2016中考数学模拟试卷 及答案
2016年中考数学模拟试卷(含答案解析) (3)

2016年中考模拟试卷(二)数 学一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.|-2|的值是( ▲ )A .2B .﹣2C .12D .-122.已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示这个数为( ▲ )A .8.9×10-5B .8.9×10-4C .8.9×10-3D .8.9×10-23.计算a 3·(-a )2的结果是( ▲ )A .a 5B .-a 5C .a 6D .-a 64.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的实数是( ▲ ) A . 5 +1 B . 5 -1C . 5D . 1- 55.已知一次函数y =ax -x -a +1(a 为常数),则其函数图象一定过象限 ( ▲ )A .一、二B .二、三C .三、四D .一、四6. 在△ABC 中, AB =3,AC =2.当∠B 最大时,BC 的长是 ( ▲ ) A .1B .5C .13D .5二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置......上)7.计算: ( 13 )﹣2+(3+1)0= ▲ .8.因式分解:a 3-4a = ▲ . 9.计算:3-33= ▲ .10.函数y =x -12中,自变量x 的取值范围是 ▲ . 11.某商场统计了去年1~5月A ,B 两种品牌冰箱的销售情况.A 品牌(台) 15 17 16 13 14B 品牌(台)1014151620则这段时间内这两种品牌冰箱月销售量较稳定的是 ▲ (填“A ”或“B ”).-3 -2 -1 2 1 0 A BECD 3(第4题)12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为 ▲ °.13.已知m 、n 是一元二次方程ax 2–2x +3=0的两个根,若m +n =2,则mn = ▲ .14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x 个中国结,可列方程 ▲ .15. 如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为23,则图中阴影部分的面积为▲ .16.已知二次函数y =ax 2+bx +c 与自变量x 的部分对应值如下表:现给出下列说法:①该函数开口向下. ②该函数图象的对称轴为过点(1,0)且平行于y 轴的直线.③当x =2时,y =3. ④方程ax 2+bx +c =﹣2的正根在3与4之间.其中正确的说法为 ▲ .(只需写出序号)三、解答题(本大题共12小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. (6分)解不等式:1-2x -13 ≥ 1-x2,并写出它的所有正整数解..... 18.(6分)化简:x -3x -2 ÷( x +2-5x -2).19.(8分)(1)解方程组 ⎩⎨⎧y =x +1,3x -2y =-1;(2)请运用解二元一次方程组的思想方法解方程组⎩⎨⎧x +y =1,x +y 2=3.x … 1- 0 1 3 …y … 3- 1 3 1 …(第11题)12(第15题)20.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了 ▲ 人,并请补全条形统计图; (2)扇形统计图中18﹣23岁部分的圆心角的度数是 ▲ 度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙; (2)随机选取2名同学,恰好选中甲和乙.22.(8分)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF . (1)求证:ABE AD F '△≌△;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.全国12-35岁的网瘾人群分布条形统计图年龄人数12-17岁30-35岁24-29岁18-23岁500400300200100330420450O30-35岁22%12-17岁24-29岁18-23岁全国12-35岁的网瘾人群分布扇形统计图ADBE CD 'F(第22题)23.(8分)如图,两棵大树AB 、CD ,它们根部的距离AC =4m ,小强沿着正对这两棵树的方向前进. 如果小强的眼睛与地面的距离为1.6m ,小强在P 处时测得B 的仰角为20.3°,当小强前进5m 达到Q 处时,视线恰好经过两棵树的顶端B和D ,此时仰角为36.42°. (1) 求大树AB 的高度; (2) 求大树CD 的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)24.(10分)把一根长80cm 的铁丝分成两个部分,分别围成两个正方形. (1)能否使所围的两个正方形的面积和为250cm 2,并说明理由; (2)能否使所围的两个正方形的面积和为180cm 2,并说明理由; (3)怎么分,使围成两个正方形的面积和最小?25. (9分)如图,正比例函数y =2x 的图象与反比例函数y =kx 的图象交于点A 、B ,AB =2 5 , (1)求k 的值;(2)若反比例函数y =kx 的图象上存在一点C ,则当△ABC 为直角三角形,请直接写出点C 的坐标.26.(9分)如图,在⊙O 的内接四边形ACDB 中,AB 为直径,AC :BC =1:2,点D 为弧AB 的中点,BE ⊥CD 垂足为E.(1)求∠BCE 的度数;(2)求证:D 为CE 的中点;(第23题)ABPE DCQFHGxyO AB(第25题)(3)连接OE 交BC 于点F ,若AB =10 ,求OE 的长度.27.(88分)在△ABC 中,用直尺和圆规.....作图(保留作图痕迹). (1)如图①,在AC 上作点D ,使DB +DC =AC .(2)如图②,作△BCE ,使∠BEC =∠BAC ,CE =BE ;(3)如图③,已知线段a ,作△BCF ,使∠BFC =∠A ,BF +CF =a .(图1) A C B(图2) A C B图ACBa(第26题)OEDCBA2016年中考模拟试卷(二) 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共12分)题号 1 2 3 4 5 6 答案ACABDD二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 7.10 8.a (a +2)(a -2) 9.3-1 10.x ≥ 1 11.A12. 35° 13. 3 14.x +96 = x —7415.123 16.①③④ 三、解答题(本大题共12小题,共计88分) 17. (6分)解:去分母,得:6-2(2x +1)≥3(1-x )……………………………2分去括号,得:6-4x +2≥3-3 x ……………………………3分移项,合并同类项得:-x ≥-5 ……………………………4分 系数化成1得:x ≤5. ……………………………5分 它的所有正整数解1,2,3,4,5. ……………………………6分18.(6分)解:原式=x -3x -2 ÷( x 2-4x -2-5x -2 )……………………………………………………2分=x -3x -2 ÷ x 2-9x -2……………………………………………3分=x -3x -2 × x -2x 2-9 ……………………………………………4分 =x -3x -2 × x -2(x -3)(x +3) ……………………………………………5分 =1x +3……………………………………………6分 19.(8分)解:(1)将①代入②,得 3x -2(x +1)=-1.解这个方程,得x =1. ………………………………………………………1分 将x =1代入①,得y =2 . ……………………………………………………2分所以原方程组的解是⎩⎨⎧x =1,y =2.…………………………………………………3分(2)由①,得x =1-y .③…………………………………………………1分 将③代入②,得1-y +y 2=3. ……………………………………………2分 解这个方程,得y 1=2,y 2=-1. …………………………………………4分 将y 1=2,y 2=-1分别代入③,得x 1=-1,x 2=2.所以原方程组的解是⎩⎨⎧x 1=-1,y 1=2,⎩⎨⎧x 2=2,y 2=-1.……………………………5分20.(8分)解:(1)1500,(图略);(每个2分)) ……………………………4分(2)108° ……………………………6分 (3)万人1000%502000=⨯ ……………………………8分 21.(8分)解:(1)另外1人恰好选中副班长的概率是13;………………………………………3分(2)恰好选中班长和副班长的概率是16.……………………………………………8分(树状图或列表或枚举列出所有等可能结果3分,强调等可能1分,得出概率1分) 22. (8分)(1)三角形全等的条件一个1分,结论1分 …………………4分 (2)四边形AECF 是菱形 …………………5分证明: …………………8分 (证出平行四边形1分,证出邻边相等1分,结论1分 ) 23. (8分)(1)解:在Rt △BEG 中,BG =EG ×tan ∠BEG ……………………1分在Rt △BFG 中,BG =FG ×tan ∠BFG ……………………2分 设FG =x 米,(x +5)0.37=0.74x ,解得x =5, ……………………3分 BG =FG ×tan ∠BFG =0.74×5=3.7 ……………………4分 AB =AG +BG =3.7+1.6=5.3米 ……………………5分 答:大树AB 的高度为5.3米.(2)在Rt △DFG 中,DH =FH ×tan ∠DFG =(5+4)×0.74=6.66米 ………………7分 CD =DH +HC =6.66+1.6=8.26米 ……………………8分 答:大树CD 的高度为8.26米.24. (10分)解:(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(20-x )cm ,由题意得: x 2+(20-x )2=250 ………2分 解得x 1=5,x 2=15. ………3分 当x =5时,4x =20,4(20-x )=60;当x =15时,4x =60,4(20-x )=20.答:能,长度分别为20cm 与60cm. ………4分(2)x 2+(20-x )2=180整理:x 2-20x +110=0, ………5分 ∵b 2-4ac =400-440=﹣40<0, ………6分 ∴此方程无解,即不能围成两个正方形的面积和为180cm 2 ………7分 (3)设所围面积和为y cm 2,y =x 2+(20-x )2 ………8分=2 x 2-40x +400=2( x -10)2+200 …………………9分 当x =10时,y 最小为200. 4x =40,4(20-x )=40.答:分成40cm 与40cm ,使围成两个正方形的面积和最小为200 cm 2. …10分 25. (9分)解:(1)过点A 作AD ⊥x 轴,垂足为D ,由题意可知点A 与点B 关于点O 中心对称,且AB =2 5 …………………1分 ∴OA =OB = 5 , ………………2分 设点A 的坐标为(a ,2a ),在Rt △OAD 中,∠ADO =90°,由勾股定理得:a 2+(2a )2=( 5 )2………………3分解得a =1 ………………4分∴点A 的坐标为(1,2),把A (1,2)代入y =kx ,解得k =2,………………5分(2) (2,1)(﹣2,﹣1)(4,12)(﹣4,﹣12)………………9分(每个1分)(反比例函数对称性、用相似或勾股定理)26. (9分)(1)连接AD ,∵D 为弧AB 的中点,∴AD =BD , .…………………1分 ∵AB 为直径, ∴∠ADB =90°.…………………2分 ∴∠DAB =∠DBA =45°,∴∠DCB =∠DAB =45°.…………………3分(2)∵BE ⊥CD ,又∵∠ECB =45° ∴∠CBE =45°,∴CE =BE ,∵四边形ACDB 是圆O 的内接四边形,∴∠A +∠BDC =180°,又∵∠BDE +∠B D C =180° ∴∠A =∠BD …………………4分又∵∠ACB =∠BED =90°, ∴△ABC ∽△DBE , …………………5分 ∴DE :AC =BE :BC ,∴D E:B E =AC :BC =1:2,又∵CE =BE ,∴DE :CE =1:2,∴D 为CE 的中点. …………………6分(3)连接CO ,∵CO =BO ,CE =BE , ∴OE 垂直平分BC ,∴F 为OE 中点, 又∵O 为BC 中点,∴OF 为△ABC 的中位线,∴OF =12AC , …………………7分∵∠BEC =90°,EF 为中线,∴EF =12BC , …………………8分在Rt △ACB 中,AC 2+BC 2=AB 2,∵AC :BC =1:2,AB =10 ,∴AC = 2 ,BC =2 2 ,OEDC BAF (第26题)∴OE =OF +EF =1.5 2 …………………9分 27.(8分)(1)作图正确 …………………3分(2)作图正确…………………6分说明:(即△ABC 的外接圆和线段BC 的中垂线的交点)(3)作图正确 (只要做出一个即可)…………………8分 说明:(按照(1)(2)的方法找到点E ,再以点E 为圆心,以EC 或EB 长为半径做圆,再以点B 为圆心,a 长为半径作圆,两圆的交点为点H ,再连接BH ,交△ABC 的外接圆于点F,则点F 为所求。
2016届中考数学真题模拟集训:专题16+图形的初步试题(新人教版含解析)(2年中考1年模拟)

专题16 图形的初步知识点名师点晴直线、射线、线段直线的性质理解并掌握直线的性质线段的性质能利用线段的中点和线段的性质进行线段的有关计算相交线对顶角与邻补角理解并掌握对顶角与邻补角的有关性质垂线的性质理解垂线的性质,并能解决相关的实际问题平行线平行线的定义与画法掌握平行公理及平行线的画法平行线的判定定理利用平行线的判定证明两直线互相平行平行线的性质能利用平行线的性质解决有关角的计算问题☞2年中考【2015年题组】1.(2015南宁)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30°B.45°C.60°D.90°【答案】A.【解析】试题分析:∵∠C=30°,BC∥DE,∴∠CAE=∠C=30°.故选A.考点:平行线的性质.2.(2015贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=()A.64°B.63°C.60°D.54°【答案】D.考点:平行线的性质.3.(2015天水)如图,将矩形纸带ABCD,沿EF折叠后,C.D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A.65°B.55°C.50°D.25°【答案】C.【解析】试题分析:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,∴∠DED′=2∠DEF=130°,∴∠AED′=180°﹣130°=50°.故选C.考点:1.平行线的性质;2.翻折变换(折叠问题).4.(2015天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若点P到BD的距离为32,则点P的个数为()A.2 B.3 C.4 D.5 【答案】A.考点:1.等腰直角三角形;2.点到直线的距离.5.(2015北海)已知∠A=40°,则它的余角为()A.40°B.50°C.130°D.140°【答案】B.【解析】试题分析:∠A的余角等于90°﹣40°=50°.故选B.考点:余角和补角.6.(2015崇左)下列各图中,∠1与∠2互为余角的是()A.B.C.D.【答案】C.【解析】试题分析:观察图形,互为余角的只能是C,故选C.考点:余角和补角.7.(2015崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【答案】D.考点:专题:正方体相对两个面上的文字.8.(2015无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A .B .C .D .【答案】D.【解析】试题分析:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件,故选D.考点:几何体的展开图.9.(2015广元)一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°.则可得到的方程组为()A.50180x yx y=-⎧⎨+=⎩B.50180x yx y=+⎧⎨+=⎩C.5090x yx y=-⎧⎨+=⎩D.5090x yx y=+⎧⎨+=⎩【答案】D.考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.10.(2015西宁)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.74°12′B.74°36′C.75°12′D.75°36′【答案】C.【解析】试题分析:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选C.考点:1.平行线的性质;2.度分秒的换算;3.跨学科.11.(2015崇左)若直线a∥b,a⊥c,则直线b____c.【答案】⊥.【解析】试题分析:∵a⊥c,∴∠1=90°,∵a∥b,∴∠1=∠2=90°,∴c⊥b.故答案为:⊥.考点:1.平行线的性质;2.垂线.12.(2015梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.【答案】145.考点:1.对顶角、邻补角;2.角平分线的定义.13.(2015钦州)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1= 度.【答案】80.【解析】试题分析:由邻补角互补,得∠1=180°﹣∠AOC=180°﹣100°=80°,故答案为:80.考点:对顶角、邻补角.14.(2015宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线343-=xy与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【答案】28 5.考点:1.一次函数图象上点的坐标特征;2.垂线段最短;3.最值问题.15.(2015扬州)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1= .【答案】90°.【解析】试题分析:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为:90°.考点:平行线的性质.16.(2015泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.考点:平行线的性质.17.(2015绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】试题分析:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠GEF=12×119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故答案为:9.5°.考点:平行线的性质.18.(2015宿迁)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【答案】证明见试题解析.考点:1.等腰三角形的性质;2.平行线的性质;3.和差倍分.19.(2015武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)用SAS证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出∠B=∠DEF,即可得出结论.试题解析:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,∵BC=EF,∠ACB=∠DFE,AC=DF,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.考点:1.全等三角形的判定与性质;2.平行线的判定.20.(2015益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°.考点:平行线的性质.21.(2015六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.【解析】试题分析:根据两平行线间的距离相等,即可得出结论.试题解析:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.考点:1.平行线之间的距离;2.三角形的面积.22.(2015曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC 的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【答案】①当M在线段CD上时,OD=DM+ON;②当M在线段CD延长线上时,OD=ON -DM,证明见试题解析.考点:1.全等三角形的判定与性质;2.平行线的性质;3.等腰三角形的判定与性质;4.分类讨论;5.探究型;6.综合题.23.(2015金华)图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图.(1)蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近;(2)在图3中,半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线,若PQ与⊙M相切,试求PQ长度的范围.【答案】(1)①作图见试题解析;②往天花板ABCD爬行的最近路线A′GC更近;(2)206dm≤PQ≤55dm.试题解析:(1)①根据“两点之间,线段最短”可知:线段A′B为最近路线,如图1所示.②Ⅰ.将长方体展开,使得长方形ABB′A′和长方形ABCD在同一平面内,如图2①.在Rt△A′B′C中,∠B′=90°,A′B′=40,B′C=60,∴22406052002013Ⅱ.将长方体展开,使得长方形ABB′A′和长方形BCC′B′在同一平面内,如图2②.在Rt △A′C′C 中,∠C′=90°,A′C′=70,C′C=30,∴A′C=227030+=5800=1058.∵5200<5800,∴往天花板ABCD 爬行的最近路线A′GC 更近;(2)过点M 作MH ⊥AB 于H ,连接MQ 、MP 、MA 、MB ,如图3.∵半径为10dm 的⊙M 与D′C′相切,圆心M 到边CC′的距离为15dm ,BC′=60dm ,∴MH=60﹣10=50,HB=15,AH=40﹣15=25,根据勾股定理可得AM=22AH MH +=222550+=255,MB=22BH MH +=221550+=2725,∴50≤MP≤255.∵⊙M 与D′C′相切于点Q ,∴MQ ⊥PQ ,∠MQP=90°,∴PQ=222210PM QM MP -=-.当MP=50时,PQ=2400=206;当MP=255时,PQ=3025=55. ∴PQ 长度的范围是206dm≤PQ≤55dm .考点:1.圆的综合题;2.几何体的展开图;3.切线的性质;4.综合题;5.压轴题.【2014年题组】1.(2014年福建龙岩)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A .40°B .50°C .70°D .80°【答案】C.考点:平行线的性质;平角定义.2.(2014年甘肃白银)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个C.2个D.1个【答案】C.【解析】试题分析:如答图,∵斜边与这根直尺平行,∴∠α=∠2.又∵∠1+∠2=90°,∴∠1+∠α=90°.又∠α+∠3=90°,∴与α互余的角为∠1和∠3.故选C.考点:1.平行线的性质;2.互余的定义.3.(2014年广东汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 【答案】D.考点:平行线的判定.4(2014抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A. 45°B. 40°C. 35°D. 30°【答案】D.【解析】试题分析:∵AB∥CD,∠A=120°,∴∠DCA=180°-∠A=60°,∵CE平分∠ACD,∴∠ECD=∠DCA=30°,故选D.考点:平行线的性质.5.(2014·吉林)如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B. 15°C. 20°D. 25°【答案】D.考点:平行线的性质.6.(2014年湖南岳阳)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF= .【答案】70°.【解析】试题分析:∵AB∥CD∥EF,∴∠B=∠BCD,∠F=∠DCF.又∠B=40°,∠F=30°,∴∠BCF=∠BCD +∠DCF =70°.考点:平行线的性质.7.(2014镇江)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25º,∠2=70º.则∠B=°.【答案】45.考点:1.平行线的性质;2.直角三角形两锐角的关系.8.(2014长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=.【答案】110°.【解析】试题分析:直线a∥b,直线c分别与a,b相交,根据平行线的性质,以及对顶角的定义可求出.试题解析:如图:∵∠1=70°,∴∠3=∠1=70°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°﹣70°=110°.考点:1.平行线的性质;2.对顶角、邻补角.☞考点归纳归纳1:直线、射线和线段基础知识归纳:1.直线(1)直线公理:经过两个点有一条直线,并且只有一条直线。
2016中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑)1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五圆弧 角 扇形 菱形 等腰梯形A. B. C. D.类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .(第9题图)(第11题图)(第12题图)16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第17题图)(第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?(第23题图)(第24题图)26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=CBDE主视图左视图俯视图14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2016年上海市静安区中考数学一模试卷及参考答案

2016年上海市静安区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)的相反数是()A.B.﹣C.D.﹣2.(4分)下列方程中,有实数解的是()A.x2﹣x+1=0B.=1﹣x C.=0D.=1 3.(4分)化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1D.1﹣x4.(4分)如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1)B.(2,7)C.(5,4)D.(﹣1,4)5.(4分)在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.6.(4分)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=二、填空题:(本大题共12题,每题4分,满分44分)7.(4分)化简:(﹣2a2)3=.8.(4分)函数的定义域是.9.(4分)方程=x﹣1的根为.10.(4分)如果函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,那么常数m的取值范围为.11.(4分)二次函数y=x2﹣6x+1的图象的顶点坐标是.12.(4分)如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是.13.(4分)如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.14.(4分)在Rt△ABC中,∠C=90°,点G是重心,如果sin A=,BC=2,那么GC的长等于.15.(4分)已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=.(用向量,的式子表示)16.(4分)如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sin B =,那么tan∠CDE=.17.(4分)将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C落到C′,且点C′、B、C在一直线上.如果AB=13,AD=3,那么∠A 的余弦值为.三、解答题:(本大题7题,满分78分)18.(10分)化简:÷,并求当x=时的值.19.(10分)用配方法解方程:2x2﹣3x﹣3=0.20.(10分)如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.21.(10分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)22.(12分)已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.23.(12分)如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.24.(14分)已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.2016年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)的相反数是()A.B.﹣C.D.﹣【解答】解:根据相反数定义得:的相反数为:﹣,分子分母同乘得:﹣.故选:D.2.(4分)下列方程中,有实数解的是()A.x2﹣x+1=0B.=1﹣x C.=0D.=1【解答】解:A、∵△=1﹣4=﹣3<0,∴原方程无实数根,B、当1﹣x<0,即x>1时,原方程无实数根,C、当x2﹣x=0,即x=1,或x=0时,原方程无实数根,D、∵=1,∴x=﹣1.故选:D.3.(4分)化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1D.1﹣x【解答】解:原式=(﹣1)﹣1=()﹣1=.故选:A.4.(4分)如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1)B.(2,7)C.(5,4)D.(﹣1,4)【解答】解:把A(2,m)代入y=x2得m=4,则A点坐标为(2,4),把点A (2,4)向右平移3个单位后所得对应点A′的坐标为(5,4).故选:C.5.(4分)在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.【解答】解:∵在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,∴tanα=,∴CD=m•tanα,∵∠ACB=∠A+∠B=90°,∠BDC=∠B+∠BCD=90°,∠A=α,∴∠BCD=α,∴cos∠BCD=,即cos,BC=.故选:C.6.(4分)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=【解答】解:∵∠BAC=∠D,,∴△ABC∽△ADE.故选:C.二、填空题:(本大题共12题,每题4分,满分44分)7.(4分)化简:(﹣2a2)3=﹣8a6.【解答】解:(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6.故答案为:﹣8a6.8.(4分)函数的定义域是x≠﹣2.【解答】解:根据题意得:x+2≠0解得x≠﹣2.故答案为x≠﹣2.9.(4分)方程=x﹣1的根为4.【解答】解:由二次根式性质得:x+5≥0且x﹣1≥0,∴x≥1.将=x﹣1两边平方得:x+5=x2﹣2x+1,整理得:x2﹣3x﹣4=0,分解因式:(x﹣4)(x+1)=0,得:x1=4,x2=﹣1,∵x≥1,∴x=4.故答案为:4.10.(4分)如果函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,那么常数m的取值范围为1<m<3.【解答】解:∵函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,∴,解得1<m<3.故答案为:1<m<3.11.(4分)二次函数y=x2﹣6x+1的图象的顶点坐标是(3,﹣8).【解答】解:∵y=x2﹣6x+1=(x﹣3)2﹣8,∴抛物线顶点坐标为(3,﹣8).故答案为:(3,﹣8).12.(4分)如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是(2,5).【解答】解:∵抛物线y=ax2﹣2ax+5与y轴交于点A坐标为(0,5),对称轴为x=﹣=1,∴点A(0,5)关于此抛物线对称轴的对称点坐标是(2,5).故答案为:(2,5).13.(4分)如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.14.(4分)在Rt△ABC中,∠C=90°,点G是重心,如果sin A=,BC=2,那么GC的长等于2.【解答】解:如图所示,∵在Rt△ABC中,∠C=90°,sin A=,BC=2,∴AB=3BC=6.∵点G是重心,∴CD为△ABC的中线,∴CG=CD=×3=2.故答案为:2.15.(4分)已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=﹣﹣.(用向量,的式子表示)【解答】解:如图,过点D作DE∥AB,交BC于点E,∵AD∥BC,∴四边形ABCD是平行四边形,∴BE=AD,DE=AB,∵BC=2AD,=,=,∴==,==,∴=﹣=﹣(+)=﹣(+)=﹣﹣.故答案为:﹣﹣.16.(4分)如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sin B =,那么tan∠CDE=.【解答】解:在△ABE中,AE⊥BC,AB=5,sin B=,∴BE=3,AE=4.∴EC=BC﹣BE=8﹣3=5.∵平行四边形ABCD,∴△CED为等腰三角形.∴∠CDE=∠CED.∵AD∥BC,∴∠ADE=∠CED.∴∠CDE=∠ADE.在Rt△ADE中,AE=4,AD=BC=8,∴tan∠CDE==,故答案为:.17.(4分)将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C落到C′,且点C′、B、C在一直线上.如果AB=13,AD=3,那么∠A 的余弦值为.【解答】解:∵▱ABCD绕点A旋转后得到▱AB′C′D′,∴∠DAB=∠D′AB′,AB=AB′=C′D′=13,∵AB′∥C′D′,∴∠D′AB′=∠BD′C′,∵四边形ABCD为平行四边形,∴∠C=∠DAB,∴∠C=∠BD′C′,∵点C′、B、C在一直线上,而AB∥CD,∴∠C=∠C′BD′,∴∠C′BD′=∠BD′C′,∴△C′BD′为等腰三角形,作C′H⊥D′B,则BH=D′H,∵AB=13,AD=3,∴BD′=10,∴D′H=5,∴cos∠HD′C′==,即∠A的余弦值为.故答案为.三、解答题:(本大题7题,满分78分)18.(10分)化简:÷,并求当x=时的值.【解答】解:原式=•=,当x=时,原式==7.19.(10分)用配方法解方程:2x2﹣3x﹣3=0.【解答】解:2x2﹣3x﹣3=0,x2﹣x﹣=0,x2﹣x+=+,(x﹣)2=,x﹣=±,解得:x1=,x2=.20.(10分)如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.【解答】解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴A(3,4),反比例函数解析式y=,∵点B在这个反比例函数图象上,设B(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴B(6,2).答:点B坐标为(6,2).(2)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:k=,∴OB直线解析式为:y=x,过A点做AC⊥x轴,交OB于点C,如下图:则点C坐标为:(3,1),∴AC=3S△OAB的面积=S△OAC的面积+S△ACB的面积,=×|AC|×6=9.△OAB的面积为9.21.(10分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)【解答】解:延长PQ交直线AB于点E,设PE=x米.在直角△ABE中,∠PBE=45°,则BE=PE=x米;∵∠P AE=26.6°在直角△APE中,AE=PE•cot∠P AE≈2x,∵AB=AE﹣BE=30米,则2x﹣x=30,解得:x=30.则BE=PE=30米.在直角△BEQ中,QE=BE•tan∠QBE=30×tan33.7°=30×0.67≈20.1米.∴PQ=PE﹣QE=30﹣20=10(米).答:电线杆PQ的高度是10米.22.(12分)已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.【解答】证明:(1)∵BD=AD=AC,∴∠B=∠BAD,∠ADC=∠ACD,∵AE2=EF•EC,∴,∵∠E=∠E,∴△EAF∽△ECA,∴∠EAF=∠ECA,∴∠ADC=∠ACD=∠ACE+∠ECB=∠DCE+∠EAF;(2)∵△EAF∽△ECA,∴,即,∵∠EF A=∠BAC,∠EAF=∠B,∴△F AE∽△ABC,∴,∴F A•AC=EF•AB,∵AC=AD,∴AF•AD=AB•EF.23.(12分)如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.【解答】解:(1)∵函数y=x+1中,当y=0时,x=﹣2,∴A(﹣2,0),∵函数y=x+1中,当x=0时,y=1,∴B(0,1),∵CD∥x轴,∴∠BAO=∠ADC,∵∠CDA=∠OCA,∴∠ACO=∠BAO,∴tan∠ACO=tan∠BAO=,∴CO=4,∴C(0,4);(2)∵∠AOB=∠OCD=90°,∠BAO=∠BDC=90°,∴△CBD∽△OBA,∴=,∴=,∴CD=6,∴D(6,4),设二次函数的解析式为y=ax2+bx+c,∵图象经过A(﹣2,0),D(6,4),C(0,4),∴,解得:.∴二次函数的解析式为y=﹣x2+x+4.24.(14分)已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.【解答】(1)证明:∵AD∥BC,∴∠DAC=∠ECB,在△DCA和△ECB中,,∴△DCA≌△ECB(SAS),∴∠DCA=∠EBC;(2)∵AD∥BC,∴△AEF∽△CEB,∴,即,解得:AF=,作EH⊥AF于H,如图1所示,∵cos∠ACB=,∴EH=AE=(10﹣x),=×(10﹣x)×=,∴y=S△AEF∴y=,∵点G在线段CD上,∴AF≥AD,即≥x,∴x≤5﹣5,∴0<x≤5﹣5,∴y关于x的函数解析式为:y=,(0<x≤5﹣5);(3)分两种情况考虑:①当∠FDG=90°时,如图2所示:在Rt△ADC中,AD=AC×=8,即x=8,=y==;∴S△AEF②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,由(1)得:CE=AF=x,在Rt△EMC中,EM=x,MC=x,∴BM=BC﹣MC=10﹣x,∵∠GCE=∠GBC,∠EGC=∠CGB,∴△CGE∽△BGC,∴=,即=,∵∠EBM=∠CBG,∠BME=∠BGC=90°,∴△BME∽△BGC,∴==,∴=,即x=5,此时y==15,综上,此时△AEF的面积为或15.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文。
2016年中考数学模拟试卷及答案(精选两套)

1. 2. 3. 4. 5. 6. 初中2016届九年级数学第一次模拟第I 卷 选择题(36分)、选择题(本大题共 12个小题,每小题3分,满分36分) 若 m-n=-1,则(m-n ) 2-2m+2n 的值是( ) A. 3 B. 2 C. 1 D. -1 已知点A (a , 2013)与点A (- 2014, b )是关于原点 O 的对称点,贝U a b 的值为A. 1B. 5C. 6D. 47. 8. 9. 等腰三角形的两边长分别为 3和6,则这个等腰三角形的周长为( A . 12, B . 15, C . 12 或 15, 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆 A. 1个 B. 2个C.D. 4个如图,在O / APD=75 A. 15O 中,弦AB , CD 相交于点 P ,若/ A=40 ° , ,则/ B=B. 40C. 75D. 35F 列关于概率知识的说法中,正确的是 A. B. C. D. “明天要降雨的概率是90% ”表示: 18图1明天有 90%的时间都在下雨.1-”表示:每抛掷两次,就有一次正面朝上2“彩票中奖的概率是 1%”表示:每买100张彩票就肯定有一张会中奖. “抛掷一枚硬币,正面朝上的概率是“抛掷一枚质地均匀的正方体骰子,朝上的点数是1”这一事件的频率是 若抛物线y A. 2012 x 2用配方法解方程 A. (x 2)2 ”表示:随着抛掷次数的增加,“抛出朝上点数1与x 轴的交点坐标为(m,0),则代数式 m 2013的值为B. 2013C. 2014D. 20154x 1 B. 0,配方后的方程是 (x 2)2 3 C. (x 2)2D. (x 2)25要使代数式—有意义,则a 的取值范围是 2a 1 1 B. a -210.如图,已知O O 的直径CD 垂直于弦 AB ,/ ACD=22.5 °,若 A. a 0C. D. 一切实数2CD=6 cm ,贝U AB 的长为A. 4 cmB. 3 2 cmC. 2 3 cmD. 2 - 6 cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生 450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是12.如图,已知二次函数 y=ax 2+ bx + c (0)的图象如图所示,有下列5个结论:①abc v 0;② b v a + c ;③4a + 2b+c>0 :④ 2c v 3b ;⑤a + b v m (am + b) ( m ^ 1 的实数). 其中正确结论的有 A.①②③ B.①③④ C.③④⑤D.②③⑤第H 卷 非选择题(84 分)二、填空题(本大题共 6个小题,每小题 3分,满分18分)只要求填写最后结果.13.若方程x 3x 11 10的两根分别为x 2,贝U的值疋x 1x 214. 已知O 01与O 02的半径分别是方程x 2— 4x+3=0的两根,且 O 1O 2=t+2,若这两个圆相切,则 t=15. 如图,在△ ABC 中,AB=2 , BC=3.6,/ B=60。
2016年辽宁中考数学模拟考卷及答案

2016年辽宁中考数学模拟考卷及答案一、选择题(每题1分,共5分)1. 下列函数中,既是奇函数又是增函数的是()A. y=x^3B. y=x^2C. y=2xD. y=2x2. 在三角形ABC中,若a=8, b=10, sinA=3/5,则三角形ABC的面积S为()A. 12B. 24C. 36D. 483. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √14. 下列等式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (ab)^2 = a^2 b^2C. (a+b)(ab) = a^2 b^2D. (a+b)^2 = a^2 + 2ab + b^25. 已知一组数据的方差是9,那么这组数据的标准差是()A. 3B. 6C. 9D. 81二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 两条平行线的斜率相等。
()3. 一元二次方程的解一定是实数。
()4. 相似三角形的面积比等于边长比的平方。
()5. 互为相反数的两个数的和为0。
()三、填空题(每题1分,共5分)1. 若a=3,b=2,则a+b=______。
2. 已知平行四边形的对角线互相平分,若一条对角线长度为10,另一条对角线长度为12,则平行四边形的面积是______。
3. 函数y=2x+1的图象是一条______线。
4. 在直角坐标系中,点(3, 4)关于x轴的对称点是______。
5. 三个连续的奇数分别为2n1、2n+1、2n+3,则它们的和为______。
四、简答题(每题2分,共10分)1. 简述勾股定理。
2. 请写出三角形面积的两个计算公式。
3. 什么是无理数?请举例说明。
4. 请列举两种解一元二次方程的方法。
5. 简述概率的基本性质。
五、应用题(每题2分,共10分)1. 某商品原价为200元,打折后售价为160元,求打折折扣。
2. 甲、乙两地相距600公里,一辆汽车从甲地出发,以每小时80公里的速度行驶,求汽车到达乙地所需时间。
2016中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无.........效.;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 60°的值等于A. 1B. 23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个 3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为 A. 1.8×10 B. 1.8×108 C. 1.8×109D. 1.8×1010 4. 估计8-1的值在 A. 0到1之间 B. 1到2之间 C. 2到3之间 D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是圆弧 角 扇形 菱形 A. B. C.7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五 类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名 C. 400名 D. 300名 8. 用配方法解一元二次方程x 2 + 4x – 5 = 0,此方程可变形为A. (x + 2)2 = 9B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2 =19. 如图,在△中,,是两条中线,则S △∶S △ =A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2 =(x -2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2 = x 2 + 2x + 111. 如图,是⊙O 的直径,点E 为的中点, = 4,∠ = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C. 23D. 112. 如图,△中,∠C = 90°,M 是的中点,动点P 从点A出发,沿方向匀速运动到终点C ,动点Q 从点C 出发,沿方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接,, . 在整个运动过程中,△的面积大小变化情况是A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小 二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效)13. 计算:│-31│= .14. 已知一次函数y = + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若(第9题(第11(第12题(第7题设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰△的直角边长为1,以△的斜 边为直角边,画第二个等腰△,再以△的 斜边为直角边,画第三个等腰△ ……依此类推直 到第五个等腰△,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效) 19. (本小题满分8分,每题4分)(1)计算:4 45°8(π-3) +(-1)3;(2)化简:(1 - n m n +)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△中, = ,∠ = 72°. (1)用直尺和圆规作∠的平分线交于点D (保留作图 痕迹,不要求写作法); (2)在(1)中作出∠的平分线后,求∠的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:3121--+x x ≤1, ……① 解不等式组: 3(x - 1)<2 x + 1. ……② (第17题(第18题(第21题图) °(1)求这50个样本数据的平均数、众数和中位数; (2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树,树底 部B 点到山脚C 点的距离为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪的水平距离 = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 的高度. (参考数值:20°≈0.34,20°≈0.94,20°≈0.36)24. (本小题满分8分)如图,,分别与⊙O 相切于点A ,B ,点M 在上,且 ∥,⊥,垂足为N. (1)求证: = ; (2)若⊙O 的半径R = 3, = 9,求的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y 212 21 – 2图象上,过点B 作⊥x 轴,垂足为D ,且B 点横坐标为-3.(第23题(第24题(1)求证:△ ≌ △;(2)求所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△是以为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见一、选择题说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △ 21△;当点P 、Q 分别运动到,的中点时,此时,S △ =21×21. 21 41△;当点P 、Q 继续运动到点C ,B 时,S △ 21△,故在整个运动变化中,△ 的面积是先减小后增大,应选C.二、填空题13. 31; 14. k <0; 15. 54(若为108扣1分); 16.x 2400-x %)201(2400 = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题 19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分)= 0 …………………………………4分(2)解:原式 =(n m n m ++-nm n +)·m n m 22- …………2分 = nm m +·m n m n m ))((-+ …………3分 = m – n …………4分20. 解:由①得3(1 + x )- 2(1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵平分∠,∠ = 72°,∴∠ =21∠ = 36°, …………4分 ∵ = ,∴∠C =∠ = 72°, …………5分 ∴∠ 36°,∴∠ =∠∠ = 36° + 36° = 72°. …………6分22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x 50551841737231⨯+⨯+⨯+⨯+⨯ 3.3, …………1分 ∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4. (4)分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233 = 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在△中,∠= 90°,= 63米,∠= 30°,∴= ·30°……………………1分= 63×23= 9,……………………2分∴= + = 9 + 1 = 10,…………………3分∴= = 10. …………………4分在△中,∠= 20°,∴= ·20°…………………5分=10×0.36=3.6,…………………6分在△中,∠= 45°,∴= = 10,……………………7分∴= –= 10 - 3.6 = 6.4.答:树的高度约为6.4米. ……………8分24. 解(1)如图,连接,则⊥. ………………1分∵⊥,∴∥. ………………2分∵∥,∴四边形是矩形.∴= . ………………3分(2)连接,则⊥,∵= ,= ,∥,∴= ,∠=∠.∴△≌△. ………………5分∴= .设= x,则= 9- x. ………………6分在△中,有x2 = 32+(9- x)2.∴x = 5. 即= 5 ……………8分25. 解:(1)设A型每套x元,则B型每套(x + 40)元. ……………1分∴4x + 5(x + 40)=1820. ………………………………………2分∴x = 180,x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.2(200 - a),a≤3∴ (4)分180 a + 220(200- a)≤40880.解得78≤a≤80. (5)分∵a为整数,∴a = 78,79,80∴共有3种方案. (6)分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)40a + 44000. (7)分∵-40<0,y随a的增大而减小,∴当 a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2016年中考数学模拟试题(二)一、 选择题 1、数2-中最大的数是()A 、1- BC 、0D 、22、9的立方根是() A 、3± B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则1xA 、4B 、3 C、-4 D 、-34、如图是某几何题的三视图,下列判断正确的是()A 、几何体是圆柱体,高为2B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b>6、如图∥,∠20°,∠80°,则∠() A 、20° B 、80° C 、60° D 、100°7、已知、是⊙O 的直径,则四边形是()A 、正方形B 、矩形C 、菱形D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=则一定成立的是()DEA 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且’=5,3, O ’4,则( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2016泰安中考数学模拟题(答案)

DC BA 2016年初中学业水平考试模拟题(四)数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.14-的绝对值等于 A.14- B.14 C.14± D.42. 下列运算,正确的是A .3+2= 5B .(3-1)2=3-1C .3×2= 6 D53=- 3. 如图,立体图形的主视图是4. 将36.1810-⨯化为小数是A .0.000618B .0.00618C .0.0618D .0.618 5. 下列运算正确的是( )A. 235a a a += B. ()32626aa -=-C. ()()2212121a a a +-=- D. ()322221a a a a -÷=-6. 下列四个图案中,是轴对称图形,但不是中心对称图形的是7. 函数1+=x y 的自变量x 的取值范围是A .x ≥1B .x ≥-1C .x ≤1D .x ≤-18. 学校团委在五四青年节举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是A.23 B.56 C.16 D.129. 如图,过原点的一条直线与反比例函数y =kx(k<0)的图象分别交于A 、B 两点,若A 点的坐标为(a ,b ),则B 点的坐标为 A .(a ,b ) B .(b ,a ) C .(-b ,-a ) D .(-a ,-b ) 10. 不等式组的解集是A.x ≥1B. -1<x ≤1C.x<-1D.无解11. 如图,在Rt △ABC 中,∠BAC =90°,如果将该三角形绕点A 按 顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处, 那么旋转的角度等于( )A .80°B .65°C .60°D .55° (第11题图) 12. 关于x 的方程 2(6)860a x x --+= 有实数根,则整数a 的最大值是 A. 6 B. 7 C.8 D. 913.某花园内有一块五边形的空地如图所示,为了美化环境,现计划在 五边形各顶点为圆心,2 m 长为半径的扇形区域(阴影部分)种 上花草,那么种上花草的扇形区域总面积是 A.6πm 2B.5πm 2C.4πm 2D.3πm2第13题图A.B.C.D.14.如图,在Rt ABC∆中,90C∠=︒,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A.设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()第Ⅱ卷(非选择题共78分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:316a a-=.16.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD=4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是m.17.如图,在四边形ABCD中,AB∥CD,∠BCD=90º,AB=25cm,BC=24cm.将该四边形折叠,点A恰好与点D重合,BE为折痕,那么四边形ABCD的面积为cm2.18.关于x的方程12=+xm的解是负数,则m的取值范围是.19.组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为__________.三、解答题(本大题共7小题,共63分)20.(本小题满分7分)先化简,再求值:4212112--÷⎪⎭⎫⎝⎛-+mmm,其中5-=m.21.(本小题满分7分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数.(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?22. (本小题满分7分)如图,在平行四边形ABCD中,E F,为BC上两点,且BE CF=,AF DE=.求证:(1)ABF DCE△≌△;(2)四边形ABCD是矩形.23.(本小题满分9分)如图,在⊙O中,AB是直径,AD是弦,∠ADE = 60°,∠C = 30°.⑴判断直线CD是否是⊙O的切线,并说明理由;⑵若CD = 33,求BC的长.(第22题)AB CDE Fx(第23题图)24.(本小题满分9分)为改善生态环境,防止水土流失,某村计划在汉江堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:设购买白杨树苗x 棵,到两家林场购买所需费用分别为甲y (元)、乙y (元). 则: (1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为 元,若都在乙林场购买所需费用为 元;(2)分别求出甲y 、乙y 与x 之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?25.(本小题满分11分)提出问题:(1)如图1,在正方形ABCD 中,点E ,H 分别在BC ,AB 上.若AE ⊥DH 于点O ,求证:AE=DH . 类比探究:(2)如图2,在正方形ABCD 中,点H ,E ,G ,F 分别在AB ,BC ,CD ,DA 上.若EF ⊥HG 于点O ,探究线段EF 与HG 的数量关系,并说明理由. 综合运用:(3)在(2)问条件下,HF ∥GE ,如图3所示.已知BE=EC =2,OE =2OF ,求图中阴影部分的面积.26. (本小题满分13分)如图,抛物线c bx x y ++-=2与x 轴交于A (-1,0),B (5,0)两点,直线343+-=x y 与y 轴交于点C ,与x 轴交于点D .点P 是x 轴上方的抛物线上一动点,过点P 作PF ⊥x 轴于点F ,交直线CD 于点E .设点P 的横坐标为m .(1)求抛物线的解析式;(2)若EF PE 5=,求m 的值;(3)若点E '是点E 关于直线PC 的对称点,是否存在点P ,使点E '落在y 轴上?若存在,请求.出.相应的点P 的坐标;若不存在,请说明理由..HF EA HAH A BB BEEGFG图1图2图32016年初中学业水平考试模拟题(四)数学参考答案一、选择题:BDBBD ABADB CCAA二、填空题:15.)4)(4(-+a a a ;16.0.9m ; 17.384 ;18.m<2且m 0≠ 19. -9. 三、解答题 20.解:原式=)2(2)1)(1(2122--+÷⎪⎭⎫⎝⎛-+--m m m m m m = )1)(1()2(2·21-+---m m m m m = 12+m …5分 当5-=m 时,原式=2115212-=+-=+m ………………………7分 21. 解:(1)200;(2)2001205030--=(人).画图正确.…………3分(3)C 所占圆心角度数360(125%60%)54=⨯--=°°.…………5分 (4)80000×(25%+60%)=68000∴估计我市初中生中大约有68000名学生学习态度达标.…………7分22. 解:(1)BE CF = ,BF BE EF =+,CE CF EF =+, BF CE ∴=. ······························································································· 1分 四边形ABCD 是平行四边形, AB DC ∴=. ······························································································ 2分 在ABF △和DCE △中,AB DC = ,BF CE =,AF DE =, ABF DCE ∴△≌△. ··················································································· 3分 (2)解法一:ABF DCE △≌△, B C ∴∠=∠. ······························································································ 4分 四边形ABCD 是平行四边形, AB CD ∴∥.180B C ∴∠+∠= .90B C ∴∠=∠= . ······················································································ 6分 ∴四边形ABCD 是矩形.················································································ 7分 解法二:连接AC DB ,. ABF DCE △≌△, AFB DEC ∴∠=∠. AFC DEB ∴∠=∠. ····················································································· 5分 在AFC △和DEB △中,AF DE = ,AFC DEB ∠=∠,CF BE =, AFC DEB ∴△≌△. AC DB ∴=. ······························································································ 6分 四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.················································································ 7分 23. 解:⑴直线CD 是⊙O 的切线,理由如下:连接OD ,∵∠ADE = 60° ∴180ADC ADE ∠=-∠= 18060=-=120°,6030A A D E C ∠=∠-∠=-=300 ………………………3分又∵OA =OD∴30ODA A ∠=∠=∴1201203090ODC ODA ∠=-∠=-=∴CD 是⊙O 的切线………………………………5分 ⑵在ODC Rt ∆中,OC=6cos cos30CD C ==∠,∴OB =OD 12OC ==3 ∴BC =OC -OB =3………………………………9分 24. 解:(1) 5900 6000 ………………………………2分 (2)⎩⎨⎧>+≤≤=)1000(2008.3)10000(4为整数且为整数且甲x x x x x x y⎩⎨⎧>+≤≤=)2000(8006.3)20000(4为整数且为整数且乙x x x x x x y ………………………………4分(3)① 当0≤x ≤1000时,两家林场单价一样,因此到两林场购买所需要费用都一样. ………………………………5分②当1000<x ≤2000时,甲林场有优惠而乙林场无优惠,所以1000<x ≤2000时,到甲林场购买合算………………………………6分 ③当x >2000时,2008.3+=x y 甲,8006.3+=x y 乙 6002.08006.3-2008.3--=++=x x x y y )(乙甲 (ⅰ)当乙甲y y =时,06002.0=-x 解得x =3000 ∴当x =3000时,到两林场购买所需要费用都一样 (ⅱ)当乙甲y y <时,06002.0<-x 解得x <3000 ∴当2000<x <3000时,到甲林场购买合算 (ⅲ)当乙甲y y >时,06002.0>-x 解得x >3000∴当x >3000时,到乙林场购买合算综上所述,当0≤x ≤1000或x =3000时,到两林场购买所需要费用都一样; 当1000<x <3000时,到甲林场购买合算;当x >3000时,到乙林场购买合算. ………………………………9分 25.解:Q E′H A F EH ABBEGF GE(1)证明:如图,在正方形ABCD 中,AD =AB ,∠B =90°∴∠1+∠3=90° ∵AE ⊥DH ,∴∠1+∠2=90° ∴∠2=∠3 ∴△ADH ≌△BAE (AAS)∴AE =DH .………………………………3分(2)过点D 作DH ′∥GH ,过点A 作AE ′∥FE 分别交AB ,BC 于H ′、E ′. ∵AF ∥EE ′,∴四边形AE′EF 是平行四边形,∴EF =AE ′ 同理,HG =DH ′.四边形ORST 为平行四边形.又∵EF ⊥HG ,∴四边形ORST 为矩形,∴∠RST =90° 由(1)可知,同理DH′=AE ′,∴EF=GH . ……………………………………………………………………………………6分(3)延长FH ,CB 交于点P ∵AD ∥BC , ∴∠AFH =∠P ∵HF ∥GE , ∴∠GEC=∠P 又∵∠A =∠C =90° ∴△AFH ∽△CEG ∴122AF HF OF OF CE EG OE OF ==== ∵BE=EC =2, ∴AF =1,∴BQ=AF =1,QE =1. …………………………………………………………9分设OF =x, ∵HF ∥GE, ∴12OH OF OG OE ==,又∵HG=EF ,EF ⊥GH. ∴OH=OF=x ,OG=OE =2x. 在Rt △EFQ 中,222QF QE EF +=,()222413x +=,解得x =…………………………………………………………10分 =S 阴影S △H OF +S △EOG =()2221152222x x x +=252=⎝⎭=8518.………………………………11分 26.解:(1)∵抛物线y =-x 2+bx +c 与x 轴交于A (-1,0),B (5,0)两点,∴2201,055.()⎧=---+⎨=-++⎩b c b c ∴4,5.=⎧⎨=⎩b c ∴抛物线的解析式为y =-x 2+4x +5. …………………………………………………3分 (2)点P 的横坐标为m ,则P (m ,-m 2+4m +5),E (m ,-34m +3),F (m ,0). ∵点P 在x 轴上方,要使PE =5EF ,点P 应在y 轴右侧,∴ 0<m <5. ∴PE =-m 2+4m +5-(-34m +3)=-m 2+194m +2.…………………………………………………4分 分两种情况讨论:①当点E 在点F 上方时,EF =-34m +3. ∵PE =5EF ,∴-m 2+194m +2=5(-34m +3) . (6)分即2m2-17m+26=0,解得m1=2,m2=132(舍去);②当点E在点F下方时,EF=34m-3.∵PE=5EF,∴-m2+194m+2=5(34m-3) .即m2-m-17=0,解得m3=,m4(舍去);∴m的值为2或12.…………………………………………………8分(3)∵E和E′关于直线PC对称,∴∠E′CP=∠ECP;又∵PE∥y轴,∴∠EPC=∠E′CP=∠PCE,∴PE=EC,又∵CE=CE′,∴四边形PECE′为菱形.……………………………10分过点E作EM⊥y轴于点M,∴△CME∽△COD,∴CE=5m4.∵PE=CE,∴-m2+194m+2=54m或-m2+194m+2=-54m,解得m1=-12,m2=4,m3=3,m4=3(舍去)可求得点P的坐标为P1(-12,114),P2(4,5),P3(3,-3) .………………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一项是符合题目要求的)
1.2014的相反数为
1
20142014
2.下列运算正确的是
A.x2x3x6
3
9
C.x2x2x4D.x6x3x2
3.下列运算正确的是函数yx2的自变量x的取值范围为
A.x2B.x≥2C.x2D.x≤2来自益阳市2016年中考模拟数学试题卷
泥江口中学陈跃
注意事项:1.本学科试卷分试题卷和答题卡两部分;
2.请将姓名、准考证号等相关信息按要求填写在答题卡上;
3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;
4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分;
5.考试结束后,请将试题卷和答题卡一并交回.
4.下列图形既是轴对称图形又是中心对称图形的是