实体混凝土配筋设计—拉压杆模型——同济大学徐栋

合集下载

混凝土结构设计原理同济大学

混凝土结构设计原理同济大学

2.1 混凝土的物理力学性能
第二章 钢筋和混凝土的材料性能
混凝土轴心抗拉强度与立方体抗压强度的关系
《混凝土结构设计规范》规定轴心抗拉强度标准值与 立方体抗压强度标准值的换算关系为:
ftk
0.880.395
f 0.55 cu,k
11.645
0.45 2
2.1 混凝土的物理力学性能
(1)单向受力状态下混凝土的强度 1)立方体抗压强度:边长为150mm的混凝土立方
体试件,在标准条件下(温度为20±3℃,湿度≥90%) 养护28天,用标准试验方法(加载速度0.15~0.3N/mm2/s,
两端不涂润滑剂)测得的具有95%保证率的抗压强度,
用符号C表示。 《规范》根据强度范围,从C15~C80共划分为14个强
实际结构中,混凝土很少处于单向受力状态。更多的是处于双 向或三向受力状态。
◆双轴应力状态
双向受压强度大于单向受 压强度,最大受压强度发 生在两个压应力之比为0.3 ~0.6之间,约(1.25~1.60 )fc。 双轴受压状态下混凝土的 应力-应变关系与单轴受压 曲线相似,但峰值应变均 超过单轴受压时的峰值应 变。
侧向压应力的存在可提高混凝土的抗压强度,关系为:
fcc fc (4.5 : 7.0) fl
式中 fcc ——被约束混凝土的轴心抗压强度;
fc ——非约束混凝土的轴心抗压强度;
fl ——侧向约束压应力。
侧向压应力的存在还可提高混凝土的延性。
第二章 钢筋和混凝土的材料性能
2.1.3复杂应力下混凝土的受力性能
1.2 混凝土结构的发展简况及其应用
第一章 绪论
混凝土结构的发展
第一阶段: 从钢筋混凝土的发明至上世纪初。 钢筋和混凝土的强度都比较低。 主要用于建造中小型楼板、梁、柱、拱和基础等 构件。 计算理论:结构内力和构件截面计算均套用弹性 理论,采用容许应力设计方法。

拉-压杆模型法在牛腿配筋设计中的应用

拉-压杆模型法在牛腿配筋设计中的应用
国外桥梁 郭卫民 利用拉 压杆模型进行结构的受力分析和设计
东北公路 陈晓宝 结构混凝土拉压杆模型法配筋设计 合肥工 业大学学报 自然科学版 徐增权 钢筋混凝土薄膜元理论 建筑结构学报
王命平 钢筋混凝土结构的比拟桁架及其设计 建筑工程学院学报 自然科学版
青岛
责任编辑 傅春玲
拉-压杆模型法在牛腿配筋设计中的应用
基本假定 图 是建议牛腿部位的拉 压杆模型 模型 中有 根压杆 根拉杆和 个节点 利用这个模型 能分析钢筋混凝土短牛腿承受有竖向和水平集中力 作用下的力学性能 分析过程中采用了如下的基本 假定
图 假想的桁架杆件 压杆轴向受压 拉 杆轴向受拉 此外 连接拉杆和压杆的节点不承受弯 矩作用
压杆的横截面沿着杆长方向为一常量 由于纵向主筋的作用在节点区域产生拉应 变 混凝土的抗压强度将降低 混凝土压杆中的压应 力 节点区域的混凝土最大压应力取决于混凝土的 有效抗压强度 考虑混凝土的软化效应 对混凝土轴 心抗压强度进行折减而得到的强度称混凝土的有效 抗压强度
受压
混凝土 压杆
拉 压杆模型的建立
用拉 压杆模型法进行结构构件设计时 一般
先根据圣维南原理将整个结构构件划分为 区与
区 如图 所示阴影部分即为 区 并对给定结构构
件进行整体性静力分析 计算出结构构件支座反力
及截面内力 包括截面的轴力 剪力 弯矩及扭矩
从而得出 区与 区的外力 区的部分外力是由
对 区应力分析得到 这样 对 区很容易建立起
压杆模型的基本原理 同时通过一个设计实例说明拉 压杆模型的建立 设计准则 设计步骤等
关键词 拉 压杆模型 牛腿 桁架 有限元法
中图分类号
文献标识码
文章编号
对于钢筋混凝土结构构件 现行规范一般采用 以截面为分析对象的极限状态设计法 截面内力法 进行设计 首先确定外部作用在结构构件的控制截 面上产生的内力 如轴力 剪力 弯矩 扭矩或它们的 组合 然后根据不同的内力情况采用相应的理论计 算公式 或经验计算公式 进行截面配筋设计 截面 内力法用于结构构件中截面应变分布连续规则 即 符合贝努利假定的区域 国际上称之为 区 是合 理适用的 但对结构构件中截面应变分布非线性且

同济大学土木工程第十一章混凝土结构的设计方法和理念

同济大学土木工程第十一章混凝土结构的设计方法和理念

同济⼤学⼟⽊⼯程第⼗⼀章混凝⼟结构的设计⽅法和理念第⼗⼀章混凝⼟结构的设计⽅法和理念⼀、计算理论⼆、结构的鲁棒性三、建筑结构设计理论的发展四、结构极限状态的基本概念五、结构可靠度的基本概念六、近似概率法在设计规范中的应⽤七、传统设计理念的启⽰z钢筋混凝⼟结构的有限元分析⽅法钢筋混凝⼟有限元法中,针对钢筋与混凝⼟两种材料组合特点、裂缝形成和扩展的特点,需要研究的主要问题有:①混凝⼟的破坏准则;②混凝⼟的本构关系;③钢筋与混凝⼟之间的粘结关系;④钢筋的本构关系;⑤裂缝处理;⑥对于长期荷载,还要考虑材料的时效,主要是混凝⼟的徐变、收缩和温度特性。

钢筋混凝⼟结构的有限元分析与⼀般固体⼒学有限元分析相⽐,其特点是:①材料的本构关系;②有限元的离散化。

考虑这些特点的钢筋混凝⼟结构的有限元模型有:①分离式模型;②组合式模型;③整体式模型;④有限区模型。

z钢筋混凝⼟结构的极限分析对于板、壳、连续梁、框架结构的极限承载⼒,采⽤极限分析法直接求解,是⼀个发展⽅向,并已有较多成果,但需保证结构的正常使⽤(限制裂缝和变形)和薄壁结构与细长压杆的稳定性,以及防⽌脆性的剪切破坏和钢筋锚固失效。

z混凝⼟断裂⼒学在计算理论中,另⼀个值得注意的发展⽅向是混凝⼟断裂⼒学在⽔⼯⼤坝中的应⽤。

z混凝⼟的收缩与徐变混凝⼟收缩与徐变的研究⼀直是混凝⼟计算理论中的⼀个重要⽅⾯,对⽔⼯混凝⼟及预应⼒混凝⼟的计算理论影响甚⼤。

我国⽔利⽔电科学研究院多年来进⾏了系统的研究,出版了专著《混凝⼟的收缩》和《混凝⼟的徐变》,对影响混凝⼟收缩和徐变的因素,结合我国⼯程实际情况,提出了估算收缩的⽅法,介绍了六种徐变计算理论。

z⼯程结构可靠度⼯程结构包括混凝⼟结构,在设计、施⼯、使⽤过程中,事物具有种种影响结构安全性、适⽤性和耐久性的不确定性,这些不确定性⼤致可分为:①事物的随机性:荷载、材料等随机性②事物的模糊性:如“正常使⽤”与“不正常使⽤”,耐久性“好”、“良好”、“不好”之间⽆明确界限③信息的不安全性:部分信息已知的系统成为灰⾊系统,在⼯程结构设计中由于对情况认知不完全,或对决策者不能提供完备的信息,就会遇到灰⾊系统问题。

混凝土箱梁桥双支承横隔梁的拉压杆模型设计方法1

混凝土箱梁桥双支承横隔梁的拉压杆模型设计方法1

混凝土箱梁桥双支承横隔梁的拉压杆模型设计方法1摘要:混凝土箱梁桥中的横隔梁一般以横桥向受力的深梁控制设计,在常见的跨高比下,为应力扰动区(D区)。

本文根据两跨连续梁的实体有限元分析,揭示了双支承横隔梁的受力特性,并提出一种简化模型近似反应实桥横隔梁的真实受力状态。

在此基础上,研究了不同参数变化下简支深梁的应力变化规律,并给出不同高跨比下简支深梁作用不同类型荷载时的拉压杆模型;最后通过拓扑优化方法的辅助给出了双支承横隔梁的拉压杆模型。

关键词:混凝土箱梁桥;横隔梁;拉压杆模型;深梁1引言双支承横隔梁在桥梁工程中的应用最为广泛。

一方面,由于双支承距离箱梁腹板更近,恒载、活载等产生的竖向力传递至支座的路径更短,对于一些支座直接设置于腹板下方(支座的中心线与腹板的中心线基本一致)的情况,竖向荷载甚至可以不经过横隔梁,而直接传递至支座。

另一方面,双支承横隔梁也可以将桥跨内由偏载、横向力等引起的扭转作用传递至支座。

在现行设计中,对墩顶区域横隔梁,主要针对竖向荷载,根据经验或按浅梁来进行设计。

实际上,当横隔梁高跨比大于某定值时,应视为深受弯构件进行设计,传统的截面设计方法已不再适用。

按照国际工程界对混凝土结构B区及D区的划分[1][2],横隔梁可视为一类典型D区,基于力流的拉压杆模型(Strut-and -tie model)方法可以用来指导该区域的配筋设计。

本文通过对全桥模型分析验证简化模型的合理性,研究简支深梁拉压杆模型的构形方法,并探讨双支承横隔梁腹板等效集中剪力的作用位置。

在此基础上,利用拓扑优化的方法构建了双支承横隔梁的拉压杆模型。

2横隔梁简化模型的建立为了建立双支承墩顶横隔梁的简化模型,首先选取某2×40m混凝土等截面连续梁,进行实体有限元分析。

箱梁的截面形式如图X所示,梁高为H=2.2m,梁顶宽L1=12m,梁底宽L=6m,翼缘长度为a=3m,翼缘高度由0.2m变化至0.4m,腹板厚0.45m,顶底板厚0.28m。

混凝土箱梁桥横隔板的拉压杆模型设计方法

混凝土箱梁桥横隔板的拉压杆模型设计方法

混凝土箱梁桥横隔板的拉压杆模型设计方法陈志文;刘钊【摘要】The diaphragms in concrete box - girder bridges, functioned as deep beams in transverse direction, can be designed by strut-and-tie model. This study is devoted to the geometrical configuration principle arid method for strut -and -tie model of diaphragms under various bearing conditions and loading circumstances. Finally, the reinforcement design of a diaphragm under a given construction load case is exemplified in accordance with the proposed method and American specification ACI318 -08.%混凝土箱梁桥中的横隔板,在横桥向应按深梁考虑其受力,可采用拉压杆模型方法进行设计.针对不同支承条件和受载工况下的横隔板,探讨了拉压杆模型的构形原则与方法.最后,针对某横隔板的施工受力工况,按照拉压杆模型方法并依据美国ACI318 -08规范对其进行了配筋设计.【期刊名称】《结构工程师》【年(卷),期】2011(027)006【总页数】6页(P48-53)【关键词】桥梁;横隔板;拉压杆模型;深梁;配筋设计【作者】陈志文;刘钊【作者单位】东南大学土木工程学院,南京210096;东南大学土木工程学院,南京210096【正文语种】中文1 引言墩顶横隔板是混凝土箱梁桥的重要组成部分。

同济大学混凝土试验报告(超筋梁、梁斜拉破坏)

同济大学混凝土试验报告(超筋梁、梁斜拉破坏)

同济大学混凝土试验报告(超筋梁、梁斜拉破坏)混凝土试验成果集试验名称:姓名:学号:试验老师:任课老师:XX号码:1超筋梁受弯实验报告(1)1.1实验目的(1)1.2实验内容(1)1.3构件设计(1)1.3.1构件设计的依据(1)1.3.2试件的主要参数(1)1.3.3试件加载估算(2)1.4实验装置(3)1.5加载方式(4)1.5.1单调分级加载方式(4)1.5.2开裂荷载实测值确定方法(4)1.6测量内容(5)1.6.1混凝土平均应变(5)1.6.2钢筋纵向应变(5)1.6.3挠度(5)1.6.4裂缝(6)1.7实验结果整理(6)1.7.1荷载—挠度关系:(6)1.7.2荷载—曲率关系:(7)1.7.3荷载—纵筋应变关系:(8)1.7.4裂缝进展情况描述及裂缝照片(9) 1.8实验结论(10)1.9实验建议(11)2梁斜拉破坏试验报告(12)2.1实验目的(12)2.2实验内容(12)2.3试件的设计(12)2.3.1试件设计的依据(12)2.3.2试件的主要参数(12)2.3.3试件加载预估(13)2.4实验装置(14)2.5加载方式(16)2.6测量内容(16)2.6.1混凝土平均应变(16)2.6.2纵向钢筋应变(16)2.6.3挠度(17)2.7实验结果整理(17)2.7.1荷载—挠度关系:(17)2.7.2荷载—曲率关系:(18)2.7.3荷载—纵筋应变关系:(19)2.7.4裂缝进展情况描述及裂缝照片(20) 2.8试验结论(21)3适筋梁受弯性能试验设计(21)3.1试验目的(22)3.2试件设计(22)3.2.1试件设计依据(22)3.2.2试件的主要参数:(22)3.3试验装置和加载方式(23)3.3.1试验装置(23)3.3.2加载方式(24)3.4量测内容、方法和工况(25)3.4.1混凝土平均应变(25)3.4.2纵向钢筋应变(25)3.4.3挠度(26)3.4.4裂缝(26)3.5相关计算书(26)4思考题(28)4.1 两点集中力加载的简支梁可能的破坏模式有哪些?如何预估其极限荷载?284.2 梁受剪破坏特征?(28)4.3梁受弯破坏特征?(29)4.4 若采纳位移计测应变,如何处理得到应变值?(29)4.5何谓平截面假定?试验中如何验证?(29)4.6 对于HRB335/HPB235钢筋,其屈服应变大致是多少?(29)4.7 进行试验试件设计时,应采纳材料标准值还是设计值?为什么?(30)5附录:材料试验记录表(31)5.1混凝土立方体试块抗压强度(31)5.2混凝土棱柱体试块轴心抗压强度(31)5.3钢筋拉伸试验数据(31)1超筋梁受弯实验报告1.1实验目的通过试验研究认识超筋混凝土梁在弯矩作用下开裂、裂缝进展到破坏的全过程,掌握测试混凝土受弯构件基本性能的试验方法。

3D3S拉索(拉杆)结构的分析过程和原理简介

3D3S拉索(拉杆)结构的分析过程和原理简介
点击计算按纽,完成荷载分析。
使用非线性分析下工作态分析下的显示位移,得到正常使用下的位移为163.6。
使用非线性分析下工作态分析下的时程曲线:
可以看到端节点的位移是从0到163.6(线性索梁找型后非线性荷载态分析的时候计算位移时候不叠加初始位移)。
C、使用7)非线性索梁找型后内力分析:
显示初始位移,最大位移17.8,比按照线性找型的大0.2:
例子:
红色虚线拉杆施加里预张力,该对称结构,为保证节点力平衡,在索杆找型后内力是对称的;当删除红色单元后,结构就是一个机构,所以必须通过预张力单元使结构具有刚度。
B、索梁体系:
适用结构:
适用于结构形式3);
原理:
把预张力作为节点荷载作用到结构上,进行线性或非线性的分析得到初始态的内力和位移(线性分析即为线性找形,非线性分析即为非线性找形);当去除予应力构件后,结构必须仍旧为稳定结构,如果去除了预张力单元后,结构就变成机构,那么无论线性还是非线性找形都会不成功。
如果事先去掉只拉单元上10KN的预张力,直接内力分析,那么在组合1下的位移为-126.7,等于109.1与预张力下的初始位移17.6之和。
B、使用6)线性索梁找型后非线性荷载态分析:
找型方法同上面所述,最大初始位移为17.6。
使用非线性菜单下的工作状态荷载态分析。
组合中添加组合1作为承载能力和正常使用的组合。
3D3S拉索(拉杆)结构的分析过程和原理简介
同济大学3D3S课题组
同济大学新土木大楼112室上海四平路1239号

2005-11
一、简单的拉索(拉杆)结构
操作:
建立模型,对拉索(拉杆)设置只拉属性(构件属性->定义初应力和只拉属性),内力分析

同济大学研究生《高等混凝土结构理论》复习要点

同济大学研究生《高等混凝土结构理论》复习要点

这是同济大学结构研一硕士上的《高等混凝土结构理论》期末考试的复习要点,希望对考博选考《混凝土结构基本理论》这门课的同学有所帮助。

1.Stress-strain curves of concrete under monotonic, repeated and cyclic uniaxial loadings. 单轴受力时混凝土在单调、重复、反复加载时的应力应变曲线。

2.Creep of concrete (linear and nonlinear) 混凝土的徐变(线性、非线性徐变)3.Components of deformation of concrete 混凝土变形的多元组成4.Process of failure of concrete under uniaxial compression 混凝土在单向受压时破坏的过程。

5.Strength indices of concrete and the relations among them 混凝土的强度指标及其之间关系6.Features of stress-strain envelope curve of concrete under repeated compressive loading. 混凝土单向受压重复加载时的应力应变关系的包络线的特征。

7.The crack contact effect of concrete and its representation in stress-strain diagram. 混凝土的裂面效应及其在应力应变关系图上的表示。

8.The multi-level two-phase system of concrete. 混凝土的多层次二相体系。

9.The rheological model of concrete. 混凝土的流变学模型。

10.Influence of stress gradient on strength of concrete. 应力梯度对混凝土强度的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压杆拉杆模型是结构混凝土D区的桁架模型,由相交于节点的拉杆和 压杆组成,能够把荷载传递到支座或是相邻的B区——(ACI定义)
5.4.1压杆拉杆模型的基本概念
将结构的应力迹线由曲线转化为直线,可以得到结构简化的D区应力迹线图
满足塑性下限定理:静力容许场对应的外载荷不大于真实的极限载荷 ——设计结果合理有效
5.4.1压杆拉杆模型的基本概念
1. 压杆拉杆模型(strut-tie-model)
B区(Beam Area):规则区域,按规范设计 D区(Disturbed Area):存在应力紊流的区域
5.4.1压杆拉杆模型的基本概念
D区设计方法:压杆拉杆模型法(Strut-Tie-Model) 沿着主应力方向,将结构内部的应力流用压杆及拉杆表示 ——桁架模型的延伸 ——通过主应力迹线来完成对结构的设计
2. 模型合理性的判断
判断准则: (1)拉杆与压杆的方向尽量与主应力迹线的方向相契合 (2) 结构中的荷载总是采取最小的力和最小应变的路径
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
3. 压杆拉杆模型的组成:压杆、拉杆、节点 判断准则: (1)拉杆 模型拉杆一般指的是结构中配置的钢筋。 (2)压杆 压杆代表了节点之间压应力的杆件,是简化了的合力位置,随着压 杆类型的不同,其强度有着不同的系数规定。
5.4.1压杆拉杆模型的基本概念
2. D区及其范围
D区:平截面假定不再适用
5.4.1压杆拉杆模型的基本概念
不同阶段:D区范围不同,只能粗略判定 ——通常根据圣维南原理取距离集中荷载或几何不连续处一倍 梁高的范围作为结构的D区
5.4.1压杆拉杆模型的基本概念
Schlaich :将结构化为各自的平面,予以分别考虑
(2)荷载传递路径法
压杆拉杆模型法的目的是设计并构造一种传递路径将荷载由作用位置传递至支座 或与D区相连的B区 若应力图重心点的合力大于对应的外荷载,那么这个差值可以视为大小相等、方 向相反的力在结构中形成单独的回路
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
(3)拓扑分析法(有限元方法的应用)
由于压应力的扩散产生的拉应力还应设置相应的拉杆平衡,往往这 种拉杆由于混凝土本身的抗拉强度不足,因此需要设置防开裂钢筋
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
3)节点 节点是杆件相交或杆件与外荷载相交处的复杂受力点,为多轴受力情 况,类型:CCC型节点、CCT型节点、CTT型节点、TTT型节点。C 代表压杆、T代表拉杆
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
4. 典型D区的压杆拉杆模型及其变化应用 D区具有一些典型的受力区域可以提炼出典型的压杆拉杆模型。 局部承压区域:
上部集中荷载传递至下 部时,可以认为荷载已 经均匀分布
当集中荷载没有作用在 截面中心点而是上部边 缘时
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
5. 压杆拉杆模型的设计应用步骤 使用压杆拉杆模型法进行结构设计计算,一般采取以下步骤: (1)根据结构的受力及边界情况,按照圣维南原理,划分B区与D区; (2)按照规范、传统方法对B区进行设计计算; (3)计算结构中D区范围内的支反力及边界受力; (4)简化D区边界力,构建模拟D区实际受力情况的压杆拉杆模型, 初步确定拉压杆尺寸; (5)通过外荷载及边界荷载求压杆拉杆模型中的杆件内力; (6)对压杆拉杆模型的拉杆进行配筋,确定其有效截面积; (7)通过拉杆的有效截面进行验算; (8)验算压杆和节点强度。
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
1. 压杆拉杆模型的建立
基本假定:拉杆钢筋在压杆压溃之前屈服;钢筋有适当的锚固; 拉杆压杆仅承受轴力;忽略混凝土的抗拉强度 (1) 应力迹线法
均布荷载转化为等效的集中荷载 应力积分确定水平拉、压杆轴力
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
渐进结构优化方法:通过逐步淘汰结构中应力较小的部分,保留应力较大的,最终得 到结构的主要传力构架。 ——处于发展阶段,对于力流扰动较大的区域,尚不能通过该方法形成清晰的压杆拉 杆模型。
计算机辅助压杆拉杆模型设计软件(computer-aided strut-and-tie,CAST)
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
结构上下各作用一个集中荷载
前述典型情况
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
上部中央作用集中荷载的简支深梁
两个模型4组成
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
梁体上部受到多个集中荷载,下部承受均布荷载
5.4.2 构建压杆拉杆模型的基本方法 和设计应用步骤
一般的受力结构模型都可以通过不同的典型压杆拉杆模型组合得到
相关文档
最新文档