高等数学的矩阵在实际生活中的应用
高考数学矩阵的应用及实例分析

高考数学矩阵的应用及实例分析高考数学是所有文理科生必备的重要课程,而矩阵则是其中必不可少的基础知识点之一。
然而,在实际应用中,矩阵的作用远不止于此,尤其是在计算机领域的广泛应用。
本文将就高考数学矩阵的应用及实例展开阐述和分析。
矩阵的基本定义矩阵是数学中经常用到的对象,其由数或其他数或向量组成的矩形阵列所构成。
例如,一个行列均为m的矩阵记作A=[a_{ij}],其中i表示行,j表示列,a_{ij}表示A的第i行第j列的元素。
在矩阵中,元素之间的顺序是有意义的,这也是矩阵与普通数组不同的地方。
矩阵的加法和乘法矩阵的加法和乘法是矩阵计算中最基础的两个操作,其定义如下:1.矩阵加法设A=[a_{ij}],B=[b_{ij}]均为m行n列的矩阵,令C=A+B,且C=[c_{ij}],则矩阵C的第i行第j列的元素c_{ij}为a_{ij}+b_{ij}。
2.矩阵乘法设A=[a_{ij}]是m行n列的矩阵,B=[b_{ij}]是n行k列的矩阵,令C=A*B,且C=[c_{ij}],则矩阵C的第i行第j列的元素c_{ij}为c_{ij}=a_{i1}*b_{1j}+a_{i2}*b_{2j}+...+a_{in}*b_{nj}矩阵的应用矩阵的应用不仅局限于高考数学的范畴,其在计算机领域中也有着广泛的应用。
1.图像处理在图像处理中,矩阵被广泛应用于图像滤波和处理算法中。
比如,利用矩阵卷积的方法对图像进行模糊和锐化处理等。
2.数据分析在机器学习和数据分析领域中,矩阵被广泛用于特征向量和特征值计算、预处理和数据降维等方面。
其中,主成分分析(PCA)就是一种常用的算法,它通过矩阵的特征向量和特征值来实现降维和特征提取。
3.计算机图形学在计算机图形学领域中,矩阵被广泛应用于更加复杂的三维图形的建模和变换中。
其中,矩阵变换(旋转、平移等)是基本操作之一,而矩阵在计算机图形学中的应用更加广泛,包括贝塞尔曲线、NURBS曲线等都离不开矩阵的支持。
矩阵的实际应用

0 .2 5 0 8 , 0 .7 4 9 2
应用3 应用矩阵编制Hill密码
密码学在经济和军事方面起着极其重要的作 用。现在密码学涉及很多高深的数学知识,这里 只做简单介绍。 密码学中将信息代码称为密码,尚未转换成 密码的文字信息称为明文,由密码表示的信息称 为密文。从明文到密文的过程称为加密,反之为 解密。
0 . 10 M 0 . 30 0 . 10 0 . 30 0 . 40 0 . 20 0 . 15 0 . 25 0 . 15 4000 P 2000 5800 4500 2600 6200 4500 2400 6000 4000 2200 6000
A 变成“密码”后发出
2 1 1 3 9 81 2 15 52 2 14 43
于是将要发出的信息(或矩阵)经乘以
1 A b1 1 0 2 1 1 3 1 67 2 3 44 , 2 20 43 1 A b2 1 0
我们选择不同的可逆矩阵 A(密钥),则可得到不同的密文。 如: 选择可逆矩阵
1 A 2 3 2 2 4 3 1 3
action的编码矩阵是
1 B 3 20
9 15 14
则
1 AB 2 3
2 2 4
3 1 1 3 3 20
即action的编码矩阵可以写成
。
1 3 B 20 9
高等数学的矩阵在实际生活中的应用修订稿

高等数学的矩阵在实际生活中的应用内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)矩阵在实际生活中的应用一.【摘要】随着科学技术的发展,数学的应用越来越广泛,可以说和我们的生活息息相关。
而高等数学中的线性代数,也同样有着广泛的应用。
本篇论文中,我们就对线性代数中的矩阵在生产成本、人口流动、加密解密、计算机图形变换等方面的应用进行研究。
【关键词】高等数学矩阵实际应用二.应用举例1.生产成本计算:在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,以此来对生产过程进行了解和监控,进而对生产进行管理和调控,保证正常平稳的生产以达到最好的经济收益。
但是得到的原始数据往往纷繁复杂,这就需要用一些方法对数据进行处理,生成直接明了的结果。
在计算中引入矩阵可以对数据进行大量的处理,这种方法比较简单快捷。
例1.某工厂生产三种产品A、B、C。
每种产品的原料费、支付员工工资、管理费和其他费用等见表1,每季度生产每种产品的数量见表2。
财务人员需要用表格形势直观地向部门经理展示以下数据:每一季度中每一类成本的数量、每一季度三类成本的总数量、四个季度每类成本的总数量。
表1.生产单位产品的成本(元)表2.每种产品各季度产量(件)解 我们用矩阵的方法考虑这个问题。
两张表格的数据都可以表示成一个矩阵。
如下所示: 通过矩阵的乘法运算得到MN 的第一行元素表示了四个季度中每个季度的原料总成本; MN 的第二行元素表示了四个季度中每个季度的支付工资总成本;MN 的第三行元素表示了四个季度中每个季度的管理及其他总成本。
MN 的第一列表示了春季生产三种产品的总成本; MN 的第二列表示了夏季生产三种产品的总成本; MN 的第三列表示了秋季生产三种产品的总成本; MN 的第四列表示了冬季生产三种产品的总成本。
对总成本进行汇总,每一类成本的年度总成本由矩阵的每一行元素相加得到,每一季度的总成本可由每一列相加得到。
线性代数的应用研究——矩阵在实际生活中的应用

线性代数的应用研究——矩阵在实际生活中的应用一、可逆矩阵在保密通信中的应用随着计算机与网络技术的迅猛发展,通信技术中的保密工作显得尤为重要,怎样确保通信过程中信息的安全变得至关重要,因此大量各具特色的密码体系不断涌现。
矩阵作为线性代数的重要组成部分,其应用领域也从传统的物理领域迅速扩展到非物理领域,尤其是在保密通信中发挥着重要作用。
(一)可逆矩阵 1、矩阵矩阵的定义:m 行n 列的矩形数表称为m 行n 列矩阵,简称m ×n 矩阵,矩阵用大写黑体字母A ,B ,C ,…表示。
如:A=[a 11 a 12 … a 1na 21 a 22 … a 2n … … … …a m1 a m2 … a mn ] 这m ×n 个数称为矩阵A 的元素, a ij 称为矩阵A 的第i 行第j 列元素,一个m ×n 矩阵A 也可简记为A =(a ij ) m×n 或 A m×n 。
矩阵加法:设有两个m ×n 矩阵A =(a ij ) ,B =(b ij ),矩阵A 与B 的和记作A +B ,规定为A +B =(a ij +b ij )m×n。
矩阵乘法:设A =(a ij ) m×n ,B =(b ij ) m×n 。
矩阵A 与矩阵B 的乘积记作AB ,规定为AB =(c ij ) m×n 其中c ij =a i1b 1j +a i2b 2j +⋯+a is b sj =∑a ik b kj s k=1 (i=1,2,…,m ;j=1,2,…,n)。
2、矩阵的逆于n 阶矩阵A ,如果存在一个n 阶矩阵B ,使得AB=BA=1,则称矩阵A 为可逆矩阵,而矩阵B称为A的逆矩阵。
记作A-1,即A-1=B。
(二)保密通信1、背景自从人类有了文字书写之后,就考虑使用一些手段来保障通信的机密,防止被获取甚至被篡改。
早期的古典密码,如人类最早由记载的棋盘密码、恺撒密码、维吉尼亚密码等,相对比较简单。
矩阵的实际应用

【假设】( 1)假定26个英文字母与数字之间有以 下的一一对应关系:
(2)假设将单词中从左到右 ,每3个字母分为一组, 并将对应的3个整数排成3维的行向量 ,加密后仍为3 维的行向量 ,其分量仍为整数。
在【假设】 中 , 也可将单词中从左到右 ,每4个字母分位 一组 , 并将对应的4个整数排成4维的列向量 ,加密后仍为4维 的列向量 ,其分量仍为整数 , 最后不足4个字母时用空格上。
信息action ,使用上述代码 ,则此信息的编码是: 1 ,3, 20 ,9 , 15 , 14.可以写成两个向量
②密匙矩阵要求3阶及以上.
每一类成本的年度总成本由矩阵的每一行元素相加得到 每一季度的总成本可由每一列相加得到
表3汇总了总成本
应用2 人口迁徙模型
设在一个大城市中的总人口是固定的。 人口的分布则因居民在市区和郊区之间 迁徙而变化 。每年有6%的市区居民搬 到郊区去住 ,而有2%的郊区居民搬到 市区 。假如开始时有30%的居民住在市 区,70%的居民住在郊区, 问10年后市 区和郊区的居民人口比例是多少?30年、 50年后又如何?
矩阵的实际应用
线性代数研究最多最基本的便是矩阵 。矩阵是线 性代数最基本的概念 ,矩阵的运算是线性代数的基本 内容 。矩阵就是一个数表 ,而这个数表可以进行变换, 以形成新的数表 。如果你了解原始数表的含义 ,而且 你可以从中抽象出某种变化规律 ,你就可以用线性代 数的理论对你研究的数表进行变换 , 并得出你想要的 一些结论 。这些结论就可以直观的 、简洁的数表形式 展现在你眼前 。在日常生活中 ,矩阵无时无刻不出现 在我们的身边 ,例如生产管理中的生产成本问题 、人 口的流动和迁徙 、密码学 、图论 、生态统计学 、 以及 在化工 、医药 、 日常膳食等方面都经常涉及到的配方 问题 、超市物品配送路径等都和矩阵息息相关。
矩阵的应用及案例

矩阵的应用及案例矩阵是数学中的一种重要工具,它在各个领域都有广泛的应用。
本文将从不同领域的案例出发,介绍矩阵的应用。
1. 图像处理在图像处理中,矩阵被广泛应用。
例如,我们可以将一张图片表示为一个矩阵,每个像素点对应矩阵中的一个元素。
通过对矩阵进行变换,可以实现图像的旋转、缩放、平移等操作。
此外,矩阵还可以用于图像的压缩和去噪等处理。
2. 机器学习在机器学习中,矩阵也是一个重要的工具。
例如,我们可以将一组数据表示为一个矩阵,每行对应一个样本,每列对应一个特征。
通过对矩阵进行运算,可以实现分类、聚类等任务。
此外,矩阵还可以用于神经网络的训练和优化。
3. 量子计算在量子计算中,矩阵也是一个重要的工具。
例如,我们可以将一个量子态表示为一个矩阵,通过对矩阵进行运算,可以实现量子门的操作。
此外,矩阵还可以用于量子算法的设计和优化。
4. 金融风险管理在金融风险管理中,矩阵也是一个重要的工具。
例如,我们可以将一组金融数据表示为一个矩阵,每行对应一个时间点,每列对应一个资产。
通过对矩阵进行运算,可以实现风险分析和投资组合优化。
5. 信号处理在信号处理中,矩阵也是一个重要的工具。
例如,我们可以将一个信号表示为一个矩阵,通过对矩阵进行变换,可以实现信号的滤波、降噪等处理。
此外,矩阵还可以用于音频和视频的压缩和编码。
6. 网络分析在网络分析中,矩阵也是一个重要的工具。
例如,我们可以将一个网络表示为一个矩阵,每行和每列对应一个节点,矩阵中的元素表示节点之间的连接关系。
通过对矩阵进行运算,可以实现网络的聚类、社区发现等任务。
7. 人脸识别在人脸识别中,矩阵也是一个重要的工具。
例如,我们可以将一组人脸图像表示为一个矩阵,每行对应一个图像,每列对应一个像素。
通过对矩阵进行运算,可以实现人脸识别和人脸比对等任务。
8. 自然语言处理在自然语言处理中,矩阵也是一个重要的工具。
例如,我们可以将一组文本表示为一个矩阵,每行对应一个文档,每列对应一个词汇。
矩阵在生活中的应用

矩阵在生活中的应用
矩阵是数学中一个重要的概念,它在生活中有着广泛的应用。
从科学到工程,
从经济到医学,矩阵都扮演着重要的角色。
在科学领域,矩阵被广泛应用于物理学、化学等学科中。
在物理学中,矩阵被
用来描述物体的运动和变形,例如在力学中,矩阵可以表示物体受力的情况,从而帮助科学家们分析物体的运动规律。
在化学中,矩阵被用来描述化学反应的过程,从而帮助化学家们预测反应的结果。
在工程领域,矩阵被广泛应用于控制系统、通信系统等领域。
在控制系统中,
矩阵被用来描述系统的状态和控制输入之间的关系,从而帮助工程师们设计出高效的控制系统。
在通信系统中,矩阵被用来描述信号的传输和处理过程,从而帮助工程师们设计出高效的通信系统。
在经济领域,矩阵被广泛应用于金融、市场分析等领域。
在金融中,矩阵被用
来描述资产的收益和风险之间的关系,从而帮助金融分析师们进行投资决策。
在市场分析中,矩阵被用来描述市场数据之间的关系,从而帮助市场分析师们预测市场走势。
在医学领域,矩阵被广泛应用于医学影像处理、生物信息学等领域。
在医学影
像处理中,矩阵被用来描述医学影像的特征,从而帮助医生们进行疾病诊断。
在生物信息学中,矩阵被用来描述生物数据之间的关系,从而帮助生物学家们研究生物信息。
总的来说,矩阵在生活中有着广泛的应用,它不仅帮助科学家们研究自然规律,还帮助工程师们设计出高效的系统,帮助金融分析师们进行投资决策,帮助医生们诊断疾病。
可以说,矩阵已经成为了现代社会不可或缺的数学工具之一。
矩阵的应用及案例

矩阵的应用及案例矩阵是数学中一种重要的数据结构,它的使用不仅可以方便我们分析和解决数学问题,而且在现实应用中也得到了广泛的应用。
本文将介绍矩阵的应用及其实际案例。
首先,我们来看一下矩阵的一般定义。
一个矩阵是由m行n列的实数组成的数学表示,用来表示常量或连续变量的特殊容器,可以用来描述数据的多维关系,也可以用来解决多元函数和多元方程组等数学问题。
矩阵在现实生活中,也有着广泛的应用。
比如,矩阵可以用来解决运输问题,它可以解决产品在运输过程中的最优选择问题;矩阵也可以用来求解复杂的统计问题,比如计算各类投资的最优组合,从而有效提高投资回报;矩阵还可以用来解决线路规划问题,比如求解最短路径、最优路线等。
此外,矩阵也可以应用于许多其它领域,比如机器学习中的支持向量机(SVM)、神经网络建模和图像处理等。
因此,我们可以看到矩阵在很多领域得到了广泛的应用。
让我们看看一些现实的案例,以更具体的方式来了解矩阵的应用。
比如,在金融领域,矩阵可以用来计算定价,比如期权定价和资产定价,也可以用来计算风险、收益投资组合等;在基因组学中,矩阵可以用来分析基因的表达模式、比较基因家族信息,以及追踪变异基因的演化轨迹等;在信息分析领域,矩阵可以用来提取特征、估计参数和建立模型,也可以用来进行文档类别划分等。
从以上的案例可以看出,矩阵可以用来解决很多现实问题,在许多领域得到了广泛的应用。
然而,在有些情况下,使用矩阵可能会遇到一些问题,比如矩阵求解非常耗费计算资源,或者在处理非线性函数和方程时,可能不能得到最优解等。
总之,矩阵在很多领域都有很多应用,可以解决很多实际问题,但也要考虑到它可能带来的一些问题,以便更好地应用它。
以上就是有关矩阵的应用及其实际的案例。
希望本文能够给读者介绍矩阵的应用及实际案例,从而使读者更加深入地了解矩阵的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵在实际生活中的应用
一.【摘要】
随着科学技术的发展,数学的应用越来越广泛,可以说和我们的生活息息相关。
而高等数学中的线性代数,也同样有着广泛的应用。
本篇论文中,我们就对线性代数中的矩阵在生产成本、人口流动、加密解密、计算机图形变换等方面的应用进行研究。
【关键词】
高等数学矩阵实际应用
二.应用举例
1.生产成本计算:在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,以此来对生产过程进行了解和监控,进而对生产进行管理和调控,保证正常平稳的生产以达到最好的经济收益。
但是得到的原始数据往往纷繁复杂,这就需要用一些方法对数据进行处理,生成直接明了的结果。
在计算中引入矩阵可以对数据进行大量的处理,这种方法比较简单快捷。
例1.某工厂生产三种产品A、B、C。
每种产品的原料费、支付员工工资、管理费和其他费用等见表1,每季度生产每种产品的数量见表2。
财务人员需要用表格形势直观地向部门经理展示以下数据:每一季度中每一类成本的数量、每一季度三类成本的总数量、四个季度每类成本的总数量。
表1.生产单位产品的成本(元)表2.每种产品各季度产量(件)
解 我们用矩阵的方法考虑这个问题。
两张表格的数据都可以表示成一个矩阵。
如下所示: 通过矩阵的乘法运算得到
MN 的第一行元素表示了四个季
度中每个季度的原料总成本;
MN 的第二行元素表示了四个季度中每个季度的支付工资总成本;
MN 的第三行元素表示了四个季度中每个季度的管理及其他总成本。
MN 的第一列表示了春季生产三种产品的总成本; MN 的第二列表示了夏季生产三种产品的总成本; MN 的第三列表示了秋季生产三种产品的总成本; MN 的第四列表示了冬季生产三种产品的总成本。
对总成本进行汇总,每一类成本的年度总成本由矩阵的每一行元素相加得到,每一季度的总成本可由每一列相加得到。
如下表:
表3. 总成本汇总表
⎪⎪⎪⎭⎫
⎝⎛=200040003500250030003700480028002000250030002000N
这样,我们就利用矩阵的乘法把多个数据表汇总成一个数据表。
从而比较直观地反映了该工厂生产的成本。
2.人口流动问题
例2.假设某个中小城市及郊区乡镇共有40万人从事农、工、商工作,假定这个总人数在若干年内保持不变,而社会调查表明:
(1) 在这40万就业人员中,目前约有25万人从事农业,10万
人从事工业,5万人经商;
(2) 在务农人员中,每年约有10%改为务工,10%改为经商; (3) 在务工人员中,每年约有10%改为务农,20%改为经商; (4) 在经商人员中,每年约有10%改为务农,20%改为务工。
现欲预测一、二年后从事各业人员的人数,以及经过多年之后,从事各业人员总数之发展趋势。
解 若用三维向量(x i ,y i ,z i )T 表示第i 年后从事这三种职业的人员总数,则已知(x 0,y 0,z 0)T =(25,10,5)T 。
而欲求(x 1,y 1,z 1)T ,(x 2,y 2,z 2)T 并考察在n →∞时(x n ,y n ,z n )T 的发展趋势。
依题意,一年后,从事农、工、商的人员总数应为
即:
以(x 0,y 0,z 0)T =(25,10,5)T
代入上式,即得: 即一年业人员的人数分别为21.5万10.5万、8万人。
⎪⎪
⎪⎭⎫
⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛0000001117.02.01.02.07.01.01.01.08.0z y x A z y x Z Y X
以及
即两年后从事各业人员的人数分别为19.05
万、11.1万、9.85万人。
进而推得:
即n 年之后从事各业人员的人数完全由 决定。
在这个问题的求解过程中,我们应用到矩阵的乘法、转置等,将一个实际问题数学化,进而解决了实际生活中的人口流动问题。
这个问题看似复杂,但通过对矩阵的正确应用,我们成功的将其解决。
不得不说,矩阵是我们解决实际问题的重要工具。
3. 应用矩阵编制Hill 密码
密码学在经济和军事方面都起着极其重要的作用。
在密码学中将信息代码称为密码,没有转换成密码的文字信息称为明文,把密码表示的信息称为密文。
从明文转换为密文的过程叫加密,反之则为解密。
现在密码学涉及很多高深的数学知识。
1929年,希尔(Hill )通过矩阵理论对传输信息进行加密处理,提出了在密码学史上有重要地位的希尔加密算法。
下面我们介绍一下这种算法的基本思想。
假设我们要发出“attack ”这个消息。
首先把每个字母a ,b ,c ,d ……x ,y ,z 映射到数1,2,3,4……24,25,26。
例如1表示a ,3表示c ,20表示t ,11表示k ,另外用0表示空格,用27表示句号等。
于是可以用以下数集来表示消息“attack ”: 把这个消息按列写成矩阵的形式: 第一步:“加密”工作。
现在任选一个三阶的可逆矩阵,例如:
⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛85.91.1105.190002
111222z y x A z y x A Z Y X ⎪
⎪⎪⎭
⎫
⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---000111z y x A z y x A Z Y X n n n n n n n n A ⎪⎪
⎪⎭
⎫
⎝⎛=210211321A
于是可以把将要发出的消息或者矩阵经过乘以A 变成“密码”(B )后发出。
第二步:“解密”。
解密是加密的逆过程,这里要用到矩阵A 的逆矩
阵A -1
这个可逆矩阵称为解密的钥匙,或称为“密匙” 。
当然矩阵A 是通信双方都知道的。
即用
从密码中解出明码:
通过反查字母与数字的映射,即可得到消息“attack ”。
在实际应用中,可以选择不同的可逆矩阵,不同的映射关系,也可以把字母对应的数字进行不同的排列得到不同的矩阵,这样就有多种加密和解密的方式,从而保证了传递信息的秘密性。
上述例子是矩阵乘法与逆矩阵的应用,将高等代数与密码学紧密结合起来。
运用数学知识破译密码,进而运用到军事等方面。
可见矩阵的作用是何其强大。
4. 计算机图形变换
本学期我们学习了计算机图形学这门基础专业课程,其中接触到很多与矩阵变换有关的知识,这激发了我们的学习兴趣。
下面将简单列举矩阵在这门课中的重要作用。
在计算机中点的坐标用齐次向量坐标来表示,即用n+1维向量来表示n 维向量。
如点A (x,y,z )用齐次向量坐标表示为A(x,y,z,1)。
例3:在二维直角坐标系中有三角形ABC ,坐标分别为(2,3),(3,1),(1,1),现将其向x 轴正方向平移2个单位,向y 轴正方向平移2个单位,求平移后各点对应的齐次坐标及相应的变换矩阵?
B
AM =⎪
⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=2560266140101112032011210211321⎪⎪⎪⎭⎫ ⎝⎛----=-111122110
1
A
解:先写出ABC 三点所对应的齐次坐标,A (2,3,1),B(3,1,1),C(1,1,1)
平移的矩阵变换式为
此处T x =2 T y =2,则变换矩阵为
经上述变换后,A 点齐次坐标为(4,5,1)B 点齐次坐标为(5,3,1) C 点齐次坐标为(3,3,1)。
可以看出图形的一种变换对应着一个矩阵运算,也就是说二维图形变换可以表示为图形点集的齐次坐标矩阵与某一变换矩阵相乘的形式。
我们可以定义以下二维变换矩阵:
这样,二维空间中的某点的二维变换可以表示成点的规范化齐次坐标矩阵与三维齐次坐标变换矩阵 相乘的形式,即 根据
在变换中的具体作用,进一步可以将 分成4个子矩阵。
矩阵 的作用是对点进行比例、对称、旋转和错切变换。
矩阵
的作用是对点进行平移变换。
矩阵 的作用是进行透视投影变换。
矩阵
的作用是产生整体比例变换。
三.结束语
通过这次论文的举例,加深了我对于矩阵的认识,深刻理解了矩阵在实际生活中的应用。
矩阵在实际生活中的应用还有很多,在此就不一一列举。
通过这次的学习也加深了我对于数学的浓厚兴趣。
参考文献
[][][]1101000111y x y x T y T x T T y x y x ++=⎪⎪⎪
⎭
⎫
⎝⎛=⎪⎪
⎪
⎭⎫ ⎝⎛=s m l q d c p b a T D 2D T 2D T 2D T 2[]s T =4⎪⎪⎭⎫ ⎝⎛=q p T 3[]m l T =2⎪⎪⎭⎫ ⎝⎛=d c b a T 1
[1] 上海交通大学数学系. 线性代数(第二版)[M]. 北京:科学出
版社,2007.
[2] 陆枫,何云峰.计算机图形学基础[M]. 北京:电子工业出版社,
2008.
[3] 郭龙先,张毅敏,何建琼.高等代数[M].北京:科学出版社,2011.
[4] 林升旭,梅家斌. 线性代数教程(第二版)[M]. 华中科技大学出版社,2009.。