吸系统、消化系统和神经系统等。
此外,微积分还被用于生态学中研究种群增长和生物多样性等问题。
总之,微积分作为一门数学工具,在实际中的应用非常广泛。
无论是在科学研究还是实际生活中,微积分都发挥着重要的作用。
微积分的实际应用

微积分的实际应用微积分是数学的一个重要分支,主要研究函数的变化率和区域的面积。
在现实生活中,微积分有着广泛的应用。
本文将从科学、工程以及经济和金融等领域,探讨微积分在实际应用中的重要性和作用。
一、科学领域的应用在物理学和天文学等科学研究中,微积分被广泛运用。
以运动学为例,通过对位移、速度和加速度的微积分分析,我们可以得出物体的运动规律。
这对我们研究天体运动、机械运动等具有重要意义。
另外,在电磁学中,微积分可以解决关于电场、磁场和电荷分布的问题。
通过计算电场的梯度、散度和旋度,我们可以得出电磁场的性质和变化规律,为电磁学的研究提供了重要工具。
二、工程领域的应用微积分在工程领域的应用尤为广泛。
在结构力学中,通过对应力和应变的微积分分析,我们可以得出建筑物的稳定性和结构强度的相关信息。
这有助于我们设计出更安全可靠的建筑和桥梁。
此外,微积分在电子工程和通信工程中也扮演重要角色。
在电路分析中,通过对电流、电压和电阻的微积分分析,我们可以预测电路的性能和响应。
而在通信领域,微积分可以帮助我们优化信号的传输和处理,提高通信系统的性能。
三、经济和金融领域的应用微积分在经济和金融领域的应用日益增多。
在经济学中,微积分可以用于计算边际效应和边际收益,从而帮助决策者做出最优决策。
在金融学中,微积分被用于计算金融衍生品的风险和回报,帮助投资者做出投资决策。
此外,在市场营销中,微积分可以用于分析市场需求和消费行为,为企业制定市场策略提供支持。
在资源分配和供应链管理中,微积分可以帮助我们优化资源的利用和流动,提高效率和竞争力。
总结:微积分作为数学的重要分支,在科学、工程、经济和金融等领域都有着广泛的应用。
它可以帮助我们理解和解决各种实际问题,为我们的生活和社会发展提供支持。
因此,学好微积分对于从事相关领域的人士来说非常重要,它的实际应用前景也是十分广阔的。
微积分在生活中的应用案例

微积分在生活中的应用案例咱来说说微积分在生活中的那些超有趣的应用案例。
一、计算不规则物体的体积(啤酒杯的小秘密)你有没有想过一个奇形怪状的啤酒杯能装多少酒呢?这时候微积分就闪亮登场啦。
比如说,这个啤酒杯的形状不是那种规规矩矩的圆柱体或者长方体。
它的杯身可能是那种上宽下窄,而且还带点曲线美的形状。
那我们怎么算出它的容积呢?我们可以把这个杯子沿着高度方向切成无数个超薄的小薄片,就像切土豆片一样。
每个小薄片近似看成一个圆柱体。
然后呢,根据这个薄片所在的高度,算出这个小圆柱体的体积(体积 = 底面积×厚度,底面积 = π×半径²,这里的半径会随着高度变化哦)。
再把所有这些小薄片的体积加起来,这其实就是在做积分运算。
最后就能准确算出这个怪杯子到底能装多少美味的啤酒啦。
要是你是个酒吧老板,知道这个计算方法,就不会在给酒杯打酒的时候出现偏差,让顾客觉得自己吃亏或者你亏本咯。
二、预测人口增长(地球村的人口计划)想象一下咱们这个地球村,人口一直在变来变去的。
人口的增长可不是像我们存钱那样,每年固定增加一个数那么简单。
人口增长的速度其实是和当前的人口数量有关系的。
如果现在人口多,那在同样的条件下,新增加的人口可能就会更多,因为生孩子的基数大嘛。
这时候就可以用微积分里的微分方程来描述人口增长的规律。
假设人口数量是关于时间的一个函数,我们可以建立一个方程,这个方程里包含人口数量的变化率(这就是导数啦,也就是微分的概念)。
通过这个方程,就像拥有了一个魔法水晶球一样,我们可以预测未来人口会增长到多少。
这对政府规划资源、建设城市、安排教育和医疗资源等可太重要了。
要是没有这个预测,可能到时候房子不够住,学校不够用,医院人满为患,那可就乱套啦。
三、汽车加速性能(速度与激情背后的数学)咱们都喜欢看那些超级炫酷的赛车电影,里面的汽车风驰电掣的。
那汽车的加速性能是怎么精确描述的呢?汽车在加速的时候,它的速度不是一下子就从0飙升到100码的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分在实际中的应用一、微积分的发明历程如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
微积分是微分学和积分学的总称。
它是一种数学思想,“无限细分”就是微分,“无限求合”就是积分。
微分学包括求导的运算,是一套关于变化的理论。
它使得函数、速度、加速度和曲线的斜率等均可以用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分的产生一般分为三个阶段:极限概念、求面积的无限小方法、积分与微分的互逆关系。
前两阶段的工作,欧洲及中国的大批数学家都做出了各自的贡献。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。
二、微积分的思想从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。
作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,与此同时,战国时期庄子在《庄子·天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想。
公元3世纪,刘徽在《九章算术》中提及割圆术“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣”用正多边形来逼近圆周。
这是极限论思想的成功运用。
他的极限思想和无穷小方法,也是世界古代极限思想的深刻体现。
虽然最后是欧洲人真正的研究和完成了微积分的创立工作,但中国古代数学对于微积分的出色工作也是不可忽视的。
从刘徽对圆锥、圆台、圆柱的体积公式的证明到14世纪初弧矢割圆术、组合数学、计算技术改革和珠算等数学史上的重要成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键。
中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门。
可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键一步落伍了。
意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。
这些都为后来的微积分的诞生作了思想准备。
三、解析几何为微积分的创立奠定了基础由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景。
到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作。
笛卡尔1637年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。
他不仅用坐标表示点的位置,而且把点的坐标运用到曲线上。
他认为点移动成线,所以方程不仅可表示已知数与未知数之间的关系,表示变量与变量之间的关系,还可以表示曲线,于是方程与曲线之间建立起对应关系。
此外,笛卡尔打破了表示体积面积及长度的量之间不可相加减的束缚。
于是几何图形各种量之间可以化为代数量之间的关系,使得几何与代数在数量上统一了起来。
笛卡尔就这样把相互对立着的“数”与“形”统一起来,从而实现了数学史的一次飞跃,而且更重要的是它为微积分的成熟提供了必要的条件,从而开拓了变量数学的广阔空间。
四、牛顿的“流数术”数学史的另一次飞跃就是研究“形”的变化。
17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。
到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家牛顿(1642~1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。
这些概念是力概念的数学反映。
牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形――线、角、体,都看作力学位移的结果。
因而,一切变量都是流量。
五、牛顿指出,“流数术”基本上包括三类问题。
(1)已知流量之间的关系,求它们的流数的关系,这相当于微分学。
(2)已知表示流数之间的关系的方程,求相应的流量间的关系。
这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。
(3)“流数术”应用范围包括计算曲线的极大值、极小值,求曲线的切线和曲率,求曲线长度及计算曲边形面积等。
牛顿已完全清楚上述(1)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。
牛顿在1665年5月20日的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。
六、莱布尼茨使微积分更加简洁和准确而德国数学家莱布尼茨(G.W. Leibniz 1646~1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。
但是他们这些工作是零碎的,不连贯的,缺乏统一性。
莱布尼茨创立微积分的途径与方法与牛顿是不同的。
莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。
牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一等,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。
莱布尼茨创造的微积分符号,正像印度――阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展。
莱布尼茨是数学史上最杰出的符号创造者之一。
牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。
莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
七、牛顿-莱布尼茨公式进一步发展事实上,他们二人是各自独立地建立了微积分。
最后还应当指出的是,牛顿的“流数术”,在概念上是不够清晰的,理论上也不够严密,在运算步骤中具有神秘的色彩,还没有形成无穷小及极限概念。
牛顿和莱布尼茨的特殊功绩在于,他们站在更高的角度,分析和综合了前人的工作,将前人解决各种具体问题的特殊技巧,统一为两类普通的算法――微分与积分,并发现了微分和积分互为逆运算,建立了所谓的微积分基本定理(现今称为牛顿――莱布尼茨公式),从而完成了微积分发明中最关键的一步,并为其深入发展和广泛应用铺平了道路。
由于受当时历史条件的限制,牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念比较模糊,因此引发了长期关于微积分的逻辑基础的争论和探讨。
经过18、19世纪一大批数学家的努力,特别是在法国数学家柯西首先成功地建立了极限理论之后,以极限的观点定义了微积分的基本概念,并简洁而严格地证明了微积分基本定理即牛顿―莱布尼茨公式,才给微积分建立了一个基本严格的完整体系。
八、牛顿―莱布尼茨公式的应用牛顿―莱布尼茨公式实质就是定积分。
把微积分的理论应用到现实当中,通过数值的计算,服务于生产实践当中。
而在生产实践中求体积是一种很广泛的应用,以下两个公式就是定积分中的求体积的应用公式:绕x轴旋转体体积公式是V=π∫[a,b][f(x)] 2dx 即:一个简单的二维图形绕着二维坐标的x轴旋转,得到的三维的立体图形的体积。
绕y轴旋转体积公式同理,将x,y互换即可,V=π∫[a,b][φ(y)]2dy即:一个简单的二维图形绕着二维坐标的y轴旋转,得到的三维的立体图形的体积。
其中:∫是积分符号,[a,b]是积分区域,a是积分上限,b是积分下限,[f(x)]是被积分的函数,dx是积分符号例如下图求椭球的体积,椭圆的标准方程为:x2/a2+y2/b2=1可以推导出y2=a2b2-b2x2/a2 =[f(x)] 2此图形可以看成是椭圆绕y轴旋转,积分区域是[-15,15],由此可以代入公式就可以得到此托球的体积约是2420*π立方厘米。
牛顿―莱布尼茨公式为实际生产中的计算面积、体积等提供一套通用的方法,同时使得西方的制造业都得到很好的发展。
以上是积分的应用,而在经济应用当中,主要是微分的应用。
例如:变化率(边际)这一个概念,实际在数学上就是对经济函数求微分。
R=D*P(收益函数,R其中代表利润,D代表需求量,P代表价格)需要知道收益的增长率,就是对该函数求导(即微分)。
微分实质就是增量之比的极限。
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。
微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。
此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。