微积分在生活中的应用论文
高等数学微积分在实际生活中的应用

Science &Technology Vision科技视界作者简介:郭卫霞(1980—),女,汉族,河南睢县人,大学本科,讲师,研究方向:微积分。
高等数学微积分在实际生活中的应用郭卫霞(鹤壁职业技术学院,河南鹤壁458000)【摘要】微积分是微分学和积分学的统称,该学科在数学学科中占据重要位置,而且在经济、机械工程、通信和建筑等领域具有重要作用,随着计算机技术的不断发展,在计算机领域也发挥了很大作用。
数学学习不仅需要掌握课本知识,最为重要的是要将学到的数学知识运用到生活实践中,让知识真正地为生活服务。
基于此,就需要深入研究如何将微积分应用在生活中的各个领域,让微积分发挥出更大效用。
【关键词】微积分;应用;生活中图分类号:O172文献标识码:ADOI :10.19694/ki.issn2095-2457.2020.32.031The Application of Advanced Mathematics Calculus in Real LifeGUO Wei-xia(Hebi polytechnic,Hebi Henan 458000,China )【Abstract 】Calculus is the general designation of differential calculus and integral calculus.It occupies an important position in mathematics,and plays an important role in the fields of economy,mechanical engineering,communications and architecture,etc.With the development of computer technology,it also plays a great role in the computer field.Mathematics learning not only needs to master textbook knowledge,but also need to apply the mathematical knowledge in life practice,so that knowledge can really serve life.Based on this,we need to study how to make calculus be used in various life fields,so that calculus can play a greater role.【Key words 】Calculus;Application;Life0引言,,。
微积分在生活中的应用

微积分在生活中的应用一、前言微积分是我进入大学学习的第一本和数学有关的书籍。
我喜欢这种逻辑性很强的东西,所以从小对数学就有一种痴迷,当我学到了把微积分的知识应用到实际生活中的时候那种精确与巧妙魅让我深深的折服。
特别是它在经济生活中的应用真正做到了把知识化为财富的目的。
二、摘要牛顿、莱布尼兹发明微积分以后,人们才有能力把握运动和过程。
有了微积分,就有了工业革命,就有了大工业生产,也就有了现代化的社会。
航天飞机、宇宙飞船等现代化交通工具都是在微积分的帮助下制造出来的。
微积分在人类社会从农业文明跨入工业文明的过程中起到了决定性的作用。
微积分是为了解决变量的瞬时变化率而存在的。
从数学的角度讲,是研究变量在函数中的作用。
从物理的角度讲,是为了解决长期困扰人们的关于速度与加速度的定义的问题。
变这个字是微积分最大的奥义。
因此,了解微积分在生活中的应用对于我们解决实际问题有很大的帮助。
关键词:物理,经济,应用。
三、在生活中的运用一,在物理中的应用1,研究物体做匀变速直线运动位移问题时;对于匀速直线运动,位移和速度之间的关系我们都清楚,x=vt,但如果物体的速度大小时刻发生变化,那么物体的位移如何求解呢?此时,微积分就成了我们有利工具。
我们可以把物体运动的时间无限细分。
在每一份时间内,速度的变化量非常小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移可以知道。
现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的面积;2,研究匀速圆周向心加速度的方向问题时;根据牛顿第二定律,我们可以知道匀速圆周运动加速度的方向指向圆心;同时利用极限思想,也可以加速度的方向。
当圆周上的两个点无限靠近时,速度变化量也无限的小,因此由VAVB△V围成的等腰三角形的底角接近90,因此速度变化量和速度垂直,而速度又和半径垂直,因此,匀变速圆周运动中,加速度的方向始终指向圆心。
数学微积分论文范文

数学微积分论文范文微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来店铺为你整理了数学微积分论文的范文,一起来看看吧。
数学微积分论文范文篇一:初等微积分与中学数学摘要:初等微积分作为高等数学的一部分,属于大学数学内容。
在新课程背景下,几进几出中学课本。
可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。
但对很多在岗教师而言,还很陌生,或是理解不透彻。
这样不利于这方面的教学。
我将对初等微积分进入中学数学背景,作用及教学作简单研究.关键词:微积分;背景;作用;函数一、微积分进入高中课本的背景及必要性在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。
微积分已成为我们学习数学不可或缺的知识。
其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。
但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。
这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。
近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。
这为其完全进入高中课本奠定了基础。
从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。
即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。
回顾历届高考,微积分相关题型分值越来越高。
但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。
我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一方法,也是联系中学与大学数学知识的纽带!二、微积分在中学数学中的作用1.衔接性与后继作用。
我看微积分方程在实际生活中的应用

我看微积分方程在实际生活中的应用数学的价值不仅在于掌握,而且数字是解决生活中世纪问题的重要工具,并能促使人类智慧的进步。
通过数学不断发展,改变了人们的观察能力,思维能力,分析能力以及个人素质等,以更好的思维方式知道行动,能适应当前发展迅速的新社会,新形势。
本文将介个微积分在生活中的多方面应用,对微积分只是进行深入探索。
在现实生活中,我们身边的一切事物都能为数学研究提供服务,实际上,微积分本身就存在于生活中的各项事物中,只有不断深入挖掘,才能透过现象看本质,将抽象的数学付诸于具体事物中,也就是实现“具体——抽象——具体”的思维方式,以求不断进步,不断完善。
在物理中的应用:究变力做功问题时;对于恒力做功,我们可以利用公式直接求出;但对于变力,我们不能利用公式;这种情况下,我们要借助于微积分,我们可以把位移无限细分,在每一个小位移上,力的变化很小,可以看作是恒力,根据公式算出力所作的功;然后把每一个小位移上的功无限求和,那么就可以求出变力做的总功是多少。
匀速直线运动,位移度之间的关系是x=vt,但是如果物体的速度是时刻变化的,那么如何求位移呢?这个问题的解决就用到了微积分。
把物体运动的时间无限细分,在每个单位时间内,物体的速度变化是很小的,就可以认为无提示匀速直线运动,根据已有的攻势求解再把所有的位移加起来,就能够得到总的位移了。
微积分在投资决策中的运用:初等数学在经济生活中的应用十分广泛,例如在投资决策中,如果以均匀流的存款方式,也就是将资金以流水一样的方式定期不断存入银行中,那么计算1年后的中价值就可以通过定积分的方式。
例如某企业一次性投资某项目2亿元,并据顶一年后建成,获得经济回报。
如果忽略资金的时间价值,那么5年时间就能收回成本,但是如果将资金的时间价值考虑进来,可能情况就是有所变化。
因此,微积分的应用,让投资更趋向于理性化,能够风险,提高回报。
“微元法”计算例题体积在切菜中的应用:在研究积分计算平行界面时,假设空间中的某个立体面,有一个曲面和垂直于x轴的两个平面围城,如果使用任一点并与x轴的平面截例题垂直,所得的截面面积也就是一致的连续函数,此例题体积就能通过定积分表示。
微积分在生活中的应用论文

课程论文专业酒店管理微积分在生活中的应用摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。
主要集中几何,经济以及我们在生活中的应用关键词:微积分,几何,经济学,物理学,极限,求导绪论作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。
我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。
如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。
希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。
一、微积分在几何中的应用微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。
很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。
顿觉微积分应用真的很广!1.1求平面图形的面积(1)求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。
微积分在生活中的应用

微积分在生活中的应用李燕经管系会计电算化1301班,学号201311020125摘要:牛顿、莱布尼兹发明微积分以后,人们才有能力把握运动和过程。
有了微积分,就有了工业革命,就有了大工业生产,也就有了现代化的社会。
航天飞机、宇宙飞船等现代化交通工具都是在微积分的帮助下制造出来的。
微积分在人类社会从农业文明跨入工业文明的过程中起到了决定性的作用。
微积分是为了解决变量的瞬时变化率而存在的。
从数学的角度讲,是研究变量在函数中的作用。
从物理的角度讲,是为了解决长期困扰人们的关于速度与加速度的定义的问题。
“变”这个字是微积分最大的奥义。
因此,了解微积分在生活中的应用对于我们解决实际问题有很大的帮助。
关键词:物理,经济,应用。
三.引言:通过研究微积分在物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。
获取资料的途径主要是互联网。
四(一)在物理中的应用例1,研究物体做匀变速直线运动位移问题时;对于匀速直线运动,位移和速度之间的关系我们都清楚,x=vt,但如果物体的速度大小时刻发生变化,那么物体的位移如何求解呢?此时,微积分就成了我们有利工具。
我们可以把物体运动的时间无限细分。
在每一份时间内,速度的变化量非常小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移可以知道。
现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的面积;例2,研究匀速圆周向心加速度的方向问题时;根据牛顿第二定律,我们可以知道匀速圆周运动加速度的方向指向圆心;同时利用极限思想,也可以加速度的方向。
当圆周上的两个点无限靠近时,速度变化量也无限的小,因此由VAVB△V围成的等腰三角形的底角接近90,因此速度变化量和速度垂直,而速度又和半径垂直,因此,匀变速圆周运动中,加速度的方向始终指向圆心。
微积分在生活的应用

微积分在生活中的应用摘要:微积分作为一种重要的数学工具,在解决实际问题时并不是一开始就得心应手的,在开始应用微积分解决间题时,常常会感到困惑,主要表现在:积分元的选取,积分限的确定及模型的建立等等.比如,利用微积分来确定一些简单的学习方法、投资决策、对实际问题进行数学建模等,这些问题都可以通过微积分的知识和方法来进行分析,并找出其中的规律,从而做出决策.本文将结合它在几何、物理与经济等方面的应用,利用理论知识付诸于实践中,有利于于人们更好的学习了解微积分的应用。
关键词:微积分物理经济应用摘要字数偏多,再去掉两三行。
摘要是反映你文章中的内容,前面两句介绍微积分,后面直接说文章通过哪些内容反映你的主题引言通过微积分可以描述运动的事物,描述一种变化的过程,可以说,微积分的创立极大地推动了生活的进步.由于微积分是研究变化规律的方法,因此只要与变化、运动有关的研究都要与微积分发生联系,都需要运用微积分的基本原理和方法.随着现代科学的发展和各学科之间的相互交融,微积分仍会进一步丰富和发展人们的生活,进一步将微积分的理论应用于实践,从而为人类社会的进步作出更大的贡献.无论是在生活中还是学习中,微积分都能实现其最大化、最优化的作用.在学习数学中,利用微积分能很好的计算平面上那些不规则图形的面积、曲线的弧长、三维空间中旋转曲面的表面积、旋转体的体积及在我们生活中“切菜”的物体的体积等;在物理上,利用微积分可以研究物体做匀速直线运动的位移问题、研究匀速圆周向心加速度的方向问题及研究物体的变力做功等;在经济中,利用微积分能分析边际分析在经济中的应用、弹性在经济中的应用及学会用微积分解决实际中的最优问题与投资决策等。
可见,微积分存在于生活中的方方面面,是解决实际问题最方便的工具.如果没有微积分的出现,生活中遇到的问题就不能转化为数学语言来进行研究,生活中存在的大量的实际问题就不能够解决,因此,要想解决这些问题我们就必须学好微积分的有关知识,好好利用微积分这个工具。
微积分在现实生活中的应用

微积分在现实生活中的应用微积分是数学中一门重要的分支,它是研究变化以及连续函数的研究。
无论是物理学、化学还是工程学,它都有着很重要的应用。
在现实生活中,微积分也有许多重要的应用。
首先,在运动学中,微积分有着重要的应用。
运动的一些精髓如加速度、办法和延伸等都可以通过微积分来求解。
由于它们之间有着紧密的联系,可以依靠微积分来算出它们之间的关系,并且可以用来研究物体运动的过程,计算物体在一定时间内运动的位置以及速度。
其次,在热力学中,微积分也有重要的应用。
热力学是研究物体内热能变化的原理,可以计算热能以及温度的变化。
热力学使用微积分来研究它们之间的联系,可以计算出温度随时间的变化。
此外,在电磁学中,微积分也有着重要的应用。
电磁学是研究电磁场的力和电磁波的传播原理,可以用来研究电流、电压以及电势等物理量之间的联系。
电磁学使用微积分来计算电场与磁场之间的关系,从而可以研究电场如何在各种不同情况下传播。
另外,在经济学中,微积分也有着重要的应用。
经济学是研究经济活动的学科,可以用来研究一个国家经济活动的规律。
经济学使用微积分来研究经济决策的最优化。
用微积分可以计算出一个经济参数如物价指数、失业率等随时间的变化,从而为决策者提供参考依据。
最后,微积分也可以用于其他学科,比如气候学、流体力学等。
由于微积分可以描述变量之间的关系,可以计算出某种变量随着其他变量变化产生的影响。
因此,它还可以用于预测大气环境变化,用来研究流体在各种不同情况下的运动,从而为科学研究提供依据。
总之,微积分可以广泛的应用于现实生活中的各个领域,它可以描述复杂的变量之间的关系,更好地研究和解释它们之间的联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程论文专业酒店管理微积分在生活中的应用摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。
主要集中几何,经济以及我们在生活中的应用关键词:微积分,几何,经济学,物理学,极限,求导绪论作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。
我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。
如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。
希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。
一、微积分在几何中的应用微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。
很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。
顿觉微积分应用真的很广!1.1求平面图形的面积(1)求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。
由此可知通过求函数的定积分就可求出曲边梯形的面积。
例如:求曲线2f x 和直线x=l ,x=2及x 轴所围成的图形的面积。
分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。
所以该曲边梯形的面积为2233222112173333x f x dx ===-=⎰(2)求旋转体的体积(I)由连续曲线y=f(x)与直线x=a 、x=b(a<b) 及x 轴围成的平面图形绕x 轴旋转一周而成的旋转体的体积为2()()ba V f x d x π=⎰。
(Ⅱ)由连续曲线y=g(y)与直线y=c 、y=d(c<d)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()dc V g yd y π=⎰。
(III)由连续曲线y=f(x)( ()0f x ≥)与直线x=a 、x=b(0a ≤ <b)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()ba V xf x d x π=⎰。
例如:求椭圆22221x y a b+=所围成的图形分别绕x 轴和y 轴旋转一周而成的旋转体的体积。
分析:椭圆绕x 轴旋转时,旋转体可以看作是上半椭圆2()y x a x a =-≤≤,与x 轴所围成的图形绕轴旋转一周而成的,因此椭圆22221x y a b +=所围成的图形绕x 轴旋转一周而成的旋转体的体积为2222232214()33aay a aa ab v dx dxa b a x x ab a ππππ---===-=⎰⎰椭圆绕y 轴旋转时,旋转体可以看作是右半椭圆)x b y b =-≤≤,与y 轴所围成的图形绕y 轴旋转一周而成的,因此椭圆22221x y a b+=所围成的图形绕y 轴旋转一周而成的旋转体的体积为2222232214()33bby b bb b a v dy dyb a b y y a b b ππππ---===-=⎰⎰二、在几何中的应用2.1微积分在几何学中的应用(1)求曲线切线的斜率由导数的几何意义可知,曲线y=( x)在点0x 处的切线等于过该点切线的斜率。
即'0()tan f x a =,由此可以求出曲线的切线方程和法线方程。
例如:求曲线2y x =在点(1,1)处的切线方程和法线方程。
分析:由导数的几何意义知,所求切线的斜率为:'1122x x k y x =====,所以,所求切线的方程为y-l=2(x 一1),化解得切线方程为2x-y-1=0。
又因为法线的斜率为切线斜率的负倒数,所以,所求法线方程为11(1)2y x -=--,化解得法线方程为2y+x-3=0。
(2)求函数值增量的近似值由微分的定义可知,函数的微分是函数值增量的近似值,所以通过求函数的微分可求出函数值增量的近似值。
例如:计算sin 46o 的近似值。
分析:令f(x)=sin(x),则f(x)=cosx ,取0045x =,001,(1)180x π∆+=,则由微机分的定义可知000'0sin 46sin(451)sin 45(45)0.7194180180f ππ=+≈+=+≈三、微积分在经济学的应用在我所查找到的关于微积分在经济学领域的应用中,我发现高等数学在经济学中运用十分基础和广泛,是学好经济学剖析现实经济现象的基本工具。
经济学与数学是密不可分息息相关的。
高等数学方法在经济学中的运用增强了经济学的严密性和说理性,将经济问题转化为数学问题,用数学方法对经济学问题进行分析,将数学中的极限,导数、微分方程知识在经济中的运用。
尤其我看到在经济管理中,由边际函数求总函数(即原函数),一般采用不定积分来解决,或求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决。
这个对一个企业的发展至关重要!1关于最值问题例设:生产x个产品的边际成本C=100+2x,其固定成本为C(0)=1000元,产品单价规定为500元。
假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润解:总成本函数为C(x)=∫x0(100+2t)dt+C(0)=100x+x 2+1000总收益函数为R(x)=500x总利润L(x)=R(x)-C(x)=400x-x2-1000,L’=400-2x,令L’=0,得x=200,因为L’’(200)<0。
所以,生产量为200单位时,利润最大。
最大利润为L(200)=400×200-2002-1000=390009(元)在这里我们应用了定积分,分析出利润最大,并不是意味着多增加产量就必定增加利润,只有合理安排生产量,才能取得总大的利润。
2关于增长率问题例:设变量y是时间t的函数y = f (t),则比值为函数f (t)在时间区间上的相对改变量;如果f (t)可微,则定义极限为函数f (t)在时间点t的瞬时增长率。
对指数函数而言,由于,因此,该函数在任何时间点t上都以常数比率r 增长。
这样,关系式(*)就不仅可作为复利公式,在经济学中还有广泛的应用。
如企业的资金、投资、国民收入、人口、劳动力等这些变量都是时间t的函数,若这些变量在一个较长的时间内以常数比率增长,都可以用(*)式来描述。
因此,指数函数中的“r”在经济学中就一般的解释为在任意时刻点t的增长率。
如果当函数中的r取负值时,也认为是瞬时增长率,这是负增长,这时也称r为衰减率。
贴现问题就是负增长。
3.弹性函数设函数y=f(x)在点x处可导,函数的相对改变量Δyy=f(x+Δx)-f(x)y与自变量的相对改变量Δxx之比,当Δx→0时的极限称为函数y=f(x)在点x处的相对变化率,或称为弹性函数。
记为EyEx•EyEx=limδx→0ΔyyΔxx=limδx→0ΔyΔx.xy=f’(x)xf(x) 在点x=x0处,弹性函数值Ef(x0)Ex=f’(x0)xf(x0)称为f(x)在点x=x0处的弹性值,简称弹性。
EE xf(x0)%表示在点x=x0处,当x产生1%的改变时,f(x)近似地改变EE xf(x0)%。
经济学中,把需求量对价格的相对变化率称为需求弹性。
对于需求函数Q=f(P)(或P=P(Q)),由于价格上涨时,商品的需求函数Q=f(p)(或P=P(Q))为单调减少函数,ΔP与ΔQ异号,所以特殊地定义,需求对价格的弹性函数为η(p)=-f’(p)pf(p)例设某商品的需求函数为Q=e-p5,求(1)需求弹性函数;(2)P=3,P=5,P=6时的需求弹性。
解:(1)η(p)=-f’(p)pf(p)=-(-15)e-p5.pe-p5=p5;(2)η(3)=35=0.6;η(5)=55=1;η(6)=65=1.2η(3)=0.6<1,说明当P=3时,价格上涨1%,需求只减少0.6%,需求变动的幅度小于价格变动的幅度。
η(5)=1,说明当P=5时,价格上涨1%,需求也减少1%,价格与需求变动的幅度相同。
除了上述几个例子之外,还有“规模报酬、等无数的经济概念和原理是在充分运用导数、积分、全微分等各种微积分知识构建的。
他们极大的丰富了经济学内涵,为政府的宏观调控提供了重要帮助四、总结与展望数学学习是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性,因此,我们当代大学生学习高等数学的重要性就显而以见的了,我们要想在21世纪的社会有一个立足之地就需要全面的发展自己,而我们学习的高等数学又是这里面的重中重!我们只有认清当今社会的人才培养目标,深入的学习高等数学,使高等数学在我们的人生中其到应有的作用,为社会做到最大的效益!参考文献 (5号宋体)[1] 同济大学数学教研室.高等数学(第六版)【M】.:高等教育出版社.2007[2] 张丽玲.导数在微观经济学中的应用【J】.河池学院学报,2007,(27).[3]百度文库wenku.baidu./search?word=%CE%A2%BB%FD%B7%D6%BC%B8%BA%CE%D3%A6%D3%C3&lm=1&od=0&f r=top_homewenku.baidu./search?word=%CE%A2%BB%FD%B7%D6%D4%DA%CE%EF%C0%ED%B5%C4%D3%A6%D 3%C3&lm=1&od=0&fr=top_home。