同济大学混凝土试验报告
混凝土强度实验报告结论

一、实验目的本次实验旨在通过混凝土立方体抗压强度试验,检验混凝土拌合物在不同配合比、养护条件下的强度,为实际工程中混凝土配比设计和质量控制提供依据。
二、实验方法1. 实验材料:水泥、砂、石子、水、外加剂等。
2. 实验仪器:混凝土立方体试模、压力机、电子秤、搅拌机等。
3. 实验步骤:(1)按照实验设计要求,计算各配合比所需材料用量。
(2)将水泥、砂、石子等材料按比例称量,搅拌均匀。
(3)将搅拌好的混凝土拌合物倒入试模中,振动密实。
(4)将试模置于标准养护室进行养护。
(5)养护至规定龄期后,取出试件进行抗压强度试验。
(6)记录试验数据,分析结果。
三、实验结果与分析1. 实验结果根据实验数据,得出以下各龄期混凝土立方体抗压强度:- 1d龄期:C15强度为10.5MPa,C20强度为14.8MPa,C25强度为19.2MPa,C30强度为24.6MPa。
- 3d龄期:C15强度为16.3MPa,C20强度为21.7MPa,C25强度为27.8MPa,C30强度为35.2MPa。
- 7d龄期:C15强度为21.9MPa,C20强度为29.5MPa,C25强度为38.1MPa,C30强度为48.3MPa。
- 28d龄期:C15强度为30.6MPa,C20强度为40.3MPa,C25强度为51.9MPa,C30强度为63.4MPa。
2. 结果分析(1)混凝土强度随龄期增长而提高,且增长速度逐渐放缓。
1d龄期强度增长较快,28d龄期强度达到最大值。
(2)不同配合比的混凝土强度存在差异,水胶比对混凝土强度影响较大。
水胶比越小,混凝土强度越高。
(3)外加剂对混凝土强度有促进作用,但需根据具体外加剂类型和掺量进行调整。
(4)养护条件对混凝土强度有较大影响,适宜的养护条件有利于提高混凝土强度。
四、结论1. 混凝土立方体抗压强度试验结果符合实际工程需求,为混凝土配比设计和质量控制提供了依据。
2. 在实际工程中,应根据工程特点、环境条件和设计要求,合理选择混凝土配合比、外加剂和养护措施。
同济大学混凝土基本原理试验报告小偏心受压(优)

16.36
362
579
89.36
386
581
4. 试验过程
4.1 加载装置
柱小偏心受压试验的加载装置如下图所示。 自平 衡加载试验系统,采用千斤顶加载,支座一端为固定 铰支座,另一端为滚动铰支座。铰支座垫板应有足够 的刚度,避免垫板处混凝土局压破坏。 (图 2)
4.2 加载制度
(1) 单调分级加载机制 在正式加载前,为检查仪器仪表读数是否正常,
-440.434 -459.311 -470.686 -480.66 -460.381
表3 4.3.2 钢筋应变 由布置在柱内部纵筋表面的应变计量测,钢筋应变测点布置见下图 3:
图3 其中左图应变片从左到右从上到下分别对应号码为 8(4), 5(1), 7(3), 6(2)。括号中的数字为后 面对应处应变片号码;相应的右图上个应变片从左到右从上到下对应号码依次为 4(3), 1(2), 8(7), 5(6)。 1-8 号应变片分别对应 47_1 到 47_8 通道。 则相应 荷载—纵向钢筋应变 试验数据见下表 4:
COLLEGE OF CIVIL ENGINEERING
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
2012/11/6 2012/11/6 2012/11/6 2012/11/6 2012/11/6 2012/11/6
注:轴心抗压强度根据国家标准《普通混凝土力学性能试验方法标准》GB/T 50081-2002 评定; 立方体抗压强度、轴心抗拉强度、弹性模量根据国家标准《混凝土结构设计规范》GB 50010-2010 推定。
钢筋强度实测结果
同济大学混凝土试验报告(超筋梁、梁斜拉破坏)

同济大学混凝土试验报告(超筋梁、梁斜拉破坏)混凝土试验成果集试验名称:姓名:学号:试验老师:任课老师:XX号码:1超筋梁受弯实验报告(1)1.1实验目的(1)1.2实验内容(1)1.3构件设计(1)1.3.1构件设计的依据(1)1.3.2试件的主要参数(1)1.3.3试件加载估算(2)1.4实验装置(3)1.5加载方式(4)1.5.1单调分级加载方式(4)1.5.2开裂荷载实测值确定方法(4)1.6测量内容(5)1.6.1混凝土平均应变(5)1.6.2钢筋纵向应变(5)1.6.3挠度(5)1.6.4裂缝(6)1.7实验结果整理(6)1.7.1荷载—挠度关系:(6)1.7.2荷载—曲率关系:(7)1.7.3荷载—纵筋应变关系:(8)1.7.4裂缝进展情况描述及裂缝照片(9) 1.8实验结论(10)1.9实验建议(11)2梁斜拉破坏试验报告(12)2.1实验目的(12)2.2实验内容(12)2.3试件的设计(12)2.3.1试件设计的依据(12)2.3.2试件的主要参数(12)2.3.3试件加载预估(13)2.4实验装置(14)2.5加载方式(16)2.6测量内容(16)2.6.1混凝土平均应变(16)2.6.2纵向钢筋应变(16)2.6.3挠度(17)2.7实验结果整理(17)2.7.1荷载—挠度关系:(17)2.7.2荷载—曲率关系:(18)2.7.3荷载—纵筋应变关系:(19)2.7.4裂缝进展情况描述及裂缝照片(20) 2.8试验结论(21)3适筋梁受弯性能试验设计(21)3.1试验目的(22)3.2试件设计(22)3.2.1试件设计依据(22)3.2.2试件的主要参数:(22)3.3试验装置和加载方式(23)3.3.1试验装置(23)3.3.2加载方式(24)3.4量测内容、方法和工况(25)3.4.1混凝土平均应变(25)3.4.2纵向钢筋应变(25)3.4.3挠度(26)3.4.4裂缝(26)3.5相关计算书(26)4思考题(28)4.1 两点集中力加载的简支梁可能的破坏模式有哪些?如何预估其极限荷载?284.2 梁受剪破坏特征?(28)4.3梁受弯破坏特征?(29)4.4 若采纳位移计测应变,如何处理得到应变值?(29)4.5何谓平截面假定?试验中如何验证?(29)4.6 对于HRB335/HPB235钢筋,其屈服应变大致是多少?(29)4.7 进行试验试件设计时,应采纳材料标准值还是设计值?为什么?(30)5附录:材料试验记录表(31)5.1混凝土立方体试块抗压强度(31)5.2混凝土棱柱体试块轴心抗压强度(31)5.3钢筋拉伸试验数据(31)1超筋梁受弯实验报告1.1实验目的通过试验研究认识超筋混凝土梁在弯矩作用下开裂、裂缝进展到破坏的全过程,掌握测试混凝土受弯构件基本性能的试验方法。
混凝土实验报告

混凝土实验报告一、实验目的。
本实验旨在通过对混凝土材料的实验研究,探索混凝土的力学性能和耐久性能,为混凝土的工程应用提供科学依据。
二、实验原理。
1. 混凝土的力学性能,混凝土的力学性能包括抗压强度、抗拉强度和弹性模量等指标。
通过实验可以测试混凝土在不同条件下的力学性能表现,为工程设计提供参考。
2. 混凝土的耐久性能,混凝土的耐久性能包括抗渗性、抗冻融性和抗硫酸盐侵蚀性等指标。
通过实验可以测试混凝土在不同环境条件下的耐久性能,为工程施工提供指导。
三、实验材料和设备。
1. 实验材料,水泥、砂、石子、水等混凝土原材料。
2. 实验设备,混凝土试块模具、混凝土试验机、混凝土抗渗性测试设备等。
四、实验步骤。
1. 混凝土配合比设计,根据工程要求和材料性能,确定混凝土的配合比。
2. 混凝土试块制作,按照配合比要求,将混凝土原材料进行搅拌、浇筑、养护,制作混凝土试块。
3. 混凝土力学性能测试,对制作好的混凝土试块进行抗压强度、抗拉强度和弹性模量等力学性能测试。
4. 混凝土耐久性能测试,对制作好的混凝土试块进行抗渗性、抗冻融性和抗硫酸盐侵蚀性等耐久性能测试。
五、实验结果分析。
1. 混凝土力学性能,根据实验结果,分析混凝土的抗压强度、抗拉强度和弹性模量等指标是否符合工程要求,找出影响力学性能的因素。
2. 混凝土耐久性能,根据实验结果,分析混凝土的抗渗性、抗冻融性和抗硫酸盐侵蚀性等指标是否符合工程要求,找出影响耐久性能的因素。
六、实验结论。
通过混凝土实验,得出混凝土的力学性能和耐久性能符合工程要求,为混凝土的工程应用提供了科学依据。
七、参考文献。
1. 《混凝土工程技术规范》。
2. 《混凝土材料手册》。
3. 《混凝土实验方法》。
八、致谢。
感谢实验室的老师和同学们在实验过程中的帮助和支持。
以上为混凝土实验报告,希望对混凝土工程应用有所帮助。
同济大学大偏心受压试验报告

458
601
光圆
13.00 13.08
17.16 16.99 26.33 23.54 26.59 26.69 36.04 26.37 36.98 36.40 50.06 39.78 49.71 49.93 65.11 43.76 64.76 64.78 87.46 58.77 87.06 87.28 153.47 98.78 153.48 153.85 209.29 135.35 208.44 209.57 209.10 356 550 153.60 388 604 87.27 382 567 64.88 387 574 49.90 506 635 36.47 336 463 26.54 468 528
4. 试验过程
4.1 加载装置
采用千斤顶加载,支座一端为固定铰支座,另一端为滚动铰支座。绞支座垫板应有足 够的刚度,避免垫板出混凝土局压破坏。加载装置如图 2 所示:
千斤顶
图 2 柱偏心受压试验加载装置
4.2 加载制度
单调分级加载机制, 具体可参见 《混凝土结构试验方法标准》 GB50152-92 中的第 4.2.1、 4.2.2、4.2.3 条。 但在本次试验过程中,由于时间限制,采用比较粗糙的分级加载制度,实际加载顺序 为 0→10kN→20kN→30kN→40kN→……直至破坏, 但由于千斤顶漏油现象, 荷载衰减得很 厉害。
x N cu e 1 f cbx(ho ) fy ' As ' (h0 as ' ) 2 x 33.9mm N cu 82.3kN
(3)补充设计 因为试件所受剪力以及偏心扭矩较小,所以按构造配箍即可。 平面外轴压承载力验算:
l0 / b 7.5 8 1 N cu ( f c A fyAs fy ' As ' ) 466.3kN 82.3kN 满足要求
混凝土实验报告结果分析

混凝土实验报告结果分析实验目的混凝土是建筑材料中常见的一种材料,其力学性能对工程结构的稳定性和耐久性有着重要影响。
本实验的目的是通过对混凝土试块的力学性能测试,研究混凝土的强度和变形性能,并对实验结果进行分析和解释。
实验方法本实验首先根据设计配比,按照一定比例将水泥、砂、骨料和水混合搅拌制备混凝土试块。
然后,将制备好的混凝土试块进行养护,在规定的时间内进行强度和变形性能的测试。
强度测试强度测试是评估混凝土材料抵抗外部力的能力。
本实验通过破坏试验来测定混凝土的抗压强度和抗拉强度。
在抗压强度测试中,我们将试块放在试验机上,以一定速度施加压力,记录当试块发生破坏时的加载力。
根据试块的尺寸和加载力,可以计算出混凝土的抗压强度。
在抗拉强度测试中,我们使用悬挂试验机对试块进行加载,在试块断裂之前记录其最大加载力。
通过计算试块的尺寸和加载力,可以得出混凝土的抗拉强度。
变形性能测试变形性能测试是评估混凝土材料在外力作用下的变形能力。
本实验通过对混凝土试块进行拉伸和压缩试验来研究其变形性能。
在拉伸试验中,我们在试块上施加拉力,记录加载力和试块的伸长量。
根据试块的尺寸和加载力,可以得出混凝土的拉伸变形性能参数。
在压缩试验中,我们在试块上施加压力,记录加载力和试块的压缩量。
根据试块的尺寸和加载力,可以得出混凝土的压缩变形性能参数。
实验结果分析根据实验数据,我们进行了混凝土的强度和变形性能结果分析。
强度分析根据抗压强度测试数据,我们计算出了不同配比条件下混凝土的平均抗压强度。
结果显示,随着水泥用量的增加,混凝土的抗压强度也随之增加。
这是因为水泥可以在水的存在下与水一起形成水化物胶体,在胶体固化后形成坚硬的胶凝体,并与骨料、砂等颗粒材料紧密结合,提高了混凝土的抗压能力。
根据抗拉强度测试数据,我们计算出了不同配比条件下混凝土的平均抗拉强度。
结果显示,与抗压强度不同,混凝土的抗拉强度并不随水泥用量的增加而增加。
这是因为混凝土在拉伸过程中出现的裂纹往往发生在骨料和水泥砂浆的接触界面上,而不是裂纹在骨料内扩展,所以增加水泥用量并不能有效提高混凝土的抗拉能力。
同济大学混凝土试验大偏心受压柱试验报告
《混凝土结构基本原理》试验课程作业L ENGINEERING试验报告试验课教师林峰姓名学号手机号任课教师顾祥林《混凝土结构基本原理》试验课程作业L ENGINEERING大偏心受压柱试验报告试验名称大偏心受压柱试验试验课教师林峰姓名学号手机号任课教师日期2014年11月18日1. 试验目的通过试验了解大偏心受压柱破坏的全过程,掌握测试混凝土受压构件基本性能的试验方法。
同时巩固大偏心受压柱承载力的计算方法,并通过对理论值和试验值的比较加深对混凝土基本原理的理解。
2. 试件设计2.1 材料和试件尺寸混凝土:C20钢筋:使用I 级钢筋作为箍筋,II 级钢筋作为纵筋 试件尺寸(矩形截面):b ×h ×l=120×120×870mm 详细尺寸见图1大偏心受压柱配筋图2.2 试件设计(1)试件设计的依据为减少“二阶效应”的影响,将试件设计为短柱,即控制l 0/h ≤5。
通过调整轴向力的作用位置,即偏心距e 0,使试件的破坏状态为大偏心受压破坏。
(2)试件参数如表1表1 试件参数表 试件尺寸(矩形截面) b ×h ×l=120×120×870mm 纵向钢筋(对称配筋) 412 箍筋Φ6@100(2) 纵向钢筋混凝土保护层厚度 15mm 配筋图 图1 偏心距e 0100mm12020080135135505050087020020022113 8@504 6@100150200501206φ124φ123 8@504φ121201201-12-23 8@503 8@50 4双向钢丝网2片 4双向钢丝网2片 尺寸170x908@508@506@100图1 大偏心受压柱配筋图(3)试件承载力估算 N c =α1f c bh 0ζN c e=α1f c bh 02ζ(1-0.5ζ) + f y ’ A s ’(h 0-a s ’) e=e 0+0.5h-a s不妨令:A=2f 20c 1bh α, B=)(00c 1-e f h bh α, C=)(f -0y '-''s s h A α 从而有:AAC24B B -2-+=ξ得出本次试验试件的极限承载力的预估值为:Ncu=87.71kN 详细计算过程见附录12.3 试件的制作根据《普通混凝土力学性能试验方法标准》GB/T 50081-2002规定, 成型前,试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。
同济大学混凝土试验大偏心受压柱试验报告
《混凝土结构基本原理》试验课程作业L ENGINEERING试验报告试验课教师林峰姓名学号手机号任课教师顾祥林《混凝土结构基本原理》试验课程作业L ENGINEERING大偏心受压柱试验报告试验名称大偏心受压柱试验试验课教师林峰姓名学号手机号任课教师日期2014年11月18日1. 试验目的通过试验了解大偏心受压柱破坏的全过程,掌握测试混凝土受压构件基本性能的试验方法。
同时巩固大偏心受压柱承载力的计算方法,并通过对理论值和试验值的比较加深对混凝土基本原理的理解。
2. 试件设计2.1 材料和试件尺寸混凝土:C20钢筋:使用I 级钢筋作为箍筋,II 级钢筋作为纵筋 试件尺寸(矩形截面):b ×h ×l=120×120×870mm 详细尺寸见图1大偏心受压柱配筋图2.2 试件设计(1)试件设计的依据为减少“二阶效应”的影响,将试件设计为短柱,即控制l 0/h ≤5。
通过调整轴向力的作用位置,即偏心距e 0,使试件的破坏状态为大偏心受压破坏。
(2)试件参数如表1表1 试件参数表 试件尺寸(矩形截面) b ×h ×l=120×120×870mm 纵向钢筋(对称配筋) 412箍筋Φ6@100(2) 纵向钢筋混凝土保护层厚度 15mm 配筋图 图1 偏心距e 0100mm12020080135135505050087020020022113 8@504 6@100150200501206φ124φ123 8@504φ121201201-12-23 8@503 8@50 4双向钢丝网2片 4双向钢丝网2片 尺寸170x908@508@506@100图1 大偏心受压柱配筋图(3)试件承载力估算 N c =α1f c bh 0ζN c e=α1f c bh 02ζ(1-0.5ζ) + f y ’ A s ’(h 0-a s ’) e=e 0+0.5h-a s不妨令:A=2f 20c 1bh α, B=)(00c 1-e f h bh α, C=)(f -0y '-''s s h A α 从而有:AAC24B B -2-+=ξ得出本次试验试件的极限承载力的预估值为:Ncu=87.71kN 详细计算过程见附录12.3 试件的制作根据《普通混凝土力学性能试验方法标准》GB/T 50081-2002规定, 成型前,试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。
同济大学土材水泥实验报告
实验报告实验四水泥凝结时间,安定性和强度实验实验日期:实验人员:1、实验目的了解通用水泥常规性能的实验方法。
2实验要求根据国家标准的要求,通过实验并评定普通水泥(强度等级42.5)试样的凝结时间(演示)、安定性和强度等级;并对所实验的水泥试样质量进行综合评定。
3、主要仪器设备1标准稠度用水量、凝结时间和安定性①GJ-160-2双转双速水泥净浆搅拌机②标准维卡仪③量水器(最小刻度0.1ml,精度1%)④JA12002型电子天平,最大称量不小于1000g,感量0.01g;⑤湿气养护箱,控制温度为20℃±l℃,相对湿度不低于90%⑥RAF-A型雷氏法水泥安定性试验用沸煮箱2胶砂强度①养护箱和养护池试体带模养护的养护箱或雾室温度保持在(20±1)℃,相对湿度不低于90%。
试体养护池水温度应在(20±1)℃范围内。
②JJ-5型水泥胶砂搅拌机③试模试模由三个水平的模槽组成,可同时成型三条截面为40mm ×40mm,长160mm 的棱形试体。
④NT2000型水泥胶砂试体成型振实台⑤下料漏斗、试模、搪瓷盘、刮平刀等⑥抗折、抗压试验机、抗压夹具等4实验环境的温、湿度温度:21℃湿度:69%5、实验方法及步骤1,标准稠度用水量①实验方法采用标准GB/T 1346-2001《水泥标准稠度用水量、凝结时间、安定性检验方法》中有关“不变水量方法”进行;②实验步骤A、试验前应检查仪器金属棒能否自由滑动,调整至试锥接触锥模顶面时指针对准零点,搅拌机运转正常等。
B、水泥净浆的拌制用水泥净浆搅拌机搅拌,搅拌锅和搅拌叶片先用湿布擦过,将拌和水倒入搅拌锅内,然后在5s~10s内小心将称好的500 g水泥加入水中,防止水和水泥溅出;拌和时,先将锅放在搅拌机的锅座上,然后升至搅拌位置,启动搅拌机,低速搅拌120s,停15s,同时将叶片和锅壁上的水泥浆刮入锅中间,接着高速搅拌120s 停机。
C、标准稠度用水量的测定拌和结束后,立即将拌制好的水泥净浆装入锥模中,用小刀插捣,轻轻振动数次,刮去多余的净浆;抹平后迅速放到试锥下面固定的位置上,将试锥降至净浆表面接触,拧紧螺丝1s~2s后,突然放松,让试锥垂直自由地沉入水泥净浆中。
同济大学混凝土试验报告适筋梁受弯
《混凝土结构基本原理》试验课程作业混凝土结构基本原理试验报告试验名称 适筋梁受弯实验试验课教师 赵勇 姓名 王xx 学号1xxxxxx 手机号 188xxxxxxxx 任课教师 李方元 日期2014年10月24日L ENGINEERING目录1. 试验目的 (2)2. 试件设计 (2)2.1 材料和试件尺寸 (2)2.2 试件设计 (2)2.3 试件的制作 (4)3. 材性试验 (4)3.1 混凝土材性试验 (4)3.2 钢筋材性试验 (4)4. 试验过程 (5)4.1 加载装置 (5)4.2 加载制度 (7)4.2.1单调分级加载机制 (7)4.2.2承载力极限状态确定方法 (7)4,2.3具体加载方式 (7)4.3量测与观测内容 (7)4.3.1 荷载 (8)4.3.2 纵向钢筋应变 (8)4.3.3 混凝土平均应变 (8)4.3.4 挠度 (8)4.3.5 裂缝 (9)4.4 裂缝发展及破坏形态 (9)5. 试验数据处理与分析 (10)5.1 试验原始资料的整理 (10)5.2 荷载-挠度关系曲线 (10)5.3 弯矩-曲率关系曲线 (12)5.5 正截面承载力分析 (14)5.6 斜截面承载力分析 (15)5.7 构件的承载力分析 (16)6 结论 (16)1. 试验目的(1)观察并掌握适筋梁受弯破坏的力学行为和破坏模式; (2)掌握构件加载过程中裂缝和其他现象的描述和记录方法; (3)掌握对实验数据的处理和分析方法;(4)学会利用数据分析实验过程中的现象,尤其是与理论预期有较大偏差的现象; (5)通过撰写实验报告的过程,加深对混凝土结构适筋梁构件受弯性能的理解。
2. 试件设计2.1 材料和试件尺寸(1)钢筋:纵筋HPB335、箍筋HPB235 (2)混凝土强度等级:C20(3)试件尺寸(矩形截面):b ×h ×l =120×200×1800mm2.2 试件设计(1)试件设计的依据根据梁正截面受压区相对高度ξ和界限受压区相对高度b ξ的比较可以判断出受弯构件的类型:当b ξξ≤时,为适筋梁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 2.1 配筋图 材料参数:材料性能实验同适筋梁受弯,结果整理如下: 混凝土: fck 0.95 17.974 17.075 N·mm 钢筋:
钢筋 (MPa) 295.48 (MPa) 286.32 509.02 365.97 622.50 420.53 521.65 4
2
; ftk 0.117.075 1.708 N·mm
3
5.33333E-05 0.00016 5.33333E-05 0.00008 -0.000366667 -0.000233333 -0.00008 0.00134 0.0006 0.001153333 0.000553333 0.000286667 0.00076 0.00068 0.000526667 0.0005 0.000473333 0.000553333
2 -11 -59 -134 -216 -307 -409 -520 -651 -696 -742 -749 -795 -926
3 1 11 -13 -35 -53 -34 -51 -35 -8 45 177 254 682
500
4 2 2 -25 -45 -71 -82 -73 -88 -129 -119 -118 -117 -80
5 -7 -26 -135 -249 -381 -529 -637 -919 -1110 -1311 -1754 -1930 -2204
6 -15 -100 -220 -357 -500 -660 -845 -1101 -1250 -1420 -1630 -1731 -1762
7 2 17 -34 -82 -138 -203 -271 -373 -394 -460 -514 -475 -95
COLLEGE OF CIVI L ENGINEERING
《混凝土结构基本原理》试验课程作业
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
图 5.1 砼应变布测图 表 5.1 砼应变测量数据表
1 ( f5 f 7 )) , 2
计算结果整理见表 5.3,以此绘制荷载挠度曲 线见图 5.7 所示。
图 5.6 侧向挠度测点布置图
表 5.3 挠度数据表
荷载 10.652 49.876 100.496 150.125 200.827 250.456 300.084 350.539 370.936 402.48 421.721 440.713 410.408
挠 度 (mm) -0.001 0.0415 0.073 0.071 0.021 0.0685 0.0875 0.18 0.2475 0.3735 0.721 0.92 1.807
500 450 400 350 荷载(kN) 300 250 200 150 100 50 0 -0.5 0 0.5 挠度(mm) 1 1.5 2
图 5.4 钢筋应变测点布置图 表 5.2 钢筋应变测量结果表
荷载 10.735 49.464 100.496 150.042 200.662 250.126 300.332 350.291 370.936 402.398 426.098 440.713 410.408
1 -13 10 -92 -205 -332 -478 -624 -845 -986 -1124 -1506 -1749 -1954
COLLEGE OF CIVI L ENGINEERING
《混凝土结构基本原理》试验课程作业
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
COLLEGE OF CIVI L ENGINEERING 《混凝土结构基本原理》试验课程作业
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
2 试件与材料
试件参数: 试件尺寸(矩形截面): b h l 150 150 650 mm 混凝土强度等级:C20 纵向钢筋(对称配筋) :4B14 箍筋:A6@100(2) 纵向钢筋混凝土保护层厚度:15mm 偏心距 e0 :20mm 配筋图如图 2.1 所示:
-0.002593333 -0.00288 -0.00288 -0.003826667
0.0006 0.000446667 0.000526667 0.000526667
500 450 400 350
-0.000606667 -0.00058 -0.000553333 -0.000713333
79.83333333 83.16666667 85.16666667 108.8333333
曲率( 106 / mm) 0.666666667 3.333333333 4 7.833333333 -1.33333333 5.333333333 13.66666667 54.5 41.83333333 57.66666667 49.16666667 45.83333333 59.66666667 57 62.33333333 64.33333333 63.66666667 71.5
4
2.66667E-05 -2.66667E-05 -0.00008 -0.00008 -0.00016 -0.000213333 -0.000266667 -0.000313333 -0.000393333 -0.000393333 -0.00042 -0.000473333 -0.000473333 -0.000473333 -0.000526667 -0.000553333 -0.00058 -0.0005
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
荷载(kN)
300 250 200 150 100 50 0
-0.005
-0.004
-0.003
-0.002
-0.001 砼应变 0
0.001
0.002
图 5.2 荷载-砼应变曲线
500 450 400 350 300 250 200 150 100 50 0 0 20 40 曲率 60 80 100 120
COLLEGE OF CIVI L ENGINEERING
《混凝土结构基本原理》试验课程作业
432.291 420.482 402.15 355.66
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
图 5.7 荷载-挠度曲线
COLLEGE OF CIVI L ENGINEERING
《混凝土结构基本原理》试验课程作业
(4) 裂缝
( b )裂缝发展情况 ① 荷载还未达到 150kN 时,构件没有裂缝。 ② 荷载为 150kN 时,构件出现第一条裂缝,位于扭腿上,宽度 为 0.03mm。 ③ 荷载为 200kN 时,没有发现新的裂缝,原裂缝发生延伸和拓 展,其宽度发展为 0.06mm。 ④ 荷载为 250kN 时,构件上下两端扭腿开始出现新的裂缝,原 先裂缝进一步发展。 ⑤ 荷载为 300kN 时,裂缝继续发展。 ⑥ 荷载为 350kN 时, 上下两端扭腿裂缝非常明显, 且数量众多。 ⑦ 荷载为 400kN 时,上部加载点混凝土已经被压酥,下端扭腿 根部混凝土也被压酥。 荷载为 440kN 时,靠近扭腿部破坏。裂缝简图如图 5.8 所示。
荷载(kN)
-20
图 5.3 荷载-曲率曲线 (2) 纵筋应变 由布置在柱内部纵筋表面的应变计测量,钢筋应变测点布置见图 5.4 所示,测得结果见表 5.2,以此绘制荷载-钢筋应变曲线如图 5.5 所示
COLLEGE OF CIVI L ENGINEERING
《混凝土结构基本原理》试验课程作业
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
图 3.1 加载装置图
4 试验现象
荷载较小时,没有裂缝,荷载第一条裂缝出 现在下端牛腿处,荷载增大,此处裂缝向上 发展,宽度增加。荷载进一步增大,受压钢 筋屈服,最后牛腿出砼压碎。塑性破坏。图 4.1 为破坏图。
图 4.1 试件破坏图
5 试验量测内容与结果分析
(1) 混凝土平均应变 由布置在柱表面混凝土上的位移计量测,混凝土应变测点布置见图 5.1。量测结果整理见表 5.1,并以此绘制荷载-混凝土应变曲线和荷载-荷载曲线如图 5.2 和图 5.3 所示。计算正截 面挠度由于实验中第一个位移计脱落,舍去其数据。
2
。
表 2.1 钢筋强度表
6 8 10 B10 B12 B14
360.25
454.80
594.93
516.00
788.02
604.71
600.92
COLLEGE OF CIVI L ENGINEERING
《混凝土结构基本原理》试验课程作业
3 试验装置
(1) 装置:柱偏心受压试验的加载装置如图 3.1 所示。采用千斤顶加载,支座一端为固 定铰支座,另一端为滚动铰支座。 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ (2) 加载方式: ① 当荷载小于 300kN 时, 每 50kN 为一级荷载, 每级荷载 持续 5min。 ② 当荷载大于 300kN 小于 375kN 时, 每 25kN 为一级荷载, 每级荷载持续 5min。 ③ 当荷载大于 375kN 时,每 10kN 为一级,加到 400kN 时,拆除所有仪表,加载至破坏,并记录破坏时的极限荷 载。