高数心得体会
高数学习感想(共五则范文)

高数学习感想(共五则范文)第一篇:高数学习感想高数学习感想经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。
我个人认为高数同以前学习的数学的主要差别在于对积分的难易掌握。
通过这学期的学习和上学习的积累我也充分体会到了高数的难点。
平时的学习积累加上老师对高数的重点说明,我对我个人学习积分部分进行了一段总结如下:微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
(⒈)极限:运用微积分法求极限中利用等价量代换求极限--等价量代换是我们求解极限问题常用的方法注意无穷小量的代换,熟悉常用的无穷小量代换,能便捷的求出极限注意几个几个常用的无穷小量的代换X~cosx~sinx~tanx~arcsinx~arctanx~arccosxX~ln(1+x)例题1:求极限limx→01+tanx-1-tanx.xe-1解limx→01+tanx-1-tanxex-1=limx→02tanx(e-1)(1+tanx+1-tanx)2x+ο(x)x=limx→0(x+ο(x))(1+tanx+1-tanx)2xx(1+tanx+1-tanx)=limx→0=1.--利用两个重要极限求极限两个重要极限是:sinx1=1(2)lim(1+)x=e.x→0x→∞xxsinxsin◊=1可理解为lim=1,而第二种极限其中第一种重要极限limx→0◊→0x◊(1)lim11lim(1+)x=e可以理解为lim(1+)◊=e或者lim(1+◊)◊=e.x→∞◊→∞◊→0x◊112例题2:求lim(cos)n.n→∞n解211lim[1+(cos-1)]n=lim[1+(cos-1)]n→∞n→∞nn11⋅n2(cos-1)1 ncos-1n1=lim[1+(cos-1)]n→∞n1111⋅n2⋅[-⋅2+ο(2)]12nncos-1n -12=e=1e--利用定积分求极限球极限--利用微分中值定理求极限等等多种方法(⒉)微分学:微分运算法则同积分法则基本相同。
高等数学学习心得体会(通用4篇)

高等数学学习心得体会(通用4篇)高等数学学习篇1在我的意识里,但凡数学成绩好的同学,一定都是天资聪颖;而对数学一往情深的同学,都绝非等闲之辈。
自从上了高中,数学对我来说就成了软肋,硬伤,成了让我神伤的科目,突然间变得对数学一窍不通,才猛然间发觉自己的思维不知道被什么所禁锢,变得呆板而僵硬,做题犹如啃砖头。
大一的时候,意外地发现我们必须学习高数课,我虽然很敬佩我们的高数老师,他和蔼可亲,对我们关爱有加,把高数讲得清楚易懂,还告诉我们如何学好高数以便更好地发展中医。
尽管如此,结局还是悲凉的,我终日以泪洗面,甚至产生了轻生的念头,大一对我来说是不堪重负,不忍回首的一年,期末了,还一道题都不会做,考完了,才发现自己是班上的垫底。
高数,让我开始怀疑自己的智商,怀疑我以后能否自食其力。
每一次上课,我都像个呆子,钻进耳朵的那些专业术语不知道该怎么去消化,而周围的同学也都还是能回答问题,自信满满,这种强烈的对比让我受挫,我开始重新审视自己。
高数,带给我改变的动力,我感谢高数,但仅仅因为它是高“树”,而我被挂在了上面。
在后来的学习中,我再也不敢对专业课掉以轻心,我开始觉得期末考试的内容其实也没有那么难,那么高数呢?究竟是它太难还是我从心里对它产生畏惧,以至我没有勇气相信自己可以认识它?我怕,怕有朝一日终会再次遇到它,因为陌生,所以恐惧。
经历了一年多的成长,我发现其实很多事情都没有想象中那么难,也没有想象中那么简单,关键在于你如何对待它。
我想起我可以为了自己做一个笔袋而一动不动坐一下午,并且为了解决出现的不足而把数据计算一遍又一遍,一遍遍拆,一遍遍改,在探索中前进,乐此不疲。
而学习高数呢,一开始我怕,遇到不懂了,我更怕,最后呢,我只能逃课,不去听,不去想,以为这样就能躲过一切,我才发现,我是个彻彻底底的懦夫,我只会做逃兵,我并没有尽最大的努力。
在选课的时候,我发现还能选修高数,这次,我不想再错过。
我想起了《追风筝的人》的一句话:“那里,有再一次成为好人的路。
高数学习心得体会文章

高数学习心得体会文章篇一:学习高数的体会学习高数的体会大家都说学高数是个很难的事情,很多人望“高数”生畏.经过一个学期的学习也的确是这样,但是凭借它的高度,一定能够看到更远的风景。
学习是不太轻松。
但是如果认真专注在高数上面,还是会把很多难题迎刃而解.在对高数进行了系统性的学习,我感觉我不仅在知识方面获得了充实,在逻辑思维方面我感觉我也有一定的进步,人们常说学数学能让人聪明,我想也的确如此。
曾经的我也以为,数学很枯燥无味,然而在学习了高数之后,我发现数学应用于各行各业,与我们的生活息息相关。
数学是一门非常重要的基础科学。
与人们的生活息息相关,人们的各项活动基本上都离不开数学。
钱学森曾经说过:数学应该与自然科学、人文科学并列。
一百多年前,恩格斯曾经指出:数学是研究现实世界中的数量关系与空间形式的科学。
当代数学的发展使得其研究对象已经超出了”数”与”形”的范畴,所以,一般来说,数学的研究对象可以包括现实中的任何形式和关系。
培根曾说数学是”通向科学大门的钥匙”;伽利略说”自然界的伟大的书是用数学语言写成的”。
物理大师爱因斯坦认为,”理论物理学家越来越不得不服从于纯数学的形式的支配”;他还认定理论物理的”创造性原则寓于数学之中”。
Hardy是英国著名的数学家,他推崇数学的”纯粹”和”美”,认为数学是一种永久性的艺术品.而学习高数则是不仅学到了一种解题的方法,更多的是学习了它的一种思考问题的逻辑思维方法。
早在魏晋时期,就有数学家刘徽的极限思维的割圆术,他首先从圆的内接正6边形开始割圆,依次得正12边形、正24边形??,割得越细,正多边形的面积与圆面积之差越小,”割之又割,以至于不可割,则与圆周合体而无所失矣.”这个思想既是极限理论的思想,又是用定积分计算曲边梯形面积的基础。
如下图而在讲到导数或定积分的定义时,具体的引例有著名的“七桥问题”,即东普鲁士的首府哥尼斯堡,在河的中央有一座美丽的小岛,河上有七座桥把岛和河岸连接起来。
高等数学学习感想

高等数学学习感想一高等数学在工科院校的教学计划中是一门重要的基础理论课程,是大一新生必修的课程,是大学许多种类工科课程的基础,特别是与以后的许多专业课都有着密切的联系,它对于各专业后续课程的学习,以及大学毕业后这类工程技术人员的工作,高等数学课程都起着奠基的作用。
大学生在大学的学习中只有掌握高等数学的知识以后,才能比较顺利地学习其他专业基础课程,如物理、工程力学、电工电子学等,也才能学好自己的专业课程。
当大学生毕业走向工作岗位后,要很好地解决工程技术上的问题,势必要经常应用到高等数学知识。
因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。
因此,工科类的大一新生在学习上一个很明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。
因此,学好高等数学对于一名工科学生来说,至关重要。
然而,高等数学这门课程本质上决定了它的枯燥无味,对于许多同学来说,高等数学是一门头疼的学科。
如何学好高等数学呢?在学习高等数学过程中,需要不断探索方法、总结经验。
下面是我个人在学习过程中的一些感想。
首先,我觉得高等数学与以前我们高中所学的数学有一点不同。
高等数学注重的是一种数学的思想,比如说微积分思想,极限的思想。
强调的数学的逻辑性与分析性。
不像高中数学那样注重技巧性。
因此,在学习的过程中,课本的知识至关重要。
对于课本上面每一个概念、定理、公式、例题,都要理解清楚。
特别是对于定理、公式的推导过程,不仅要弄懂每一步的推导过程如何来,而且还要学会自己推导。
因为学会自己推导,更有助于我们的记忆和应用。
我的经验是,在理解的基础上去记忆公式,而不是一味的死记硬背。
第二,学习数学是不能缺少训练的。
一定量的课后习题训练,不但可以让我们巩固我们学到的知识点,学会如何在实际中应用我们学到的公式定理,还有助于我们熟悉考试的各种题型。
还有,题目并不是越多越好,题海战术不仅浪费大量的时间与精力,而且效果也不好。
高数心得体会

高数心得体会【篇一:学习高数的心得体会】学习高数的心得体会转眼间,大一将要结束了,记得刚开始接触高数的时候,确实觉得力不从心,不知道该怎么学才能将公式运用自如,渐渐地发现,其实那些公式并不是死记硬背才行,只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路,就能把题目解出来。
所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。
每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。
还记得当时学习曲面积分的时候,怎么也学不会,看过就往,反反复复,搞得我真不知道怎样才好,不过现在还好能大体记住曲面积分的个知识点,各类解法,总结下,曲面积分:对面积的曲面积分:对坐标的曲面积分:????f(x,y,z)ds???dxyf[x,y,z(x,y)]?zx(x,y)?zy(x,y)dxdy22??p(x,y,z)dydzdxy?q(x,y,z)dzdx?r(x,y,z)dxdy,其中:号;号;号。
?qcos??rcos?)ds??r(x,y,z)dxdy?????r[x,y,z(x,y)]dxdy,取曲面的上侧时取正????p[x(y,z),y,z]dydz,取曲面的前侧时取正dyz??p(x,y,z)dydz???q(x,y,z)dzdx?????q[x,y(z,x),z]dzdx,取曲面的右侧时取正dzx两类曲面积分之间的关系:??pdydz?qdzdx?rdxdy????(pcos??????(?p?x??q?y??r?z)dv?pdydz??qdzdx?rdxdy?(pcos???qcos??rcos?)ds高斯公式的物理意义——通量与散度:?div??0,则为消失...??p?q?r散度:div????,即:单位体积内所产生的流体质量,若 ?x?y?z??通量:??a?nds???ands???(pcos??qcos??rcos?)ds, ??因此,高斯公式又可写?成:divadv???????ands在纠结曲面积分的时候我也注意到了,在理解的基础上对知识点进行总结,会让思路变得清晰而准确。
高数学习心得优秀3篇写范文网

高数学习心得优秀3篇高数学习心得优秀3篇高数学习心得要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的高数学习心得样本能让你事半功倍,下面分享【高数学习心得优秀3篇】,供你选择借鉴。
高数学习心得篇1数学学习方法●全面复习,把书读薄从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如98年数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见,猜题的复习方法是靠不住的,而应当参照考试大纲,全面息,不留遗漏.全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义.●突出重点,精益求精在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多. 猜题的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,猜题便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带资,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式.由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广.比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,而在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精.●基本训练反复进行学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张题海战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下盲棋一样,只需用脑子默想,即能得到下确答案.这就是我们在前言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,熟能生巧,基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会粗心地出错.高等数学是高等工科院校的重要基础课程。
高数心得体会

篇一:高数心得学习高数的心得体会有人戏称高数是一棵高树,很多人就挂在了上面。
但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。
很多人害怕高数,高数学习起来确实是不太轻松。
其实,只要有心,高数并不像想象中的那么难。
经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显着特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。
在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。
然后像背单词一样,把一堆公式与结论死记硬背下来。
哪种类型的题目用哪个公式、哪条结论,老师都已一一总结出来,我只需要将其对号入座,便可将问题解答出来。
而现在,我不再有那么多需要识记的结论。
唯一需要记住的只是数目不多的一些定义、定理和推论。
老师也不会给出固定的解题套路。
因为高等数学与中学数学不同,它更要求理解。
只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。
所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。
每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。
首先,不能有畏难情绪。
一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。
让我们知道高数难,虽然会让我们对它更加重视,但是这无疑也增加了大家对它的畏惧感,觉得自己很可能学不好它,从而失去了信心,有些人甚至把难学当做自己不去学好它的借口。
事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。
所以,我觉得要学好高数,一定不能有畏难的情绪。
当我们有信心去学好它时,就走好了第一步。
2024年大学高数学习心得体会(2篇)

2024年大学高数学习心得体会对于许多文科学生来说,数学也许是一个令人有些畏惧的名词,有些同学也许就是因为数学学不好或者不太喜欢数学,而选择了学文科的,高等数学学习方法与经验。
但是,对于任何一个文科生来说,数学都是非常重要的,有人把数学比做是文科生的生命线,有人说数学和英语在很大程度上决定了一名文科生的层次,这都是有一定道理的。
因此,一定要尽自己最大的努力来学好数学.在我看来,数学其实是一门非常奇妙而有趣的学问。
只要你有一双善于发现、敢于发现的眼睛,你就能够找到数学的魅力所在,就会对它产生兴趣。
而兴趣是最好的老师,如果你既对数学感兴趣,又下定决心努力学好数学,那又怎么会学不好呢?课本对于数学来说,是很重要的。
我们做的试题,有很多都是课本例题或其“变种”只要花上一点点时间把课本好好看看,要拿下这些题便易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题更不可能做得好。
数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维清晰明了,因而基础知识十分重要,尤其是对于数学不是特别好的同学来说。
以下是我个人觉得在数学学习过程中非常必要的几点:1、按部就班。
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解。
概念、定理、公式要在理解的基础上记忆。
我的经验是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练。
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。
4、标出重点。
平常看题看课本的时候,碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然.最后想谈谈数学这一科目的应试技巧。
概括说来,就是"先易后难"。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数心得体会篇一:高数心得学习高数的心得体会有人戏称高数是一棵高树,很多人就挂在了上面。
但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。
很多人害怕高数,高数学习起来确实是不太轻松。
其实,只要有心,高数并不像想象中的那么难。
经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。
在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。
然后像背单词一样,把一堆公式与结论死记硬背下来。
哪种类型的题目用哪个公式、哪条结论,老师都已一一总结出来,我只需要将其对号入座,便可将问题解答出来。
而现在,我不再有那么多需要识记的结论。
唯一需要记住的只是数目不多的一些定义、定理和推论。
老师也不会给出固定的解题套路。
因为高等数学与中学数学不同,它更要求理解。
只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。
所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。
每一次高数课,都是一次大脑的思维训练,都是一一次提升理解力的好机会。
首先,不能有畏难情绪。
一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。
让我们知道高数难,虽然会让我们对它更加重视,但是这无疑也增加了大家对它的畏惧感,觉得自己很可能学不好它,从而失去了信心,有些人甚至把难学当做自己不去学好它的借口。
事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。
所以,我觉得要学好高数,一定不能有畏难的情绪。
当我们有信心去学好它时,就走好了第一步。
坚持做好习题。
做题是必要的,但像高中那样搞题海战术就不必要了。
就我的体会而言,如果只是想考试考好,不想去深入研究它的话,做好教材上的课后题和习题册就足够了,当然,前提是认真地做好了。
对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话做好一道题就能解决很多同类型的题了。
同时,做题不能只是自己一个人冥思苦想,有时候自己的思维走进了死胡同是很难走出来的,当自己做不出来的时候,不妨问问老师或者同学,也许就能豁然开朗了。
对于做完的题目,觉得很有价值的,最好是把它摘抄到笔记本上,然后记录一下解题的要点,分析一下题目所体现的思维方式等等,平时有时间就翻看一下,加深一下记忆。
高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。
我们必须知道解题过程中每一步的依据。
正如我前面所提到的,中学时期学过的许多定理并不特别要求我们理解其结论的推导过程。
而高等数学课本中的每一个定理都有详细的证明。
最初,我以为只要把定理内容记住,能做题就行了。
然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。
于是,我开始认真地学习每一个定理的推导。
有时候,某些地方很难理解,我便反复思考,或请教老师、同学。
尽管这个过程并不轻松,但我却认为非常值得。
因为只有通过自己去探索的知识,才是掌握得最好的。
总而言之,高等数学的以上几个特点,使我的数学学习历程充满了挑战,同时也给了我难得的锻炼机会,让我收获多多。
进入大学之前,我们都是学习基础的数学知识,联系实际的东西并不多。
在大学却不同了。
不同专业的学生学习的数学是不同的。
正是因为如此,高等数学的课本上有了更多与实际内容相关的内容,这对专业学习的帮助是不可低估的。
比如“常用简单经济函数介绍”中所列举的需求函数,供给函数,生产函数等等在西方经济学的学习中都有用到。
而“极值原理在经济管理和经济分析中的应用”这一节与经济学中的“边际问题”密切相关。
如果没有这些知识作为基础,经济学中的许多问题都无法解决。
当我亲身学习了高等数学,并试图把它运用到经济问题的分析中时,才真正体会到了数学方法是经济学中最重要的方法之一,是经济理论取得突破性发展的重要工具。
这也坚定了我努力学好高等数学的决心。
希望未来自己可以凭借扎实的数理基础,在经济领域里大展鸿图。
高等数学作为大学的一门课程,自然与其它课程有着共同之处,那就是讲课速度快。
刚开始,我非常不适应。
上一题还没有消化,老师已经讲完下一题了。
带着几分焦虑,我向学长请教学习经验,才明白大学学习的重点不仅仅是课堂,课下的预习与复习是学好高数的必要条件。
于是,每节课前我都认真预习,把不懂的地方作上记号。
课堂上有选择、有计划地听讲。
课后及时复习,归纳总结。
逐渐地,我便感到高数课变得轻松有趣。
只要肯努力,高等数学并不会太难。
虽然说高等数学在我们的实际生活中,并没有什么实际的用途,但是通过学习高等数学,我们的思想逐渐成熟,高等数学对我们以后的学习奠定了基础,特别是理科方面的学习,所以说,在今后的学习中,可以充分的运用数学知识,不断地完善自己。
篇二:学习数学的感想谈谈学习数学的感受如果还有一门课程是在这前半生与我形影不离的那必是数学了。
在我们啥道理都不知道的时候我们的人生就和数字0 一起出发了,想想那时我们认识了好多数字,背诵1234567 都是一种乐趣,一种荣耀。
后来,知道的多了,追求多了,人生就复杂了开始加减乘根号指数幂数...数学是一门为严格、和谐、精确的学科,在一般人看来,数学又是一门枯燥无味的学科,因而很多人视其为求学路上的拦路虎,可以说这是由于我们的数学教科书讲述的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学方法和原理的理解认识的深化。
著名数学教育家福丹特说:“数学是现实的,学生从现实生活中学习数学,再把学到的数学应用到现实中去。
”我对这句话的理解是:数学应当“从生活中来,到生活中去” ,数学学习应与现实生活紧密联系在一起,数学学习的内容应当是现实生活中经常遇到的知识,学到的数学知识应当在现实生活中经常运用。
显然数学源于生活,也用于生活。
所以一堂好的数学课绝不应该孤立于生活之外,数学课回归生活,体现生活。
杜威曾提出:“教育即生活!”著名教育家陶行知也曾提出:“生活即教育!”我们传统的数学的教学当中貌似只重视数学知识的传授,而大大忽视了数学知识与现实生活的联系,很多学生只能在课上,考试时感到数学的用武之处,一旦走出教室,走出考场来到现实生活中就感觉不到数学的存在了,当然这也不是单单数学教育上的问题,也是我国整体的教育的悲哀。
知识与应用严重脱节,导致了作为学生的我们解决实际问题能力水平低下,不能充分感受到趣味。
要想改变这一状况,就要求我们的数学教师在课堂教学中要着力体现“课堂生活化”的理念,引导学生从生活情境中去发现数学问题,运用所学的数学知识解决实际问题,让学生体会到数学与现实生活的紧密联系,领悟数学的魅力,也能增进学生的自信心。
在课堂上,希望老师能尽可能根据学生已有的知识,从实际出发创造有助于学生自主学习的问题情境,使数学更加贴切我们的生活,融入到我们的生活中去。
另一方面,老师要充分鼓励学生大胆创新与实践,使每一个学生充分发挥他们的创新创造力,使学生的解决实际生活问题的能力得到较好的发展,更好的推动素质教育的快速发展。
“思维的体操,智慧的火花”这是人们对数学的形象称谓。
数学是人类文化的重要组成部分,它也是公民所必须具备的一种基本素质,数学在人类社会中发挥着不可替代的作用。
而且在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术等多种学科的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。
作为我们学习过程中的一门最重要学科,从小学到高中甚至于大学绝大多数同学对它情有独钟,投入了大量的时间与精力。
然而并非人人都是成功者,从而“惧怕”数学的现象在目前非常普遍。
笔者虽然不能算是一个成功的学习者,但多少也有一点学习数学的心得体会可以随便写写。
电影《功夫之王》讲述了一个喜爱功夫却毫无功底的剧中人物最终练成绝世功夫,成就大业的故事。
其中李连杰饰扮演的默僧在传授杰森功夫时,有一段精彩对白: “画家以泼墨山水为功夫,屠夫以庖丁解牛为功夫,从有形中求无形,充耳不闻,习万招之法,从有招到无招,习万家之变,才能自创一家,乐师以辗转悠扬为功夫,诗人以天马行空的文字倾国倾城,这也是功夫” 。
其实套用上述对白,我们(来自: 校园生活: 高数心得体会)也可以说,学生以解题为功夫,习万题之法,从有招到无招,习万题之变,才能自创一家,它揭示了学习是一个自我领悟的过程,是一个自我思考,自我反思,自我总结的过程。
那么,如何在学习数学过程中实现“悟”呢?其一,数学的学习是学会独立思考的过程。
数学学习要防止死记硬背,不求甚解的倾向,学习中多问几个为什么,多沉下心来琢磨琢磨,做到举一反三,融会贯通。
听课时要边听边思考,思考与本节课相关的知识体系,思考教师的思路,并与自己的比较。
在老师没有作出判断、结论之前,自己试着先判断、下结论,看看与老师讲的是否一致,并找出错误的原因。
独立思考能力是学习数学的基本能力。
其二,数学学习过程是一个需要反复练习的过程,也是一个熟能生巧的过程。
反复练习正是为了达到悟的结果及培养对数学的理解和感觉。
训练的过程需要经历一个由量变到质变,一个无形无状的过程。
当然由于每个人知识结构、思维水平和理解能力的差异,训练的过程和量是不同的,但无论如何不能“为解题而解题”。
其三,数学的学习过程是把握数学精神的过程。
数学的精神在于用数学的思想、方法、策略去思考问题。
有些学生对数学无论怎样练习,也始终难以找到对数学的感觉。
这就需要我们在学习过程中从问题解决形成一般的结论,领悟问题解决中数学思想、方法、策略的应用。
这个过程单凭老师教将很难使学生达到理念的升华。
当然,这并非削弱教师的作用,而是体现学生悟的重要性,将所理解的知识嵌入已有的知识结构中才能达到真正的理解和掌握。
其四,自信是学好数学的必要条件。
自信源于对数学的热情、对自我的认可、对数学契而不舍的执着精神以及坚实的数学基本功。
曾经有位高中同学在阐述他对基本功的理解时说:“从今天起我所做的每一道题高考肯定不考,高考的每一题会做,并不保证都能做对,要关注对,而不仅仅是会,解决问题最好的方法是反复,不要因为这题简单而不去做,不要因为这题做过三遍而不去做,可为难题放弃,绝不可为简单题而放弃,这些就是基本功” 。
总之,学好数学不仅是为了应付考试,或是为将来进一步学习相关专业打好基础,更重要的目的是接受数学思想的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益!篇三:学习高数的心得体会学习高数的心得体会转眼间,大一将要结束了,记得刚开始接触高数的时候,确实觉得力不从心,不知道该怎么学才能将公式运用自如,渐渐地发现,其实那些公式并不是死记硬背才行,只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路,就能把题目解出来。