自动控制系统简介PPT课件
合集下载
自动控制系统第八版课件

幅频特性和相频特性
描述系统对不同频率正弦信号的放大倍数和相位移动情况。
频率特性的表示方法
极坐标图、对数坐标图(Bode图)等。
06
自动控制系统的校正与设 计
系统校正的基本概念
校正的定义
通过改变系统的结构或参数,使系统的性能得到 改善的过程。
校正的目的
提高系统的稳定性、快速性、准确性和抗干扰能 力。
脉冲响应的求解与性质
单位脉冲输入下系统的输出响应,可以通过差分方 程的求解得到,脉冲响应具有线性性、时不变性和 因果性等性质。
卷积的性质与应用
卷积是求解线性时不变系统输出响应的重要 方法,具有交换律、分配律和结合律等性质 ,可以简化计算过程。
Z变换与离散系统分析
Z变换的定义与性质
Z变换是离散时间信号与系统分析的重要工具,可以将差 分方程转换为代数方程进行求解,具有线性性、时移性、 频移性和卷积性等性质。
02
线性连续系统分析
线性连续系统的数学模型
微分方程
描述系统动态特性的数学工具, 通过求解微分方程可以得到系统 的输出响应。
传递函数
在零初始条件下,系统输出量的 拉普拉斯变换与输入量的拉普拉 斯变换之比,反映了系统的动态 特性。
状态空间表达式
以状态变量为基础,描述系统动 态特性的数学模型,适用于多输 入多输出系统。
脉冲响应与卷积
系统在单位脉冲输入下的输出响应,用于描述系统的动态特性,卷 积可用于求解任意输入下的输出响应。
传递函数与零极点
传递函数是离散系统数学模型在复数域中的表示,零点和极点是传递 函数的重要特征,决定了系统的稳定性和频率响应。
差分方程与脉冲响应
差分方程的建立与求解
根据物理系统的动态特性建立差分方程,通 过求解差分方程可以得到系统的输出响应。
描述系统对不同频率正弦信号的放大倍数和相位移动情况。
频率特性的表示方法
极坐标图、对数坐标图(Bode图)等。
06
自动控制系统的校正与设 计
系统校正的基本概念
校正的定义
通过改变系统的结构或参数,使系统的性能得到 改善的过程。
校正的目的
提高系统的稳定性、快速性、准确性和抗干扰能 力。
脉冲响应的求解与性质
单位脉冲输入下系统的输出响应,可以通过差分方 程的求解得到,脉冲响应具有线性性、时不变性和 因果性等性质。
卷积的性质与应用
卷积是求解线性时不变系统输出响应的重要 方法,具有交换律、分配律和结合律等性质 ,可以简化计算过程。
Z变换与离散系统分析
Z变换的定义与性质
Z变换是离散时间信号与系统分析的重要工具,可以将差 分方程转换为代数方程进行求解,具有线性性、时移性、 频移性和卷积性等性质。
02
线性连续系统分析
线性连续系统的数学模型
微分方程
描述系统动态特性的数学工具, 通过求解微分方程可以得到系统 的输出响应。
传递函数
在零初始条件下,系统输出量的 拉普拉斯变换与输入量的拉普拉 斯变换之比,反映了系统的动态 特性。
状态空间表达式
以状态变量为基础,描述系统动 态特性的数学模型,适用于多输 入多输出系统。
脉冲响应与卷积
系统在单位脉冲输入下的输出响应,用于描述系统的动态特性,卷 积可用于求解任意输入下的输出响应。
传递函数与零极点
传递函数是离散系统数学模型在复数域中的表示,零点和极点是传递 函数的重要特征,决定了系统的稳定性和频率响应。
差分方程与脉冲响应
差分方程的建立与求解
根据物理系统的动态特性建立差分方程,通 过求解差分方程可以得到系统的输出响应。
自动控制系统概述.ppt

第四节 过渡过程和品质指标
二、控制系统的过渡过程
系统由一个平衡状态过渡到另一个平衡状态的过程。
举例
给定值 控制器 执行器
-
测量、变送
干扰
当干扰作用于对象,系
被控变量 统输出y发生变化,在
对象
系统负反馈作用下,经
过一段时间,系统重新
恢复平衡。
控制系统方块图
第四节 过渡过程和品质指标
系统在过渡过程中,被控变量是随时间变化的。被控 变量随时间的变化规律首先取决于作用于系统的干扰 形式。
液位人工操作图
控制速度和精度不能满足大型 现代化生产的需要
液位自动控制图
第一节 自动控制系统的组成
液位自动控制
常用术语 被控对象:需要实现控制的设备、机械和生产过程 被控变量:对象内要求保持一定数值的物理量,即输出量 控制变量:受执行器控制,用以使被控变量保持一定数值 的物料和能量 干扰:除控制变量以外,作用于对象并引起被控变量变化 的一切因素 给定值:工艺规定被控变量所要保持的数值 偏差:设定值与测量值之差
在生产中,出现的干扰是没有固定形式的,且多半属 于随机性质。在分析和设计控制系统时,为了安全和 方便,常选择一些定型的干扰形式,其中常用的是阶 跃干扰。
第四节 过渡过程和品质指标
常见典型信号 阶跃信号、斜坡信号、脉冲信号、加速度信号和正弦信号等。
阶跃信号
数学表达式为: r(t) A t≥0 0 t<0
阶跃干扰作用
第四节 过渡过程和品质指标
自动控制系统在阶跃干扰作用下过渡过程的四种形式
非周期衰减过程 √
衰减震荡过程
√
对于控制质量要求不 高的场合,如果被控
等幅震荡过程 ?变的量范允围许内在振工荡艺(许主可要
自动控制系统概述ppt课件

号
号
1 就地安 装仪表
2 集中仪 表盘面 安装仪 表
3 就地仪 表盘面 安装仪 表
4
嵌在管道 中
集中仪表 盘后安装 仪表
5 就地仪表 盘后安装 仪表
第二节 自动控制系统的基本组成及表示形式
对于处理两个或两个以上被测变量,具有相同或不同 功能的复式仪表时,可用两个相切的圆或分别用细实线圆 与细虚线圆相切表示(测量点在图纸上距离较远或不在同 一图纸上),如下图所示。
对于一个稳定的系统(所有正常工作的反馈系统都是稳定系统 )要分析其稳定性、准确性和快速性,常以阶跃作用为输入时 的被控变量的过渡过程为例,因为阶跃作用很典型,实际上也 经常遇到,且这类输入变化对系统来讲是比较严重的情况。
第四节 自动控制系统的过渡过程和品质指标
信号常见形式 斜坡信号、脉冲信号、加速度信号和正弦信号、阶跃信号等。
执行器
液位自动控制系统方框图
每个方框表示组成系统的一个环节,两个方框之间用带箭 头的线段表示信号联系;进入方框的信号为环节输入,离 开方框的为环节输出。
第二节 自动控制系统的基本组成及表示形式
注意!
方框图中的每一个方框都代表一个具体的装置。 方框与方框之间的连接线,只是代表方框之间的信号联 系,与工艺流程图上的物料线有区别。 “环节”的输入会引起输出的变化,而输出不会反过来直 接引起输入的变化。环节的这一特性称为“单向性” 。 自动控制系统是一个闭环系统
第二节 自动控制系统的基本组成及表示形式
用同一种形式的方框图可以代表不同的控制系统
蒸汽加热器温度控制系统
给定值x
偏差e
控制器输出p
控制器
干扰作用f
操纵变量q 执行器
对 象 被控变量y
自动控制系统ppt课件

(二) 逆变器输出电压与脉宽的关系 单极式SPWM 脉冲幅值1/2Us.在半个周波内有 N个脉冲,个脉冲不等宽 但中心间距一样, 等三角波的周期
令 第 个矩形脉冲宽度为 其中心点相位角
因为从原点始只有半个三角波
因为输出电压波形 负半波左右对称,是一个奇 次周期函数
把N个矩形脉冲代表的 代入上式,须先求的每个 脉冲的起始和终止相位角
五.研究自动控制系统的方法
定性分析 建立数学模型
定性分析 建立数学模型
定量分析
定性分析
对系统校正 工程实践
对系统校正
称心?
N
Y 工程实践
六.本课程与其它课程的关系
先修课程 电机学、自控原理、电子技术
后续课程 计算机控制系统
六.本课程与其它课程的关系
主要内容 直流电机自动控制系统 交流电机自动控制系统
§7-1变频调速的基本控制方 式
电机调速时希望磁通量Φm为额定值不变 三相异步机每相电势 Eg=4.44f1N1KN1Φm f1------定子频率 KN1---基波绕组系数 N1-----定子每相绕组串联匝数 Φm ----每极气隙磁通量(Wb)
一.基频以下调速
f1从额定f1n向下调。 要求: Eg /f1 =常数。
二.自动控制系统的分类
③过程控制系统 特点:对生产过程自动提供一定的外界条件,
例如:温度、压力、流量、粘度、浓度等参 量保持恒定或按一定的程序变化。对其中的 每一局部,可以是随动系统,也可以是恒值 系统。 例子:化工厂控制系统。
二.自动控制系统的分类
2.按数学模型分类 数学模型 描述系统内部各物理量之间关系的数学表达式。 静态模型 变量各阶导数为零的条件下。
二:直接变频装置(AC-AC)
自动控制系统的基本认识 PPT

• 电冰箱、空调、电饭煲:控制温度
智能建筑:
通信 电梯 供水 通风 空调 安防 抄表 …
工业机器人:
其他机器人:
排爆
步行
灵巧手
吹笛
拉提琴
足球比赛
自动控制的应用领域
• 军事工业 • 航空航天 • 制造业 • 机器人 • 流程工业
钢铁、石化、 造纸、制药等
• 电子工业 • 家用电器
• 交通系统,楼宇系统,经济系统,社会系统 …
自控系统的特点: <1>从信号传送看:c(t)经测量后回到输入端,构成
闭环,具有反馈形式,且为负反馈。 <2>从控制作用的产生看:由偏差产生的控制作用使
系统沿减小或消除偏差的方向运动—偏差控制。
自动控制系统的常用术语
二、常用术语及符号 1)输入量(指令)v(t)——来自反馈系统之外的对系统所施
加的控制作用。 2)参考输入r(t)——输入元件的输出,它是系统的实际输入
二、闭环控制系统:
第一章 自动控制概论
• 定义:闭环控制——被控量与给定值比较后用 其偏差对系统进行控制。亦称反馈控制。
• 特点:不论什么原因使被控量偏离期望值而出 现偏差时,必定会产生一个相应的控制作用去 减小或消除这个偏差,使被控量与期望值趋于 一致。需要控制的是c(t)、而测量的是c(t)对r(t) 的偏差。只要c(t)出现偏差,系统就自行纠正。
<3>测量(反馈)元件:其职能是检测被控制量的物理量。 如测速机、热电偶、自整角机、电位器、旋转 变压器、浮子等。
基本组成(续)
第一章 自动控制概论
<4>放大元件:其职能是将比较元件给出的偏差 信号进行放大,用来推动执行元件去控制受 控对象。如:晶体管、集成电路、晶闸管等 组成的电压、功率放大器。
智能建筑:
通信 电梯 供水 通风 空调 安防 抄表 …
工业机器人:
其他机器人:
排爆
步行
灵巧手
吹笛
拉提琴
足球比赛
自动控制的应用领域
• 军事工业 • 航空航天 • 制造业 • 机器人 • 流程工业
钢铁、石化、 造纸、制药等
• 电子工业 • 家用电器
• 交通系统,楼宇系统,经济系统,社会系统 …
自控系统的特点: <1>从信号传送看:c(t)经测量后回到输入端,构成
闭环,具有反馈形式,且为负反馈。 <2>从控制作用的产生看:由偏差产生的控制作用使
系统沿减小或消除偏差的方向运动—偏差控制。
自动控制系统的常用术语
二、常用术语及符号 1)输入量(指令)v(t)——来自反馈系统之外的对系统所施
加的控制作用。 2)参考输入r(t)——输入元件的输出,它是系统的实际输入
二、闭环控制系统:
第一章 自动控制概论
• 定义:闭环控制——被控量与给定值比较后用 其偏差对系统进行控制。亦称反馈控制。
• 特点:不论什么原因使被控量偏离期望值而出 现偏差时,必定会产生一个相应的控制作用去 减小或消除这个偏差,使被控量与期望值趋于 一致。需要控制的是c(t)、而测量的是c(t)对r(t) 的偏差。只要c(t)出现偏差,系统就自行纠正。
<3>测量(反馈)元件:其职能是检测被控制量的物理量。 如测速机、热电偶、自整角机、电位器、旋转 变压器、浮子等。
基本组成(续)
第一章 自动控制概论
<4>放大元件:其职能是将比较元件给出的偏差 信号进行放大,用来推动执行元件去控制受 控对象。如:晶体管、集成电路、晶闸管等 组成的电压、功率放大器。
自动控制原理课件:自动控制系统概述

本章思考题:
• 自动控制的实质是什么? • 闭环控制的结构使得其具有哪些优缺点? • 对自动控制系统的基本要求有哪些?
随动系统与自动调整系统 线性系统与非线性系统 连续系统和离散系统 单输入单输出系统和多输入多数出系统
1.5 自动控制系统的基本要求 稳定性 稳态性能指标 暂态性能指标
经典控制理论的主要分析方法:时域分析,频域分析
1.6 控制系统数字仿真实践的必要性
进行数字仿真实 验在某种意义上比理 论和试验对问题的认 识可以更为细致,不 仅可以了解问题的结 果而且可以通过设定 仿真条件等方式连续 动态、重复地显示控 制系统发展演化的中 间过程,方便了解直 观试验不易观测到的 整体与局部细节过程。
自动控制系统概述
目 录
CONTENTS
1.1 引言 1.2 开环控制和闭环控制 1.3 闭环自动控制系统的基本组成 1.4 自动控制系统的分类 1.5 自动控制系统的基本要求 1.6 控制系统数字仿真实践的必要性
1.1 引言
自动控制的基本概念
自动控制 自动控制是在没有人的直接干预下,利用物理装置对生产设备和
闭环控制的特点
控制器与被控对象之间既有信号的正向作用,又 有信号的反馈作用。
优点:抗干扰能力强,稳态精度高、动态性能好等。
缺点:设计不合理时,将出现不稳定。在开控制器 2-控制对象 3-检测装置
1.3 闭环自动控制系统的基本组成
1.4 自动控制系统的分类
工艺过程进行合理的调节,使期望的物理量保持恒定,或者按照一定 的规律变化。
自动控制系统 自动控制系统是为实现某一控制目标所需要的所有物理部件的有
机组合体。
1.2 开环控制和闭环控制
图1-1 电炉加热系统 1-控制器(调压器) 2-被控对象(电炉箱)
《自动控制系统》课件

判定方法
通过分析系统的误差信号和稳态误差,可以判定系统的稳态性能 。
05
自动控制系统设计
系统建模
总结词
系统建模是自动控制系统设计的关键步 骤,它通过建立系统的数学模型来描述 系统的输入、输出和状态之间的关系。
VS
详细描述
系统建模是利用数学模型来描述一个实际 系统的动态行为。通过建立系统的数学模 型,可以分析系统的性能、预测系统的行 为,以及优化系统的设计。常见的系统建 模方法包括传递函数、状态空间和差分方 程等。
自动控制系统类型
开环控制系统
01
开环控制系统是指系统中没有反馈回路的控制系统 。
02
开环控制系统的输出只受输入的控制,系统的抗干 扰性和可靠性较低。
03
常见的开环控制系统有温度控制系统、液位控制系 统等。
闭环控制系统
闭环控制系统是指系统中具有反馈回路的控制系统。
闭环控制系统的输出会反馈到输入端,通过比较实际输出和期望输出的偏差来调整输入,从而减小或消 除偏差。
分类
根据系统对输入信号的响应,动态性能可以分为快速 性、稳定性和准确性。
判定方法
通过分析系统的阶跃响应和脉冲响应,可以判定系统 的动态性能。
稳态性能分析
定义
稳态性能是指系统在输入信号作用下,系统输出的最终状态,包 括误差、稳态误差等。
分类
根据系统对输入信号的响应,稳态性能可以分为无差系统、有差 系统和积分系统。
实例
环境监测与控制系统可以对城市污水处理厂的污水进行实时监测和控制,根据水质数据 自动调整污水处理设备的运行参数,提高污水处理效果和排放标准。
THANKS
感谢观看
被控对象的特性对控制系统的设计有 很大影响,需要充分了解被控对象的 数学模型和动态特性。
通过分析系统的误差信号和稳态误差,可以判定系统的稳态性能 。
05
自动控制系统设计
系统建模
总结词
系统建模是自动控制系统设计的关键步 骤,它通过建立系统的数学模型来描述 系统的输入、输出和状态之间的关系。
VS
详细描述
系统建模是利用数学模型来描述一个实际 系统的动态行为。通过建立系统的数学模 型,可以分析系统的性能、预测系统的行 为,以及优化系统的设计。常见的系统建 模方法包括传递函数、状态空间和差分方 程等。
自动控制系统类型
开环控制系统
01
开环控制系统是指系统中没有反馈回路的控制系统 。
02
开环控制系统的输出只受输入的控制,系统的抗干 扰性和可靠性较低。
03
常见的开环控制系统有温度控制系统、液位控制系 统等。
闭环控制系统
闭环控制系统是指系统中具有反馈回路的控制系统。
闭环控制系统的输出会反馈到输入端,通过比较实际输出和期望输出的偏差来调整输入,从而减小或消 除偏差。
分类
根据系统对输入信号的响应,动态性能可以分为快速 性、稳定性和准确性。
判定方法
通过分析系统的阶跃响应和脉冲响应,可以判定系统 的动态性能。
稳态性能分析
定义
稳态性能是指系统在输入信号作用下,系统输出的最终状态,包 括误差、稳态误差等。
分类
根据系统对输入信号的响应,稳态性能可以分为无差系统、有差 系统和积分系统。
实例
环境监测与控制系统可以对城市污水处理厂的污水进行实时监测和控制,根据水质数据 自动调整污水处理设备的运行参数,提高污水处理效果和排放标准。
THANKS
感谢观看
被控对象的特性对控制系统的设计有 很大影响,需要充分了解被控对象的 数学模型和动态特性。
《自动控制原理》课件

集成化:智能控制技术将更加集 成化,能够实现多种控制技术的 融合和应用。
添加标题
添加标题
添加标题
添加标题
网络化:智能控制技术将更加网 络化,能够实现远程控制和信息 共享。
绿色化:智能控制技术将更加绿 色化,能够实现节能减排和环保 要求。
控制系统的网络化与信息化融合
网络化控制:通过互联网实现远程控制和监控
现代控制理论设计方法
状态空间法:通过建立状态空间模型,进行系统分析和设计 频率响应法:通过分析系统的频率响应特性,进行系统分析和设计 极点配置法:通过配置系统的极点,进行系统分析和设计 线性矩阵不等式法:通过求解线性矩阵不等式,进行系统分析和设计
最优控制理论设计方法
基本概念:最优控制、状态方程、控制方程等 设计步骤:建立模型、求解最优控制问题、设计控制器等 控制策略:线性二次型最优控制、非线性最优控制等 应用领域:航空航天、机器人、汽车电子等
动态性能指标
稳定性:系统在受到扰动后能否恢复到平衡状态 快速性:系统在受到扰动后恢复到平衡状态的速度 准确性:系统在受到扰动后恢复到平衡状态的精度 稳定性:系统在受到扰动后能否保持稳定状态
抗干扰性能指标
稳定性:系统在受到干扰后能够 恢复到原来的状态
准确性:系统在受到干扰后能够 保持原有的精度和准确性
信息化控制:利用大数据、云计算等技术实现智能化控制
融合趋势:网络化与信息化的融合将成为未来控制系统的发展方向 应用领域:工业自动化、智能家居、智能交通等领域都将受益于网络化与 信息化的融合
控制系统的模块化与集成化发展
模块化:将复杂的控制系统分解为多个模块,每个模块负责特定的功能,便于设计和维护 集成化:将多个模块集成为一个整体,提高系统的性能和可靠性 发展趋势:模块化和集成化是未来控制系统发展的重要方向 应用领域:广泛应用于工业自动化、智能家居、智能交通等领域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及
警戒定时器的状态,并能诊断用户程序中的语法错误。当PLC投入运行时,
首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映
象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令
的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有
2020/1/1
12
PLC的工作原理
采用扫描用户程 序的运行结果与 继电器控制装置 的硬逻辑并行运 行的结果有所区 别。
2020/1/1
13
自控系统的构成
重要的监控运行目标的实现
2020/1/1
14
自控系统的构成
如图所示:***公司的自动控制系统由中央控制室监控及各分站、 子站监控组成的两级监控部分和现场控制站、控制子站组成,控制子站 的现场操作设备为触摸屏。
可编程控制器是一台计算机,它是专为工业环境应用而设计制造的 计算机。它具有丰富的输入/输出接口,并且具有较强的驱动能力。但 可编程控制器产品并不针对某一具体工业应用,在实际应用时,其硬件 需根据实际需要进行选用配置,其软件需根据控制要求进行设计编制。
2020/1/1
3
PLC的基本结构
中央处理单元(CPU)是PLC的控制中枢。它按照PLC系统程序赋予的功能
类触点的动作时间一般在100ms以上,而PLC扫描用户程序的时间一般均小于
100ms,因此,PLC采用了一种不同于一般微型计算机的运行方式---扫描技术。这
样在对于I/O响应要求不高的场合,PLC与继电器控制装置的处理结果上就没有什么
区别了。
2020/1/1
9
PLC的工作原理
扫描技术: 当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程
的用户程序执行完毕之后,最后将I/O映象区的各输出状态或输出寄存器内
的数据传送到相应的输出装置,如此循环运行,直到停止运行。
2020/1/1
4
PLC的基本结构
中央处理单元
输入电路
2020/1/1
电源
输出电路
5
PLC的基本结构
2020/1/1
继电器
端子排
6
PLC的基本结构
2020/1/1
24V开关电源 交换机
电或断电,该继电器所有的触点(包括其常开或常闭触点)在继电器控制线路的哪
个位置上都会立即同时动作。
(2)PLC的CPU则采用顺序逻辑扫描用户程序的运行方式,即如果一个输出线
圈或逻辑线圈被接通或断开,该线圈的所有触点(包括其常开或常闭触点)不会立即动
作,必须等扫描到该触点时才会动作。
为了消除二者之间由于运行方式不同而造成的差异,考虑到继电器控制装置各
序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运 行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。
输入采样
用户程序执行
输出刷新
2020/1/1
10
2020/1/1
11
PLC的工作原理
比较下二个程序的异同:
程序1
程序2
这两段程序执行的结果完全一样,但在PLC中执行的过程却不一样。程序1 只用一次扫描周期,就可完成对%M4的刷新; 程序2要用四次扫描周期,才 能完成对%M4的刷新。
自控系统的
点击添加文本
2020/1/1
15
总结及互动
2020/1/1
16
我们看到了什么
2020ቤተ መጻሕፍቲ ባይዱ1/1
17
日常注意事项
整洁干燥的环境 无论系统工作或者停机状态下,电器柜门要始终处于关闭状态 保持电气柜散热风扇的运行良好
定期检查、清洗或更换散热风扇的过滤网
定期清洁电气柜内部及电气元件的灰尘
电缆、电线进出口保持密封状态,防止杂物、灰尘侵入
自动控制系统简介
2020/1/1
1
2020/1/1
PLC的基本概念及工作原理简介 总结及互动
2
PLC的定义
PLC即可编程控制器,可编程控制器是一种数字运算操作的电子系 统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于 其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等 面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械 或生产过程。可编程控制器及其有关外部设备,都按易于与工业控制系 统联成一个整体,易于扩充其功能的原则设计。
电源模块 通讯模块 DI、DO、AI、AO模块
光纤收发器 终端盒
跳线
7
PLC的基本结构
浪涌保护器
空气开关
保险端子排
2020/1/1
8
PLC的工作原理
最初研制生产的PLC主要用于代替传统的由继电器接触器构成的控制装置,但这
两者的运行方式是不相同的:
(1)继电器控制装置采用硬逻辑并行运行的方式,即如果这个继电器的线圈通
运行环境的检查
2020/1/1 检查plc的程序存储器的电池是否需要更换
18
THANK YOU!
2020/1/1
19
2020/1/1
20