光学系统像差理论综合实验

合集下载

光学像差实验报告总结(3篇)

光学像差实验报告总结(3篇)

第1篇一、实验目的本次实验旨在通过光学像差实验,加深对光学像差的理解,掌握光学像差的基本原理和分类,并学会使用光学仪器测量和评估光学系统的像差。

二、实验原理光学像差是光学系统中存在的缺陷,会导致成像质量下降。

根据像差与颜色是否有关、像差是轴上点产生的还是轴外点产生的,可以将像差分为多种类型,如球差、慧差、像散、场曲、畸变等。

三、实验仪器与材料1. 光学系统:包括透镜、反射镜、光阑、光束整形器等;2. 光源:激光器;3. 探测器:光电探测器;4. 仪器:成像系统、光束整形器、光路控制器等。

四、实验内容1. 实验一:测量球差(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变物距,记录不同物距下探测器的信号强度;(4)分析信号强度与物距的关系,得出球差值。

2. 实验二:测量慧差(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变光轴倾斜角度,记录不同倾斜角度下探测器的信号强度;(4)分析信号强度与倾斜角度的关系,得出慧差值。

3. 实验三:测量像散(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变光轴倾斜角度,记录不同倾斜角度下探测器的信号强度;(4)分析信号强度与倾斜角度的关系,得出像散值。

4. 实验四:测量场曲(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变物距,记录不同物距下探测器的信号强度;(4)分析信号强度与物距的关系,得出场曲值。

5. 实验五:测量畸变(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变物距,记录不同物距下探测器的信号强度;(4)分析信号强度与物距的关系,得出畸变值。

光学系统的偏振像差分析_张颖

光学系统的偏振像差分析_张颖

M ueller 算法 S tokes 矢量
强度计算 局部坐标 部分偏振光
s0
S=
s1 s2
s3
偏振光线追迹算法 偏振矢量
振幅计算 球坐标
绝对位相
单色光
Ex Ep = E y
Ez
M ueller 矩阵
M=
m 00 m 01 m02 m 03 m 10 m 11 m12 m 13
m 20 m 21 m22 m 23 m 30 m 31 m32 m 33
收稿日期 :2004-06-20 E-mail :sifanz hi ng @bit .edu .cn 作者简介 :张颖(1980-), 女 , 山西省人 , 北京理工大学信息科学技术学院光电工程系 博士研究生 , 主要 从事生物系统 检测及光学系统 偏
振像差分析方面的研究 。
2 02
第2期
关于偏振像差的研究从 20 世纪 50 年代就开始
光学系统的偏振称为仪器的偏振 。如果一个光
了 。 最初的分析只是简单的讨论了仪器偏振对某些
具体的光学系统的影响, 并没有进行系统的分 析[ 1 ~ 6] ;20 世纪 80 年代后 , 偏振像差的理论开始得
学系统是对偏振有严格要求的光学系统 , 则仪器偏 振就是非常有害的残余偏振像差 。残余偏振像差与 波像差一样 , 都会降低光学系统的成像质量 。仪器
tion aberration analy sis of rotationally symmetric optical systems, polarization aberration analysis of tilted and decentered optical
systems are described .Impo rtant effects of thin film design on polarization aberrations are also discussed .Finally , several meth-

光学像差的实验报告(3篇)

光学像差的实验报告(3篇)

第1篇一、实验目的1. 理解光学像差的产生原理及分类;2. 掌握光学像差实验的基本方法;3. 通过实验观察不同类型的光学像差,加深对光学像差理论的理解。

二、实验原理光学像差是指实际光学系统在成像过程中,由于光线传播路径的偏差,导致成像质量下降的现象。

根据像差是否与颜色有关,可以分为色像差和色差;根据像差产生的位置,可以分为轴上像差和轴外像差。

本实验主要研究球差、彗差、像散和场曲等基本像差。

球差是由于光线在通过透镜时,不同入射角度的光线在像平面上聚焦到不同的位置,导致成像质量下降;彗差是由于光线在通过透镜时,同一入射角度的光线在像平面上聚焦到不同的位置,导致成像质量下降;像散是由于光线在通过透镜时,同一入射角度的光线在像平面上聚焦到不同的位置,导致成像质量下降;场曲是由于光线在通过透镜时,不同高度的光线在像平面上聚焦到不同的位置,导致成像质量下降。

三、实验仪器与材料1. 实验仪器:光学像差实验装置、光源、光阑、成像屏、光具座等;2. 实验材料:不同焦距的透镜、不同形状的光阑、成像屏等。

四、实验步骤1. 准备实验装置,将光源、光阑、透镜、成像屏等按照实验要求放置在光具座上;2. 调整光具座,使光源发出的光线垂直照射到透镜上;3. 观察不同类型的光学像差现象,并记录实验数据;4. 分析实验数据,得出结论。

五、实验结果与分析1. 球差实验:观察不同焦距的透镜在成像过程中的球差现象,发现球差随着焦距的增加而增大;2. 彗差实验:观察不同形状的光阑在成像过程中的彗差现象,发现彗差随着光阑形状的变化而变化;3. 像散实验:观察不同高度的光线在成像过程中的像散现象,发现像散随着高度的增加而增大;4. 场曲实验:观察不同高度的光线在成像过程中的场曲现象,发现场曲随着高度的增加而增大。

六、实验结论1. 光学像差是实际光学系统在成像过程中普遍存在的一种现象,对成像质量有较大影响;2. 通过实验,掌握了光学像差实验的基本方法,加深了对光学像差理论的理解;3. 在光学系统设计过程中,应充分考虑像差的影响,采取相应的措施进行像差校正,以提高成像质量。

车载大口径光学系统像差的在线检测

车载大口径光学系统像差的在线检测
维普资讯
2 6 中国工程物理研 究院科技年报 3
43 短脉冲微光光子计数方法 .5
陈天 江 雒仲祥 颜 宏 向汝建 叶一东 何 忠武
传 统 的光子计 数技术 一般采 用光 电倍 增管作 为探测 器 。一般情 况 下 ,弱光 信号在 时 间上 较分散 ,因而
当两光束 无 相对偏移 时 ,取 不 同的探 测 光斑 半径 Wl 以得 到样 品上 出射 的探 测光束 的不 同形状 。在测 量 ,可
中 ,由于 调节精度 的限制 ,探 测光 束 与泵浦 光束 存在 相对偏 移 。模拟 计 算得 到在两 光束不 同相对 偏移 程度
下 探测 光束 的三维 立体 图,如 图 2所示 。
引起 的,可 以通过 精密调 节进 行消 除 或减 小 。对于 车载或 其他 需要移 动 的大 口径光学 系统 ,现 场检 测都 是
非 常重要 的,采用 以上 的检测 方案 可 以实现 现场 测试 ,指 导系 统安装 调试 ,从而 控制大 口径光 学系 统 的成
像 质量 。
43 弱吸收测量 中表面热透镜系统 的参数优 化 .7
易亨瑜
表 面热透镜 技术 是一种 灵敏 的吸收 测量 方法 。 了提 高热透 镜法 的测 量精度 , 为 必须 优化 测量 系统参 数 。
对 表面 热透镜 法进 行测量技 术 分析 ,根 据 菲涅 尔衍射 定律和材 料 的热膨 胀特 性 ,建立共 光路 表面 热透镜 测 量 的理 论模 型 。在 一定样 品参 数下 ,利 用模 型 ,对 表面 热透镜 技术 的测 量 结果进行 了模拟 仿真 。如 图 1 ,
27 3
求 高 ,主镜 装夹 应力 ,主 、次镜 中心 偏差 和角度 偏差 都将产 生大 的系 统像差 ,对于激 光雷达 系 统这些 装调

光学设计全程实验报告(3篇)

光学设计全程实验报告(3篇)

第1篇一、实验目的1. 了解光学设计的基本原理和过程;2. 掌握光学设计软件(如ZEMAX)的基本操作和应用;3. 通过实验,提高对光学系统性能的评估和优化能力;4. 深入理解光学系统中的各类元件及其作用;5. 培养团队协作和实验操作能力。

二、实验器材1. 光学设计软件(ZEMAX);2. 相关光学元件(透镜、棱镜、光阑等);3. 光具座、读数显微镜等辅助仪器;4. 设计说明书和镜头文件。

三、实验内容1. 光学系统设计思路(1)系统结构框图:设计一个简单的光学系统,包括物镜、目镜、光阑等元件,使系统成正像。

(2)系统结构设计:根据系统结构框图,设计物镜、目镜、光阑等元件的几何参数,并确定系统的主要技术参数。

2. 镜头设计(1)物镜设计:根据设计要求,选择合适的物镜类型,确定物镜的焦距、孔径、放大率等参数。

(2)目镜设计:根据设计要求,选择合适的目镜类型,确定目镜的焦距、放大率等参数。

3. 系统优化(1)优化物镜和目镜的几何参数,提高成像质量。

(2)优化系统整体性能,如分辨率、对比度等。

4. 仿真分析(1)使用ZEMAX软件进行光学系统仿真,观察成像质量。

(2)分析仿真结果,对系统进行进一步优化。

5. 实验报告撰写(1)总结实验过程中遇到的问题及解决方法。

(2)对实验结果进行分析和讨论。

四、实验步骤1. 设计光学系统结构框图,确定系统的主要技术参数。

2. 在ZEMAX软件中建立光学系统模型,设置物镜、目镜、光阑等元件的几何参数。

3. 优化物镜和目镜的几何参数,提高成像质量。

4. 优化系统整体性能,如分辨率、对比度等。

5. 使用ZEMAX软件进行光学系统仿真,观察成像质量。

6. 分析仿真结果,对系统进行进一步优化。

7. 撰写实验报告,总结实验过程、结果及分析。

五、实验结果与分析1. 实验结果(1)物镜焦距:f1 = 100mm;(2)目镜焦距:f2 = 50mm;(3)放大率:M = 2;(4)分辨率:R = 0.1mm;(5)对比度:C = 0.8。

(完整版)光学系统与像差全套答案

(完整版)光学系统与像差全套答案

2.解:由vcn =得:光在水中的传播速度:)/(25.2333.1)/(1038s m s m n c v =⨯==水水光在玻璃中的传播速度:)/(818.165.1)/(1038s m s m n c v =⨯==玻璃玻璃3.一高度为1.7米的人立于离高度为5米的路灯(设为点光源)1.5米处,求其影子长度。

解:根据光的直线传播。

设其影子长度为x ,则有xx+=5.157.1可得x =0.773米 4.一针孔照相机对一物体于屏上形成一60毫米高的像。

若将屏拉远50毫米,则像的高度为70毫米。

试求针孔到屏间的原始距离。

解:根据光的直线传播,设针孔到屏间的原始距离为x ,则有xx 605070=+可得x =300(毫米)5. 有一光线以60°的入射角入射于的磨光玻璃球的任一点上, 其折射光线继续传播到球表面的另一点上,试求在该点反射和折射的光线间的夹角。

解:根据光的反射定律得反射角''I =60°,而有折射定律I n I n sin sin ''=可得到折射角'I =30°,有几何关系可得该店反射和折射的光线间的夹角为90°。

6、若水面下200mm 处有一发光点,我们在水面上能看到被该发光点照亮的范围(圆直径)有多大?解:已知水的折射率为 1.333,。

由全反射的知识知光从水中到空气中传播时临界角为:nn m I 'sin ==333.11=0.75,可得m I =48.59°,m I tan =1.13389,由几何关系可得被该发光点照亮的范围(圆直径)是2*200*1.13389=453.6(mm)7、入射到折射率为的等直角棱镜的一束会聚光束(见图1-3), 若要求在斜面上发生全反射,试求光束的最大孔径角解:当会聚光入射到直角棱镜上时,对孔径角有一定的限制,超过这个限制,就不会 发生全反射了。

由nI m 1sin =,得临界角 26.41=m I 得从直角边出射时,入射角74.34590180=---=m I i由折射定律nU i 1sin sin =,得 5.68U =即 11.362U =8、有一光线入射于和的平面分界面上, 平面的法线为,求反射光线和折射光线。

RLE-ME01-光学系统像差测量实验-实验讲义

RLE-ME01-光学系统像差测量实验-实验讲义

光学系统像差测量实验RLE-ME01实验讲义版本:2012 发布日期:2012年8月前言实际光学系统与理想光学系统成像的差异称为像差。

光学系统成像的差异是《工程光学》课程重要章节,也是教学的难点章节,针对此知识点的教学实验产品匮乏。

RealLight®开发的像差测量实验采用专门设计的像差镜头,像差现象清晰;涉及知识点紧贴像差理论的重点内容,是学生掌握像差理论的非常理想的教学实验系统。

目录1.光学系统像差的计算机模拟1.1.引言---------------------------------------------11.2.实验目的-----------------------------------------11.3.实验原理-----------------------------------------11.4.实验仪器-----------------------------------------41.5.实验步骤-----------------------------------------41.6.思考题-------------------------------------------52. 平行光管的调节使用及位置色差的测量2.1.引言---------------------------------------------62.2.实验目的-----------------------------------------62.3.实验原理-----------------------------------------62.4.实验仪器-----------------------------------------72.5.实验步骤-----------------------------------------82.6.实验数据处理-------------------------------------92.7.思考题-------------------------------------------93. 星点法观测光学系统单色像差3.1.引言---------------------------------------------103.2.实验目的-----------------------------------------103.3.实验原理-----------------------------------------103.4.实验仪器-----------------------------------------113.5.实验步骤----------------------------------------123.6.思考题------------------------------------------144. 阴影法测量光学系统像差与刀口仪原理4.1.引言--------------------------------------------154.2.实验目的----------------------------------------154.3.实验原理----------------------------------------154.4.实验仪器----------------------------------------164.5.实验步骤----------------------------------------164.6.思考题------------------------------------------175. 剪切干涉测量光学系统像差5.1.引言--------------------------------------------185.2.实验目的----------------------------------------185.3.实验原理----------------------------------------185.4.实验仪器----------------------------------------215.5.实验步骤----------------------------------------215.6.思考题------------------------------------------266. 参考文献实验1 光学系统像差的计算机模拟1.1引言如果成像系统是理想光学系统,则同一物点发出的所有光线通过系统以后, 应该聚焦在理想像面上的同一点,且高度同理想像高一致。

光学设计实验报告范文(3篇)

光学设计实验报告范文(3篇)

第1篇一、实验目的1. 理解光学系统设计的基本原理和方法。

2. 掌握光学设计软件的使用,如ZEMAX。

3. 学会光学系统参数的优化方法。

4. 通过实验,加深对光学系统设计理论和实践的理解。

二、实验器材1. ZEMAX软件2. 相关实验指导书3. 物镜镜头文件4. 目镜镜头文件5. 光学系统镜头文件三、实验原理光学系统设计是光学领域的一个重要分支,主要研究如何根据实际需求设计出满足特定要求的成像系统。

在实验中,我们将使用ZEMAX软件进行光学系统设计,包括物镜、目镜和光学系统的设计。

四、实验步骤1. 设计物镜(1)打开ZEMAX软件,创建一个新的光学设计项目。

(2)选择物镜类型,如球面镜、抛物面镜等。

(3)设置物镜的几何参数,如半径、厚度等。

(4)优化物镜参数,以满足成像要求。

2. 设计目镜(1)在ZEMAX软件中,创建一个新的光学设计项目。

(2)选择目镜类型,如球面镜、复合透镜等。

(3)设置目镜的几何参数,如半径、厚度等。

(4)优化目镜参数,以满足成像要求。

3. 设计光学系统(1)将物镜和目镜的镜头文件导入ZEMAX软件。

(2)设置光学系统的其他参数,如视场大小、放大率等。

(3)优化光学系统参数,以满足成像要求。

五、实验结果与分析1. 物镜设计结果通过优化,物镜的焦距为100mm,半视场角为10°,成像质量达到衍射极限。

2. 目镜设计结果通过优化,目镜的焦距为50mm,半视场角为10°,成像质量达到衍射极限。

3. 光学系统设计结果通过优化,光学系统的焦距为150mm,半视场角为20°,成像质量达到衍射极限。

六、实验总结1. 通过本次实验,我们掌握了光学系统设计的基本原理和方法。

2. 学会了使用ZEMAX软件进行光学系统设计。

3. 加深了对光学系统设计理论和实践的理解。

4. 提高了我们的动手能力和团队协作能力。

5. 为今后从事光学系统设计工作打下了基础。

注:本实验报告仅为示例,具体实验内容和结果可能因实际情况而有所不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节光学系统像差实验一、引言如果成像系统是理想光学系统, 则同一物点发出的所有光线通过系统以后, 应该聚焦在理想像面上的同一点, 且高度同理想像高一致。

但实际光学系统成像不可能完全符合理想, 物点光线通过光学系统后在像空间形成具有复杂几何结构的像散光束, 该像散光束的位置和结构通常用几何像差来描述。

二、实验目的掌握各种几何像差产生的条件及其基本规律,观察各种像差现象。

三、基本原理光学系统所成实际像与理想像的差异称为像差,只有在近轴区且以单色光所成像之像才是完善的(此时视场趋近于0,孔径趋近于0)。

但实际的光学系统均需对有一定大小的物体以一定的宽光束进行成像,故此时的像已不具备理想成像的条件及特性,即像并不完善。

可见,像差是由球面本身的特性所决定的,即使透镜的折射率非常均匀,球面加工的非常完美,像差仍会存在。

几何像差主要有七种:球差、彗差、像散、场曲、畸变、位置色差及倍率色差。

前五种为单色像差,后二种为色差。

1.球差轴上点发出的同心光束经光学系统后,不再是同心光束,不同入射高度的光线交光轴于不同位置,相对近轴像点(理想像点)有不同程度的偏离,这种偏离δ')。

如图1-1所示。

称为轴向球差,简称球差(L图1-1 轴上点球差2.慧差彗差是轴外像差之一,它体现的是轴外物点发出的宽光束经系统成像后的失对称情况,彗差既与孔径相关又与视场相关。

若系统存在较大彗差,则将导致轴外像点成为彗星状的弥散斑,影响轴外像点的清晰程度。

如图1-2所示。

图1-2 慧差3.像散像散用偏离光轴较大的物点发出的邻近主光线的细光束经光学系统后,其子午焦线与弧矢焦线间的轴向距离表示:tst s x x x '''=- 式中,t x ',s x '分别表示子午焦线至理想像面的距离及弧矢焦线会得到不同形状的物至理想像面的距离,如图1-3所示。

图1-3 像散当系统存在像散时,不同的像面位置会得到不同形状的物点像。

若光学系统对直线成像,由于像散的存在其成像质量与直线的方向有关。

例如,若直线在子午面内其子午像是弥散的,而弧矢像是清晰的;若直线在弧矢面内,其弧矢像是弥散的而子午像是清晰的;若直线既不在子午面内也不在弧矢面内,则其子午像和弧矢像均不清晰,故而影响轴外像点的成像清晰度。

4.场曲使垂直光轴的物平面成曲面像的象差称为场曲。

如图1-4所示。

子午细光束的交点沿光轴方向到高斯像面的距离称为细光束的子午场曲;弧矢细光束的交点沿光轴方向到高斯像面的距离称为细光束的弧矢场曲。

而且即使像散消失了(即子午像面与弧矢像面相重合),则场曲依旧存在(像面是弯曲的)。

场曲是视场的函数,随着视场的变化而变化。

当系统存在较大场曲时,就不能使一个较大平面同时成清晰像,若对边缘调焦清晰了,则中心就模糊,反之亦然。

图1-4 场曲5.畸变畸变描述的是主光线像差,不同视场的主光线通过光学系统后与高斯像面的交点高度并不等于理想像高,其差别就是系统的畸变,如图1-5所示。

由畸变的定义可知,畸变是垂轴像差,只改变轴外物点在理想像面的成像位置,使像的形状产生失真,单不影响像的清晰度。

图1-5 畸变实验一应用平行光管测量位置色差一、引言平行光管是一种长焦距、大口径,并具有良好像值的仪器,与前置镜或测量显微镜组合使用,既可用于观察、瞄准无穷远目标,又可作光学部件,光学系统的光学常数测定以及成像质量的评定和检测。

二、实验目的(1)了解平行光管的结构及工作原理(2)掌握平行光管的使用方法(3)了解色差的产生原理(4)学会用平行光管测量球差镜头的色差三、基本原理根据几何光学原理,无限远处的物体经过透镜后将成像在焦平面上;反之,从透镜焦平面上发出的光线经透镜后将成为一束平行光。

如果将一个物体放在透镜的焦平面上,那么它将成像在无限远处。

图2-1 为平行光管的结构原理图。

它由物镜及置于物镜焦平面上的分划板,光源以及为使分划板被均匀照亮而设置的毛玻璃组成。

由于分划板置于物镜的焦平面上,因此,当光源照亮分划板后,分划板上每一点发出的光经过透镜后,都成为一束平行光。

又由于分划板上有根据需要而刻成的分划线或图案,这些刻线或图案将成像在无限远处。

这样,对观察者来说,分划板又相当于一个无限远距离的目标。

图2-1 平行光管的结构原理图根据平行光管要求的不同,分划板可刻有各种各样的图案。

图2-2 是几种常见的分划板图案形式。

图2-2(a)是刻有十字线的分划板,常用于仪器光轴的校正;图2-2 (b) 是带角度分划的分划板,常用在角度测量上;图2-2 (c) 是中心有一个小孔的分划板,又被称为星点板;图2-2 (d) 是鉴别率板,它用于检验光学系统的成像质量。

鉴别率板的图样有许多种,这里只是其中的一种;图2-2 (e) 是带有几组一定间隔线条的分划板,通常又称它为玻罗板,它用在测量透镜焦距的平行光管上。

图2-2 分划板的几种形式光学材料对不同波长的色光有不同的折射率,因此同一孔径不同色光的光线经过光学系统后与光轴有不同的交点。

不同孔径不同色光的光线与光轴的交点也不相同。

在任何像面位置,物点的像是一个彩色的弥散斑,如图2-3所示。

各种色光之间成像位置和成像大小的差异称为色差。

图2-3 轴上点色差轴上点两种色光成像位置的差异称为位置色差,也叫轴向色差。

对目视光学系统用FCL '∆表示,即系统对蓝光和红光的色差 FCF C L L L '''∆=- (2-1) 对近轴去表示为FCF C l l l '''∆=- (2-2) 根据定义可知,位置色差在近轴区就已产生。

为计算色差,只需对F 光和C 光进行近轴光路计算,就可求出系统的近轴色差和远轴色差。

四、 仪器用具平行光管、色光滤色片、色差镜头、CMOS 相机、电脑、机械调整件等。

五、 实验步骤1.参考示意图2-4,搭建观测位置色差的实验装置。

234516图2-4 位置色差检测装置示意图 1. 光纤光源4. 可调节棱镜支架2. 平行光管 5. CMOS 数字相机3. 色差镜头 6. 一维平移台2.调节平行光管、被测镜头和CMOS 相机,使它们在同一光轴上。

具体操作步骤:先取下星点板,使人眼可以直接看到通过平行光管和被测镜头后的会聚光斑。

调节被测镜头和CMOS 相机的高度及位置,使平行光管、被测镜头和CMOS 相机靶面共轴,且会聚光斑打在CMOS 相机靶面上。

3.装上25m μ的星点板,微调CMOS 相机位置,使得CMOS 相机上光斑亮度最强,如图2-5a 所示。

此时在平行光管上加上蓝光(F )滤色片,可以看见视场变暗,此时调节CMOS 相机下方的平移台,使CMOS 相机向被测镜头方向移动,直到观测到一个会聚的亮点,如图2-5b 所示,记下此时平移台上螺旋丝杆的读数1X 。

此时将F 光滤色片换成绿光(D)滤色片,可看见视场图案如图2-5c 所示,然后调节平移台,使CMOS 相机向远离被测镜头方向移动,又可观测到一个会聚的亮点,如图2-5d 所示,记下此时平移台上螺旋丝杆的读数2X 。

再将D 光滤色片替换为红光(C)滤色片,可看见视场图案如图2-5e 所示,再次调节平移台,使CMOS 相机继续想远离镜头方向移动,又可观测到一个会聚的亮点,如图2-5所示,记下此时平移台上螺旋丝杆的读数3X 。

a b c d e f图2-5 色差实验效果图4.数据处理:位置色差 FCF C L L L '''∆=- FDF D L L L '''∆=- DCD C L L L '''∆=-实验二 星点法观测光学系统单色像差一、 引言根据几何光学的观点,光学系统的理想状况是点物成点像,即物空间一点发出的光能量在像空间也集中在一点上,但由于像差的存在,在实际中式不可能的。

评价一个光学系统像质优劣的根据是物空间一点发出的光能量在像空间的分布情况。

在传统的像质评价中,人们先后提出了许多像质评价的方法,其中用得最广泛的有分辨率法、星点法和阴影法(刀口法)。

二、 实验目的1. 了解星点检验法的测量原理2. 用星点法观测各种像差三、 基本原理光学系统对相干照明物体或自发光物体成像时,可将物光强分布看成是无数个具有不同强度的独立发光点的集合。

每一发光点经过光学系统后,由于衍射和像差以及其他工艺疵病的影响, 在像面处得到的星点像光强分布是一个弥散光斑,即点扩散函数。

在等晕区内,每个光斑都具有完全相似的分布规律,像面光强分布是所有星点像光强的叠加结果。

因此,星点像光强分布规律决定了光学系统成像的清晰程度, 也在一定程度上反映了光学系统对任意物分布的成像质量。

上述的点基元观点是进行星点检验的基本依据。

星点检验法是通过考察一个点光源经光学系统后在像面及像面前后不同截面上所成衍射像通常称为星点像的形状及光强分布来定性评价光学系统成像质量好坏的一种方法。

由光的衍射理论得知, 一个光学系统对一个无限远的点光源成像, 其实质就是光波在其光瞳面上的衍射结果, 焦面上的衍射像的振幅分布就是光瞳面上振幅分布函数亦称光瞳函数的傅里叶变换, 光强分布则是振幅模的平方。

对于一个理想的光学系统, 光瞳函数是一个实函数, 而且是一个常数, 代表一个理想的平面波或球面波, 因此星点像的光强分布仅仅取决于光瞳的形状。

在圆形光瞳的情况下, 理想光学系统焦面内星点像的光强分布就是圆函数的傅里叶变换的平方即爱里斑光强分布,即212()()o J I r I D kr r r f F ψψππψλλ⎧⎡⎤=⎪⎢⎥⎪⎣⎦⎨⋅⎪===⎪'⋅⋅⎩式中,()o I r I 为相对强度(在星点衍射像的中间规定为1.0),r 为在像平面上离开星点衍射像中心的径向距离,1()J ψ为一阶贝塞尔函数。

通常,光学系统也可能在有限共轭距内是无像差的,在此情况下(2)sin k u πλ'=,其中u '为成像光束的像方半孔径角。

无像差星点衍射像如图3-1所示,在焦点上,中心圆斑最亮, 外面围绕着一系列亮度迅速减弱的同心圆环。

衍射光斑的中央亮斑集中了全部能量的80%以上,其中第一亮环的最大强度不到中央亮斑最大强度2%的。

在焦点前后对称的截面上, 衍射图形完全相同。

光学系统的像差或缺陷会引起光瞳函数的变化, 从而使对应的星点像产生变形或改变其光能分布。

待检系统的缺陷不同, 星点像的变化情况也不同。

故通过将实际星点衍射像与理想星点衍射像进行比较, 可反映出待检系统的缺陷并由此评价像质。

图3-1 无像差星点衍射像四、仪器用具平行光管、球差镜头、慧差镜头、像散镜头、场曲镜头、畸变镜头、CMOS相机等五、实验步骤1.参考示意图3-2,搭建观测轴上光线像差(球差)的实验装置。

相关文档
最新文档