2011湖北武汉中考数学试卷及答案
2011湖北武汉中考数学及答案

2011年湖北省武汉市中考数 学第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑. 1.(2011湖北武汉市,1,3分)有理数-3的相反数是 A .3. B .-3. C .31D .31-.【答案】A2.(2011湖北武汉市,2,3分)函数2-=x y 中自变量x 的取值范围是A .x ≥ 0.B .x ≥ -2.C .x ≥ 2.D .x ≤ -2. 【答案】C3.(2011湖北武汉市,3,3分)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A .x +1>0,x -3>0.B .x +1>0,3-x >0.C .x +1<0,x -3>0.D .x +1<0,3-x >0.【答案】B4.(2011湖北武汉市,4,3分)下列事件中,为必然事件的是 A .购买一张彩票,中奖. B .打开电视,正在播放广告. C .抛掷一枚硬币,正面向上.D .一个袋中只装有5个黑球,从中摸出一个球是黑球. 【答案】D5.(2011湖北武汉市,5,3分)若x 1,x 2是一元二次方程x 2+4x +3=0的两个根,则x 1x 2的值是 A .4. B .3. C .-4. D .-3. 【答案】B6.(2011湖北武汉市,6,3分)据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A .675×104. B .67.5×105. C .6.75×106. D .0.675×107. 【答案】C 7.(2011湖北武汉市,7,3分)如图,在梯形ABCD 中,AB ∥DC ,AD =DC =CB ,若∠ABD =25°,则∠BAD 的大小是A .40°.B .45°.C .50°.D .60°.【答案】C 8.(2011湖北武汉市,8,3分)右图是某物体的直观图,它的俯视图是A .B .C .D . 【答案】A9.(2011湖北武汉市,9,3分)在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为 A .64. B .49. C .36. D .25.【答案】B10.(2011湖北武汉市,10,3分)如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为 A .12秒. B .16秒. C .20秒. D .24秒.【答案】B 11.(2011湖北武汉市,11,3分)为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.第7题图根据以上信息,下列判断:①在2010年总投入中购置器材的资金最多;②2009年购置器材投入资金比2010年购置器材投入资金多8%;③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A .0.B .1.C .2.D .3. 【答案】C12.(2011湖北武汉市,12,3分)如图,在菱形ABCD 中,AB =BD ,点E ,F 分别在AB ,AD 上,且AE =DF .连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .下列结论: ①△AED ≌△DFB ; ②S 四边形 BCDG =43 CG 2;③若AF =2DF ,则BG =6GF .其中正确的结论A .只有①②.B .只有①③.C .只有②③.D .①②③.【答案】D第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置. 13.(2011湖北武汉市,13,3分)sin 30°的值为_____. 【答案】2114.(2011湖北武汉市,14,3分)某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.【答案】105;105;100 15.(2011湖北武汉市,15,3分)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.E第12题图2010年投入资金分配统计表2008年以来购置器材投入资金年统计图【答案】8 16.(2011湖北武汉市,16,3分)如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=xk 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k =_____.【答案】12三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.(2011湖北武汉市,17,6分)(本题满分6分)解方程:x 2+3x +1=0. 【答案】 ∵a=1,b=3,c=1∴△=b 2-4ac=9-4×1×1=5>0∴x =-3±25∴x 1=-3+ 25,x 2=-3-2518.(2011湖北武汉市,18,6分)(本题满分6分)先化简,再求值:)4(22xx xx x-÷-,其中x =3.【答案】原式=x (x -2)/x ÷(x +2)(x -2)/x=x (x -2)/x · x /(x +2)(x -2)= x /(x +2)∴当x =3时,原式=3/519.(2011湖北武汉市,19,6分)(本题满分6分)如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE .求证∠B=∠C .【答案】证明:在△ABE和△ACD中,AB=AC∠A=∠A AE=AD∴△ABE≌△ACD∴∠B=∠C20.(2011湖北武汉市,20,7分)(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.【答案】解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:以下同解法1(略)21.(2011湖北武汉市,21,7分)(本题满分7分)在平面直角坐标系中,△ABC的顶点坐标是A (-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.【答案】(1)将线段AC先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F(-1,-1)(3)画出如图所示的正确图形22.(2011湖北武汉市,22,8分)(本题满分8分)如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与P A的延长线交于点E.(1)求证:PB为⊙O的切线;1,求sinE的值.(2)若tan∠ABE=2【答案】(本题8分)(1)证明:连接OA∵PA为⊙O的切线,∴∠PAO=90°∵OA=OB,OP⊥AB于C∴BC=CA,PB=PA∴△PBO≌△PAO∴∠PBO=∠PAO=90°∴PB为⊙O的切线(2)解法1:连接AD,∵BD是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP∴△ADE∽△POE∴EA/EP=AD/OP 由AD∥OC得AD=2OC∵tan∠ABE=1/2∴OC/BC=1/2,设OC=t,则BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t∴EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m∵PA=PB∴PB=3m∴sinE=PB/EP=3/5(2)解法2:连接AD,则∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC∵tan ∠ABE=1/2,∴OC/BC=1/2,设OC =t ,BC =2t ,AB=4t 由△PBC ∽△BOC ,得PC =2BC =4t , ∴PA =PB =25t 过A 作AF ⊥PB 于F ,则AF·PB=AB·PC ∴AF=558t 进而由勾股定理得PF =556t∴sinE=sin ∠FAP =PF/PA =3/523.(2011湖北武汉市,23,10分)(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.【答案】解:(1)y =30-2x (6≤x <15)(2)设矩形苗圃园的面积为S 则S =xy=x (30-2x )=-2x 2+30x ∴S =-2(x -7.5)2+112.5由(1)知,6≤x <15∴当x =7.5时,S 最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5 (3)6≤x ≤1124.(2011湖北武汉市,24,10分)(本题满分10分)(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P .求证:QCPE BQDP .(2) 如图,在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点. ①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN .【答案】(1)证明:在△ABQ 中,由于DP ∥BQ ,∴△ADP ∽△ABQ ,∴DP/BQ =AP/AQ .同理在△ACQ 中,EP/CQ =AP/AQ . ∴DP/BQ =EP/CQ . (2)92.(3)证明:∵∠B +∠C =90°,∠CEF +∠C =90°.∴∠B =∠CEF , 又∵∠BGD =∠EFC , ∴△BGD ∽△EFC . ∴DG/CF =BG/EF ,∴DG·EF =CF·BG 又∵DG =GF =EF ,∴GF 2=CF·BG由(1)得DM/BG =MN/GF =EN/CF ∴(MN/GF )2=(DM/BG )·(EN/CF ) ∴MN 2=DM·EN25.(2011湖北武汉市,25,12分)(本题满分12分)如图1,抛物线y=ax 2+bx +3经过A (-3,0),B (-1,0)两点. (1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线y =-2x +9与y 轴交于点C ,与直线OM 交于点D .现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E ,F 两点.问在y 轴的负半轴上是否存在点P ,使△PEF 的内心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线y=ax 2+bx +3经过A (-3,0),B (-1,0)两点 ∴9a -3b +3=0 且a -b +3=0 解得a =1 , b =4 ∴抛物线的解析式为y=x 2+4x +3 (2)由(1)配方得y =(x +2)2-1 ∴抛物线的顶点M (-2,1) ∴直线OD 的解析式为y=21x于是设平移的抛物线的顶点坐标为(h ,21h ),∴平移的抛物线解析式为y =(x -h )2+21h .①当抛物线经过点C 时,∵C (0,9),∴h 2+21h =9,解得h=41451-±.∴ 当4145-1-≤h <41451-+时,平移的抛物线与射线CD 只有一个公共点.②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h)2+21h,y=-2x+9.得x2+(-2h+2)x+h2+21h-9=0,∴△=(-2h+2)2-4(h2+21h-9)=0,解得h=4.此时抛物线y=(x-4)2+2与射线CD唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD只有一个公共点时,顶点横坐标的值或取值范围是 h=4或4145-1-≤h<41451- .(3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x2,设EF的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P(0,t),如图,过P作GH∥x轴,分别过E,F作GH的垂线,垂足为G,H.∵△PEF的内心在y轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP,∴△GEP∽△HFP,∴GP/PH=GE/HF,∴-x E/x F=(y E-t)/(y F-t)=(kx E+3-t)/(kx F+3-t)∴2kx E·x F=(t-3)(x E+x F)由y=x2,y=-kx+3.得x2-kx-3=0.∴x E+x F=k,x E·x F=-3.∴2k(-3)=(t-3)k∵k≠0,∴t=-3.∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.方法2 :设EF的解析式为y=kx+3(k≠0),点E,F的坐标分别为(m,m2)(n,n2)由方法1知:mn=-3.作点E关于y轴的对称点R(-m,m2),作直线FR交y轴于点P,由对称性知∠EPQ=∠FPQ,∴点P就是所求的点.由F,R的坐标,可得直线FR的解析式为y=(n-m)x+mn.当x=0,y=mn=-3,∴P(0,-3).∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.。
中考题

2011年湖北省武汉市中考数学试卷一、选择题(共12小题每小题3分,共36分).下列各题中均有四个答案,其中只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.(2011•武汉)有理数﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.(2011•武汉)函数y=中自变量x的取值范围为()A.x≥0 B.x≥﹣2 C.x≥2 D.x≤﹣23.(2011•武汉)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.4.(2011•武汉)下列事件中,为必然事件的是()A.购买一张彩票,中奖B.打开电视机,正在播放广告 C.抛一牧捌币,正面向上D.一个袋中装有5个黑球,从中摸出一个球是黑球5.(2011•武汉)若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1•x2的值是()A.4 B.3 C.﹣4 D.﹣36.(2011•武汉)据报道,2011年全国普通高校招生计划约675万人,数6750000用科学记数法表示为()A.675×l04B.67.5×l05C.6.75×l06D.0.675×l077.(2011•武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD 的大小是()A.40°B.45°C.50°D.60°8.(2011•武汉)如图是某物体的直观图,它的俯视图是()A.B.C.D.9.(2011•武汉)在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部整点个数为()A.64 B.49 C.36 D.2510.(2011•武汉)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A 处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()A.12秒B.16秒C.20秒D.24秒11.(2011•武汉)为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元,图1.图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具件数据.根据以上信息,下列判断:①在2010年总投人中购置器材的资金最多;②2009年购置器材投入资金比2010年购置器材投入资金多8%;③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置材的投入是38×38%×(1+32%)万元.其中正确判断的个数是()A.0 B.1 C.2 D.312.(2011•武汉)如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①② B.只有①③ C.只有②③ D.①②③二.填空题(共4小题,每题3分,共12分)13.(2011•武汉)sin30°的值为_________.14.(2011•武汉)某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_________,众数是_________,平均数是_________.15.(2011•武汉)一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过_________分钟,容器中的水恰好放完.16.(2011•武汉)如图,▱ABCD的顶点A、B的坐标分别是A(﹣1,0),B(0,﹣2),顶点C、D在双曲线y=上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=_________.三.解答题.17.(2011•武汉)解方程:x2+3x+1=0.18.(2011•武汉)先化简,再求值:÷(x﹣),其中x=3.19.(2011•武汉)如图,D、E分别是AB、AC上的点,且AB=AC,AD=AE.求证:∠B=∠C.20.(2011•武汉)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树状图或列表法中的一种列举出这辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(2011•武汉)在平面直角坐标系中,△ABC的顶点坐标是A(﹣7,1),B(1,1),C (1,7).线段DE的端点坐标是D(7,﹣1),E(﹣1,﹣7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.22.(2011•武汉)如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)若tan∠ABE=,求sin∠E.23.(2011•武汉)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.24.(2011•武汉)(1)如图1,在△ABC中,点D、E、Q分别在ABACBC上,且DE∥边长,AQ交DE于点P,求证:=;(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM•EN.25.(2011•武汉)如图1,抛物线y=ax2+bx+3经过点A(﹣3,0),B(﹣1,0)两点,(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D,现将抛物线平移,保持顶点在直线OD上,若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E、F两点,问在y轴的负半轴上是否存在一点P,使△PEF的内心在y轴上?若存在,求出点P的坐标;若不存在,说明理由.2011年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共12小题每小题3分,共36分).下列各题中均有四个答案,其中只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.(2011•武汉)有理数﹣3的相反数是()A.3 B.﹣3 C.D.﹣考点:相反数。
2011年湖北省武汉市中考数学试卷

2011年湖北省武汉市中考数学试卷一、选择题(共12小题每小题3分,共36分).下列各题中均有四个答案,其中只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.(3分)有理数﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)函数y=中自变量x的取值范围为()A.x>2B.x≥2C.x<2D.x≤23.(3分)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.>>B.>>C.<>D.<>4.(3分)下列事件中,为必然事件的是()A.购买一张彩票,中奖B.打开电视机,正在播放广告C.抛一牧捌币,正面向上D.一个袋中装有5个黑球,从中摸出一个球是黑球5.(3分)若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1•x2的值是()A.4B.3C.﹣4D.﹣36.(3分)据报道,2011年全国普通高校招生计划约675万人,数字6750000用科学记数法表示为()A.675×l04B.67.5×l05C.6.75×l06D.0.675×l07 7.(3分)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD 的大小是()A.40°B.45°C.50°D.60°8.(3分)如图是某物体的直观图,它的俯视图是()A.B.C.D.9.(3分)在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部整点个数为()A.64B.49C.36D.2510.(3分)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()A.12秒B.16秒C.20秒D.24秒11.(3分)为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元,图1.图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具件数据.根据以上信息,下列判断:①在2010年总投入中购置器材的资金最多;②2009年购置器材投入资金比2010年购置器材投入资金多8%;③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置材的投入是38×38%×(1+32%)万元.其中正确判断的个数是()A.0B.1C.2D.312.(3分)如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:=CG2;③若AF=2DF,则BG=6GF.①△AED≌△DFB;②S四边形BCDG其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③二.填空题(共4小题,每题3分,共12分)13.(3分)sin30°的值为.14.(3分)某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是,众数是,平均数是.15.(3分)一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过分钟,容器中的水恰好放完.16.(3分)如图,▱ABCD的顶点A、B的坐标分别是A(﹣1,0),B(0,﹣2),顶点C、D在双曲线y=上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=.三.解答题.17.(6分)解方程:x2+3x+1=0.18.(6分)先化简,再求值:÷(x﹣),其中x=3.19.(6分)如图,D、E分别是AB、AC上的点,且AB=AC,AD=AE.求证:∠B=∠C.20.(7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用画树状图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(7分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,﹣1),E(﹣1,﹣7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.22.(8分)如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)若tan∠ABE=,求sin∠E.23.(10分)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x 的取值范围.24.(10分)(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:=;(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM•EN.25.(12分)如图1,抛物线y=ax2+bx+3经过点A(﹣3,0),B(﹣1,0)两点,(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D,现将抛物线平移,保持顶点在直线OD上,若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E、F两点,问在y轴的负半轴上是否存在一点P,使△PEF 的内心在y轴上?若存在,求出点P的坐标;若不存在,说明理由.2011年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共12小题每小题3分,共36分).下列各题中均有四个答案,其中只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.(3分)有理数﹣3的相反数是()A.3B.﹣3C.D.﹣【解答】解:﹣3的相反数是3.故选:A.2.(3分)函数y=中自变量x的取值范围为()A.x>2B.x≥2C.x<2D.x≤2【解答】解:根据题意,得x﹣2≥0,解得x≥2.故选:B.3.(3分)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.>>B.>>C.<>D.<>【解答】解:由数轴上不等式解集的表示方法可知,此不等式组的解集为:﹣1<x<3.A、>>,由①得,x>﹣1,由②得,x>3,所以此不等式组的解集为:x>3,故本选项错误;B、>>,由①得,x>﹣1,由②得,x<3,所以此不等式组的解集为:﹣1<x<3,故本选项正确;C、<>,由①得,x<﹣1,由②得,x>3,所以此不等式组无解,故本选项错误;D、<>,由①得,x<﹣1,由②得,x<3,所以此不等式组的解集为:x<﹣1,故本选项错误.故选:B.4.(3分)下列事件中,为必然事件的是()A.购买一张彩票,中奖B.打开电视机,正在播放广告C.抛一牧捌币,正面向上D.一个袋中装有5个黑球,从中摸出一个球是黑球【解答】解:A、可能发生,也可能不发生,属于随机事件,不一定会中奖,不符合题意;B、可能发生,也可能不发生,属于随机事件,不符合题意;C、可能发生,也可能不发生,属于随机发生,不符合题意.D、是必然事件,符合题意;故选:D.5.(3分)若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1•x2的值是()A.4B.3C.﹣4D.﹣3【解答】解:∵一元二次方程x2+4x+3=0的二次项系数a=1,常数项c=3,∴x1•x2==3.故选:B.6.(3分)据报道,2011年全国普通高校招生计划约675万人,数字6750000用科学记数法表示为()A.675×l04B.67.5×l05C.6.75×l06D.0.675×l07【解答】解:6 750 000=6.75×106.故选:C.7.(3分)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是()A.40°B.45°C.50°D.60°【解答】解:∵AB∥DC,AD=DC=CB,∠ABD=25°,∴∠CBD=∠CDB=∠ABD=25°,∴∠ABC=∠ABD+∠CBD=50°,又梯形ABCD中,AD=DC=CB,∴为等腰梯形,∴∠BAD=∠ABC=50°,故选:C.8.(3分)如图是某物体的直观图,它的俯视图是()A.B.C.D.【解答】解:圆柱的俯视图是圆,长方体的俯视图是长方形,所以该组合几何体的俯视图应是长方形内有一个圆.故选:A.9.(3分)在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部整点个数为()A.64B.49C.36D.25【解答】解:设边长为8的正方形内部的整点的坐标为(x,y),x,y都为整数.则﹣4<x<4,﹣4<y<4,故x只可取﹣3,﹣2,﹣1,0,1,2,3共7个,y只可取﹣3,﹣2,﹣1,0,1,2,3共7个,它们共可组成点(x,y)的数目为7×7=49(个)故选:B.10.(3分)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()A.12秒B.16秒C.20秒D.24秒【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选:B.11.(3分)为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元,图1.图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具件数据.根据以上信息,下列判断:①在2010年总投入中购置器材的资金最多;②2009年购置器材投入资金比2010年购置器材投入资金多8%;③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置材的投入是38×38%×(1+32%)万元.其中正确判断的个数是()A.0B.1C.2D.3【解答】解:①因为购置器材所占的面积最大,所以是资金最多的,故①正确;②2009年资金的增长是相对于2008年来说的,2010年的资金是相对于2009年来说的哦,故②是错误的;③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同也是增长了32%,所以2011年的资金是38×38%×(1+32%).故③正确.故选:C.12.(3分)如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S=CG2;③若AF=2DF,则BG=6GF.四边形BCDG其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③【解答】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,∵,∴△CBM≌△CDN,(HL)=S四边形CMGN.∴S四边形BCDGS四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,=2S△CMG=2××CG×CG=CG2.∴S四边形CMGN③过点F作FP∥AE于P点.∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选:D.二.填空题(共4小题,每题3分,共12分)13.(3分)sin30°的值为.【解答】解:sin30°=,故答案为.14.(3分)某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是105,众数是105,平均数是100.【解答】解:(1)平均数:(89+91+105+105+110)÷5=105,故平均数是100;(2)在这一组数据中105是出现次数最多的,故众数是105;将这组数据从小到大的顺序排列(89,91,105,105,110),处于中间位置的那个数是105,那么由中位数的定义可知,这组数据的中位数是105;故答案为:105,105,100.15.(3分)一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过8分钟,容器中的水恰好放完.【解答】解:进水管的速度为:20÷4=5(升/分),出水管的速度为:5﹣(30﹣20)÷(12﹣4)=3.75(升/分),∴关停进水管后,出水经过的时间为:30÷3.75=8分钟.故答案为:8.16.(3分)如图,▱ABCD的顶点A、B的坐标分别是A(﹣1,0),B(0,﹣2),顶点C、D在双曲线y=上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=12.【解答】解:如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M 点,过C点作CH⊥DG,垂足为H,∵ABCD是平行四边形,∴∠ABC=∠ADC,∵BO∥DG,∴∠OBC=∠GDE,∴∠HDC=∠ABO,∴△CDH≌△ABO(AAS),∴CH=AO=1,DH=OB=2,设C(m+1,n),D(m,n+2),则(m+1)n=m(n+2)=k,解得n=2m,则D的坐标是(m,2m+2),设直线AD解析式为y=ax+b,将A、D两点坐标代入得,由①得:a=b,代入②得:mb+b=2m+2,即b(m+1)=2(m+1),解得b=2,则,∴y=2x+2,E(0,2),BE=4,=×BE×AO=2,∴S△ABE=5S△ABE=5××4×1=10,∵S四边形BCDE∵S=S△ABE+S四边形BEDM=10,四边形BCDE即2+4×m=10,解得m=2,∴n=2m=4,∴k=(m+1)n=3×4=12.故答案为:12.三.解答题.17.(6分)解方程:x2+3x+1=0.【解答】解:a=1,b=3,c=1∴x==.∴x1=,x2=.18.(6分)先化简,再求值:÷(x﹣),其中x=3.【解答】解:原式=÷(),=×,=,x=3时,原式=.19.(6分)如图,D、E分别是AB、AC上的点,且AB=AC,AD=AE.求证:∠B=∠C.【解答】证明:在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS),∴∠B=∠C.20.(7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用画树状图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.【解答】解法l:(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=.解法2:根据题意,可以列出如下的表格:∴P(至少有一辆汽车向左转)=.21.(7分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,﹣1),E(﹣1,﹣7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.【解答】解:(1)将线段AC先向右平移6个单位,再向下平移8个单位.(其它平移方式也可以);(2)根据A,C对应点的坐标即可得出F(﹣l,﹣1);(3)画出如图所示的正确图形.22.(8分)如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)若tan∠ABE=,求sin∠E.【解答】(1)证明:连接OA,∵PA为⊙O的切线,∴OA⊥PA∴∠PAO=90°,∵OA=OB,OP⊥AB于C,∴BC=CA,PB=PA,∴△PAO≌△PBO,∴∠PBO=∠PAO=90°,∴PB为⊙O的切线;(2)解:连接AD,∵BD为直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP,∴△ADE∽△POE,∴=,由AD∥OC得AD=2OC∵tan∠ABE=,∴=设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,得PC=2BC=4t,OP=5t,∴==.可设EA=2,EP=5,则PA=3,∵PA=PB,∴PB=3,∴sin∠E==.23.(10分)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x 的取值范围.【解答】解:(1)y=30﹣2x(6≤x<15).(2)设矩形苗圃园的面积为S则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.5)2+112.5,由(1)知,6≤x<15,∴当x=7.5时,S最大值=112.5,即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.(3)∵这个苗圃园的面积不小于88平方米,即﹣2(x﹣7.5)2+112.5≥88,∴4≤x≤11,由(1)可知6≤x<15,∴x的取值范围为6≤x≤11.24.(10分)(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:=;(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM•EN.【解答】(1)证明:在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴=,同理在△ACQ和△APE中,=,∴=.(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=,∵DE=DG=GF=EF=BG=CF∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=,∵DE边上的高为,MN:GF=:,∴MN:=:,∴MN=.故答案为:.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC,∴=,∴DG•EF=CF•BG,又∵DG=GF=EF,∴GF2=CF•BG,由(1)得==,∴×=•,∴()2=•,∵GF2=CF•BG,∴MN2=DM•EN.25.(12分)如图1,抛物线y=ax2+bx+3经过点A(﹣3,0),B(﹣1,0)两点,(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D,现将抛物线平移,保持顶点在直线OD上,若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E、F两点,问在y轴的负半轴上是否存在一点P,使△PEF 的内心在y轴上?若存在,求出点P的坐标;若不存在,说明理由.【解答】解:(1)抛物线y=ax2+bx+3经过点A(﹣3,0),B(﹣1,0)两点,∴,解得a=1,b=4,∴抛物线解析式为y=x2+4x+3;(2)由(1)配方得y=(x+2)2﹣1∴抛物线的顶点M(﹣2,﹣1),直线OD的解析式为y=x.于是设平移后的抛物线的顶点坐标为(h,h),∴平移后的抛物线解析式为y=(x﹣h)2+h,①当抛物线经过点C时,∵C(0,9),∴h2+h=9,解得h=,∴当≤h<时,平移的抛物线与射线CD(含端点C)只有一个公共点,②当抛物线与直线CD只有一个公共点时,由方程组,得x2+(﹣2h+2)x+h2+h﹣9=0,∴△=(﹣2h+2)2﹣4(h2+h﹣9)=0,解得h=4,此时抛物线y=(x﹣4)2+2与射线CD只有唯一一个公共点为(3,3),综上所述,平移的抛物线与射线CD(含端点C)只有一个公共点时,顶点横坐标h的取值范围为h=4或≤h<;(3)设直线EF的解析式为y=kx+3(k≠0),点E、F的坐标分别为(m,m2),(n,n2),由得x2﹣kx﹣3=0,∴m+n=k,m•n=﹣3,作点E关于y轴的对称点R(﹣m,m2),作直线FR交y轴于点P,由对称性知∠EPQ=∠FPQ,此时△PEF的内心在y轴上,∴点P即为所求的点.由F,R的坐标可得直线FR的解析式为y=(n﹣m)x+mn记y=(n﹣m)x﹣3,当x=0时,y=﹣3,∴p(0,﹣3),∴y轴的负半轴上存在点P(0,﹣3)使△PEF的内心在y轴上.。
2011年湖北省武汉市中考数学试卷(学生版) 电子版

其中正确的结论( )
A.只有①②
B.只有①③
C.只有②③
D.①②③
二.填空题(共 4 小题,每题 3 分,共 12 分)
13.(3 分)sin30°的值为 .
。 行 举 份 3-5月
在
般
一
试
考
平
水
育
14.(3
分)某次数学测验中,五位同学的分数分别是:
89,91,105 体 业 学 中 初 。 算
科
试
考
,
件
条
要
必
的
放
发
书
证
业
毕
中
初
是
它
;
试
考
的
平
水
业
学
中
初
到
达
否
是
生
校
在
中
初
验
检
是
”,
考
“中
称
,简
(1)求证:PB 为⊙O 的切线; (TheAcademicTestfortheJuniorHighSchoolStudents)
试
考
平
水
业
学
中
初
(2)若 tan∠ABE ,求 sin∠E.
23.(10 分)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外
8%;
是
它
;
试
考
的
平
水
业
学
中
初
到
达
否
是
生
校
在
中
初
验
检
是
”,
考
“中
2011年武汉中考数学试题及答案

2011年湖北省武汉市中考数学试题第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑. 1.有理数-3的相反数是A.3.B.-3.C.31D.31-. 2.函数2-=x y 中自变量x 的取值范围是A.x≥0.B.x≥-2.C.x≥2.D.x≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是 A.x+1>0,x-3>0. B.x+1>0,3-x>0. C.x+1<0,x-3>0. D.x+1<0,3-x>0.4.下列事件中,为必然事件的是 A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是A.4.B.3.C.-4.D.-3.6.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为 A.675×104. B.67.5×105. C.6.75×106. D.0.675×107.7.如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB ,若∠ABD =25°,则∠BAD 的大小是 A.40°. B.45°. C.50°. D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25. 10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:① 在2010年总投入中购置器材的资金最多; ② ②2009年购置器材投入资金比2010年购置器材投入资金多8%;③ ③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是 A.0. B.1. C.2. D.3.12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论: ①△AED ≌△DFB ; ②S四边形B C D G =43CG 2; ③若AF=2DF ,则BG=6GF.其中正确的结论 A. 只有①②. B.只有①③.C.只有②③. D.①②③.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置. 13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=xk上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22xx x x x -÷-,其中x=3. 19.(本题满分6分)如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果; (2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点B.延长BO 与⊙O 交于点D ,与PA 的延长线交于点E.(1)求证:PB 为⊙O 的切线; (2)若tan ∠ABE=21,求sinE 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. (1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P.求证:QCPEBQ DP . (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN.25.(本题满分12分)如图1,抛物线y=ax 2+bx+3经过A (-3,0),B (-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线y=-2x+9与y 轴交于点C ,与直线OM 交于点D.现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E ,F 两点.问在y 轴的负半轴上是否存在点P ,使△PEF 的内心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.2011年湖北省武汉市中考数学答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D 二、填空题 13.1/214.105;105;100 15.8 16.12三、解答题17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4×1×1=5>0∴x=-3±25 ∴x 1=-3+25,x 2=-3-2518.(本题6分)解:原式=x(x-2)/x÷(x+2)(x -2)/x=x(x-2)/x· x/(x+2)(x-2)= x/(x+2)∴当x=3时,原式=3/5 19.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A=∠A AE =AD ∴△ABE≌△ACD ∴∠B=∠C20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:以下同解法1(略)21.(本题7分)(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可) (2)F (-1,-1)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA ∵PA 为⊙O 的切线, ∴∠PAO=90°∵OA=OB ,OP⊥AB 于C ∴BC=CA ,PB =PA ∴△PBO≌△PAO∴∠PBO=∠PAO=90° ∴PB 为⊙O 的切线(2)解法1:连接AD ,∵BD 是直径,∠BAD=90° 由(1)知∠BCO=90° ∴AD∥OP∴△ADE∽△POE∴EA /EP =AD/OP 由AD∥OC 得AD =2OC ∵tan∠ABE=1/2 ∴OC /BC=1/2,设OC =t,则BC =2t,AD=2t 由△PBC∽△BOC,得PC =2BC =4t ,OP =5t ∴EA /EP=AD/OP=2/5,可设EA =2m,EP=5m,则PA=3m ∵PA=PB∴PB=3m ∴sinE=PB /EP=3/5(2)解法2:连接AD ,则∠BAD =90°由(1)知∠BCO =90°∵由AD∥OC ,∴AD =2OC∵tan∠ABE=1/2,∴OC /BC=1/2,设OC =t ,BC =2t ,AB=4t 由△PBC∽△BOC,得PC =2BC =4t , ∴PA=PB =25t 过A 作AF⊥PB 于F ,则AF·PB=AB·PC∴AF=558t 进而由勾股定理得PF =556t ∴sinE=sin∠FAP=PF /PA=3/5左 直 右 左 (左,左) (左,直) (左,右) 直 (直,左) (直,直) (直,右) 右(右,左)(右,直)(右,右)23.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S 则S=xy=x(30-2x)=-2x 2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S 最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1124.(本题10分)(1)证明:在△ABQ 中,由于DP∥BQ,∴△ADP∽△ABQ, ∴DP /BQ =AP/AQ.同理在△ACQ 中,EP/CQ =AP/AQ. ∴DP /BQ =EP/CQ.(2)92 9.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF ,又∵∠BGD=∠EFC ,∴△BGD∽△EFC.……3分∴DG /CF =BG/EF ,∴DG·EF=CF·BG又∵DG=GF =EF ,∴GF 2=CF·BG由(1)得DM/BG =MN/GF =EN/CF∴(MN/GF )2=(DM/BG)·(EN/CF)∴MN 2=DM·EN25.(1)抛物线y=ax 2+bx+3经过A (-3,0),B (-1,0)两点 ∴9a -3b+3=0 且a-b+3=0 解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M (-2,,1)∴直线OD 的解析式为y=21x 于是设平移的抛物线的顶点坐标为(h ,21 h ),∴平移的抛物线解析式为y=(x-h )2+21h.①当抛物线经过点C 时,∵C(0,9),∴h 2+21h=9, 解得h=41451-±. ∴ 当 4145-1-≤h<41451-+ 时,平移的抛物线与射线CD 只有一个公共点.②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h )2+21h,y=-2x+9. 得 x 2+(-2h+2)x+h 2+21h-9=0,∴△=(-2h+2)2-4(h 2+21h-9)=0,解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或4145-1-≤h<41451-+. (3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x 2, 设EF 的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P (0,t ),如图,过P 作GH∥x 轴,分别过E ,F 作GH 的垂线,垂足为G ,H.∵△PEF 的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP ,∴△GEP∽△HFP,...............9分∴GP /PH=GE/HF, ∴-x E /x F =(y E -t)/(y F -t)=(kx E +3-t)/(kx F +3-t) ∴2kx E ·x F =(t-3)(x E +x F )由y=x2,y=-kx+3.得x2-kx-3=0.∴x E+x F=k,x E·x F=-3.∴2k(-3)=(t-3)k,∵k≠0,∴t=-3.∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.方法2 设EF的解析式为y=kx+3(k≠0),点E,F的坐标分别为(m,m2)(n,n2)由方法1知:mn=-3.作点E关于y轴的对称点R(-m,m2),作直线FR交y轴于点P,由对称性知∠EPQ=∠FPQ,∴点P就是所求的点.由F,R的坐标,可得直线FR的解析式为y=(n-m)x+mn.当x=0,y=mn=-3,∴P (0,-3).∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.武汉市光谷三初冉瑞洪整理。
2011年中考数学试题及解析171套试题试卷_113

2011年湖北省武汉市中考数学试题一、选择题(共12小题,每小题3分,共36分)1.有理数-3的相反数是A.3.B.-3.C.31 D.31-. 2.函数2-=x y 中自变量x 的取值范围是A.x≥0.B.x≥-2.C.x≥2.D.x≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0,x-3>0.B.x+1>0,3-x>0.C.x+1<0,x-3>0.D.x+1<0,3-x>0.4.下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是A.4.B.3.C.-4.D.-3.6.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104.B.67.5×105.C.6.75×106.D.0.675×107.7.如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB ,若∠ABD =25°,则∠BAD 的大小是A.40°.B.45°.C.50°.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25.10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:① 在2010年总投入中购置器材的资金最多;② ②2009年购置器材投入资金比2010年购置器材投入资金多8%;③ ③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A.0.B.1.C.2.D.3.12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论:①△AED ≌△DFB ;②S 四边形 B C D G = 43 CG 2; ③若AF=2DF ,则BG=6GF.其中正确的结论A. 只有①②.B.只有①③.C.只有②③.D.①②③.二、填空题(共4小题,每小题3分,共12分).13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=xk 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22xx x x x -÷-,其中x=3. 19.(本题满分6分)如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点B.延长BO 与⊙O 交于点D ,与PA的延长线交于点E.(1)求证:PB 为⊙O 的切线;(2)若tan ∠ABE=21,求sinE 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P.求证:QCPE BQ DP . (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN.25.(本题满分12分)如图1,抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y 轴上.若存在,求出点P的坐标;若不存在,请说明理由.2011年湖北省武汉市中考数学答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D二、填空题13.1/214.105;105;10015.816.12三、解答题 17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4×1×1=5>0∴x=-3±25 ∴x 1=-3+ 25,x 2=-3-25 18.(本题6分)解:原式=x(x-2)/x÷(x+2)(x -2)/x=x(x-2)/x· x/(x+2)(x-2)=x/(x+2)∴当x=3时,原式=3/519.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A=∠A AE =AD∴△ABE≌△ACD∴∠B=∠C 20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:以下同解法1(略)21.(本题7分)(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F (-1,-1)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA∵PA为⊙O的切线,∴∠PAO=90°∵OA=OB,OP⊥AB于C∴BC=CA,PB=PA∴△PBO≌△PAO∴∠PBO=∠PAO=90°∴PB为⊙O的切线(2)解法1:连接AD,∵BD是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP∴△ADE∽△POE∴EA/EP=AD/OP 由AD∥OC得AD=2OC ∵tan∠ABE=1/2 ∴OC/BC=1/2,设OC=t,则BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t∴EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m∵PA=PB∴PB=3m∴sinE=PB/EP=3/5(2)解法2:连接AD,则∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC ∵tan∠ABE=1/2,∴OC/BC=1/2,设OC=t,BC=2t,AB=4t由△PBC∽△BOC,得PC=2BC=4t,∴PA=PB=25t 过A作AF⊥PB于F,则AF·PB=AB·PC∴AF=558t 进而由勾股定理得PF=556t∴sinE=sin∠FAP=PF/PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1124.(本题10分)(1)证明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ,∴DP/BQ=AP/AQ.同理在△ACQ中,EP/CQ=AP/AQ.∴DP/BQ=EP/CQ.(2)929.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG·EF=CF·BG又∵DG=GF=EF,∴GF2=CF·BG由(1)得DM/BG=MN/GF=EN/CF∴(MN/GF)2=(DM/BG)·(EN/CF)∴MN2=DM·EN25.(1)抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点∴9a -3b+3=0 且a-b+3=0解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M (-2,,1)∴直线OD 的解析式为y=21x 于是设平移的抛物线的顶点坐标为(h ,21 h ),∴平移的抛物线解析式为y=(x-h )2+21h.①当抛物线经过点C 时,∵C(0,9),∴h 2+21h=9, 解得h=41451-±. ∴ 当 4145-1-≤h<41451-+ 时,平移的抛物线与射线CD 只有一个公共点.②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h )2+21h,y=-2x+9. 得 x 2+(-2h+2)x+h 2+21h-9=0,∴△=(-2h+2)2-4(h 2+21h-9)=0, 解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或 4145-1-≤h<41451-+. (3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x 2,设EF 的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P (0,t ),如图,过P 作GH∥x 轴,分别过E ,F 作GH 的垂线,垂足为G ,H.∵△PEF的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP ,∴△GEP∽△HFP,...............9分∴GP /PH=GE/HF,∴-x E /x F =(y E -t)/(y F -t)=(kx E +3-t)/(kx F +3-t)∴2kx E ·x F =(t-3)(x E +x F )由y=x 2,y=-kx+3.得x 2-kx-3=0.∴x E +x F =k,x E ·x F =-3.∴2k (-3)=(t-3)k,∵k≠0,∴t=-3.∴y 轴的负半轴上存在点P (0,-3),使△PEF 的内心在y 轴上.方法 2 设EF 的解析式为y=kx+3(k≠0),点E ,F的坐标分别为(m,m 2)(n,n 2)由方法1知:mn=-3.作点E 关于y 轴的对称点R (-m,m 2),作直线FR 交y 轴于点P ,由对称性知∠EPQ=∠FPQ,∴点P 就是所求的点.由F,R的坐标,可得直线FR 的解析式为y=(n-m )x+mn.当x=0,y=mn=-3,∴P (0,-3).∴y 轴的负半轴上存在点P (0,-3),使△PEF 的内心在y 轴上.。
(2021年整理)年武汉市中考数学试题及答案

2011年武汉市中考数学试题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2011年武汉市中考数学试题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2011年武汉市中考数学试题及答案的全部内容。
-1B武汉市2011年中考数学试题及答案一、选择题(共12小题每小题3分,共36分)I。
下列各题中均有四个答案,其中只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1有理数—3的相反数是()A。
3 B.—3. C。
31.D.-312.函数 y=2-x中自变量x的取值范围为( )A.x≥ 0. B.x≥—2. C.x≥2. D.x≤-23 。
如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )A.{31>->+xxB。
{31>->+xxC.{31>-<+xxD.{31>-<+xx4.下列事件中,为必然事件的是()A.购买一张彩票,中奖,B.打开电视机.正在播放广告。
C。
抛一牧捌币,正面向上.D一个袋中装有5个黑球,从中摸出一个球是黑球.5.若x1,x2是一元二次方程x2 +4x +3 =0的两个根,则x1·x2的值是()A.4 B.3 C.-4 D.—36.据报道,2011年全国普通高校招生计划约675万人,数6750000用科学计数法表示为() A.675×l04 B。
67.5×l05 C。
6.75 ×l06 D。
0。
675 ×l077.如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( ) A.40°. B.45°. C。
2011年武汉市中考数学真题试题(含答案)

3-1B武汉市2011年中考数学试题及答案(含答案)一、选择题(共12小题每小题3分,共36分)I。
下列各题中均有四个答案,其中只有一个是正确的,请在答题卡上将正确答案的代号涂黑。
1有理数-3的相反数是()A.3 B.-3. C.31.D.-312.函数 y=2-x中自变量x的取值范围为()A.x≥ 0. B.x≥-2. C.x≥2. D.x≤-23 .如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.{31>->+xxB。
{31>->+xxC.{31>-<+xxD.{31>-<+xx4.下列事件中,为必然事件的是()A.购买一张彩票,中奖,B.打开电视机.正在播放广告。
C.抛一牧捌币,正面向上.D一个袋中装有5个黑球,从中摸出一个球是黑球.5.若x1,x2是一元二次方程x2 +4x +3 =0的两个根,则x1·x2的值是()A.4 B.3 C.-4 D.-36.据报道,2011年全国普通高校招生计划约675万人,数6750000用科学计数法表示为()A.675×l04B.67.5×l05C.6.75 ×l06 .D. 0.675 ×l077.如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是()A.40°. B.45°。
C。
50° D。
60°8.右图是某物体的直观图,它的俯视图是()A BE图1年份xQx9.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.且规定,芷方形的内部不包含边界上的点.观察如图昕示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的 正方形内部整点个数为( ) A .64 B .49. C .36. D .2S10.如图,铁路MN 和公赂PQ 在点O 处交汇,∠QON=30°,公路PQ 上A 处距离O 点240米,如果火行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN 上沿MN 方向以72千米/小时的速度行驶时,A 处受到噪音影响的时间为( )A .12秒. B.16秒. C .20秒. D .24秒.11.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 3 )画出( 2 )中的△ DEF ,并和△ ABC 同时绕坐标原点 O 逆时针 旋转 90° ,画出旋转后的图形 .
22. (本题满分 8 分)如图, PA 为⊙ O 的切线, A 为切点 . 过 A 作 OP 的 垂线 AB ,垂足为点 C ,交⊙ O 于点 B. 延长 BO 与⊙ O 交于点 D ,与 PA 的延长线交于点 E. ( 1 )求证: PB 为⊙ O 的切线; ( 2 )若 tan ∠ ABE= ,求 sinE 的值 .
C.50°. D.60°. 8. 右图是某物体的直观图,它的俯视图是
9. 在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点 . 且 规定,正方形的内部不包含边界上的点 . 观察如图所示的中心在原 点、一边平行于 x 轴的正方形:边长为 1 的正方形内部有 1 个整点, 边长为 2 的正方形内部有 1 个整点,边长为 3 的正方形内部有 9 个整 点, … 则边长为 8 的正方形内部的整点的个数为 A.64. B.49. C.36. D.25.
23. (本题满分 10 分)星光中学课外活动小组准备围建一个矩形生 物苗圃园 . 其中一边靠墙,另外三边用长为 30 米的篱笆围成 . 已知墙 长为 18 米(如图所示),设这个苗圃园垂直于墙的一边的长为 x 米 . ( 1 )若平行于墙的一边的长为 y 米,直接写出 y 与 x 之间的函数关系 式及其自变量 x 的取值范围; ( 2 )垂直于墙的一边的长为多少米时,这个苗圃园的面积最大, 并求出这个最大值; ( 3 )当这个苗圃园的面积不小于 88 平方米时,试结合函数图像, 直接写出 x 的取值范围 . 24. (本题满分 10 分) ( 1 )如图 1 ,在△ ABC 中,点 D , E , Q 分别在 AB , AC , BC 上, 且 DE ∥ BC , AQ 交 DE 于点 P. 求证: . ( 2 ) 如图,在△ ABC 中,∠ BAC=90° ,正方形 DEFG 的四个顶点 在△ ABC 的边上,连接 AG , AF 分别交 DE 于 M , N 两点 . ①如图 2 ,若 AB=AC=1 ,直接写出 MN 的长; ②如图 3 ,求证 MN 2 =DM·EN.
10. 如图,铁路 MN 和公路 PQ 在点 O 处交汇,∠ QON=30°. 公路 PQ 上 A 处距离 O 点 240 米 . 如果火车行驶时,周围 200 米以内会受到噪音 的影响 . 那么火车在铁路 MN 上沿 ON 方向以 72 千米 / 时的速度行驶 时, A 处受噪音影响的时间为 A.12 秒 . B.16 秒 . C.20 秒 . D.24 秒 . 11. 为广泛开展阳光健身活动, 2010 年红星中学投入维修场地、安 装设施、购置器材及其它项目的资金共 38 万元 . 图 1 、图 2 分别反映 的是 2010 年投入资金分配和 2008 年以来购置器材投入资金的年增长 率的具体数据 .
20. (本题满分 7 分)经过某十字路口的汽车,它可能继续直行,也 可能向左转或向右转 . 如果这三种可能性大小相同,现有两辆汽车 经过这个十字路口 . ( 1 )试用树形图或列表法中的一种列举出这两辆汽车行驶方向所 有可能的结果; ( 2 )求至少有一辆汽车向左转的概率 .
21. (本题满分 7 分)在平面直角坐标系中,△ ABC 的顶点坐标是 A ( -7 , 1 ), B ( 1 , 1 ), C ( 1 , 7 ) . 线段 DE 的端点坐标是 D ( 7 , -1 ), E ( -1 , -7 ) . ( 1 )试说明如何平移线段 AC ,使其与线段 ED 重合; ( 2 )将△ ABC 绕坐标原点 O 逆时针旋转,使 AC 的对应边为 DE ,请 直接写出点 B 的对应点 F 的坐标;
12. 如图,在菱形 ABCD 中, AB=BD ,点 E , F 分别在 AB , AD 上, 且 AE=DF. 连接 BF 与 DE 相交于点 G ,连接 CG 与 BD 相交于点 H. 下列 结论:
①△ AED ≌△ DFB ; ② S 四边形 BCDG = CG 2 ; ③若 AF=2DF ,则 BG=6GF. 其中正确的结论 A. 只有①② . B. 只有①③ .C. 只有②③ . D. ①②③ . 二、填空题(共 4 小题,每小题 3 分,共 12 分) .
C.x+1<0 , x-3>0. D.x+1<0 , 3-x>0. 4. 下列事件中,为必然事件的是 A. 购买一张彩票,中奖 . B. 打开电视,正在播放广告 . C. 抛掷一枚硬币,正面向上 . D. 一个袋中只装有 5 个黑球,从中摸出一个球是黑球 . 5. 若 x 1 , x 2 是一元二次方程 x 2 +4x+3=0 的两个根,则 x 1 x 2 的值是 A.4. B.3. C.-4. D.-3. 6. 据报道, 2011 年全国普通高等学校招生计划约 675 万人 . 数 6750000 用科学计数法表示为 A.675×10 4 . B.67.5×10 5 . C.6.75×10 6 . D.0.675×10 7 . 7. 如图,在梯形 ABCD 中, AB ∥ DC , AD=DC=CB ,若∠ ABD = 25° ,则∠ BAD 的大小是 A.40°. B.45°.
2011 年湖北省武汉市中考数学答案
一、选择题
1.A 2.C 3.B 4.D 5.B 6.C 7.C 8.A 9.B 10.B 11.C 12.D 二、填空题 13.1/2 14.105;105;100 15.8 16.12 三、解答题 17.(本题6分)解: ∵a=1,b=3,c=1∴△=b 2 -4ac=9-4×1×1=5>0∴x=-3± ∴x 1 =-3+ ,x 2 =-318.(本题6分)解:原式=x(x-2)/x÷(x+2)(x-2)/x=x(x2)/x· x/(x+2)(x-2)= x/(x+2) ∴当x=3时,原式=3/5 19.(本题6分)解: 证明:在△ABE和△ACD中,AB=AC ∠A=∠A AE=AD ∴△ABE≌△ACD ∴∠B=∠C 20.(本题7分)解法1:
三、解答题(共 9 小题,共 72 分) 17. (本题满分 6 分)解方程: x 2 +3x+1=0. 18. (本题满分 6 分)先化简,再求值:,其中 x=3. 19. (本题满分 6 分)如图, D , E ,分 别 是 AB , AC 上 的 点 ,且 AB=AC , AD=AE. 求证∠ B= ∠ C.
根据以上信息,下列判断: 1 在 2010 年总投入中购置器材的资金最多; 2 ② 2009 年购置器材投入资金比 2010 年购置器材投入资金多 8% ; 3 ③若 2011 年购置器材投入资金的年增长率与 2010 年购置器材投 入资金的年增长率相同,则 2011 年购置器材的投入是 38×38%× ( 1+32% )万元 . 其中正确判断的个数是 A.0. B.1. C.2. D.3.
25. (本题满分 12 分)如图 1 ,抛物线 y=ax 2 +bx+3 经过 A ( -3 , 0 ), B ( -1 , 0 )两点 . ( 1 )求抛物线的解析式; ( 2 )设抛物线的顶点为 M ,直线 y=-2x+9 与 y 轴交于点 C ,与直 线 OM 交于点 D. 现将抛物线平移,保持顶点在直线 OD 上 . 若平移的 抛物线与射线 CD (含端点 C )只有一个公共点,求它的顶点横坐标 的值或取值范围; ( 3 )如图 2 ,将抛物线平移,当顶点至原点时,过 Q ( 0 , 3 )作 不平行于 x 轴的直线交抛物线于 E , F 两点 . 问在 y 轴的负半轴上是否 存在点 P ,使△ PEF 的内心在 y 轴上 . 若存在,求出点 P 的坐标;若不 存在,请说明理由 .
(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x 2 +30x ∴S=-2(x-7.5) 2 +112.5由(1)知,6≤x<15∴当x=7.5时,S最大 值=112.5 即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面 积最大,最大值为112.5(3)6≤x≤11 24.(本题10分)(1)证明:在△ABQ中,由于DP∥BQ, ∴△ADP∽△ABQ, ∴DP/BQ=AP/AQ. 同理在△ACQ中,EP/CQ=AP/AQ. ∴DP/BQ=EP/CQ.(2) 9.(3)证明:∵∠B+∠C=90°, ∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC, ∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG·EF=CF·BG 又∵DG=GF=EF,∴GF 2 =CF·BG 由(1)得DM/BG=MN/GF=EN/CF∴(MN/GF)2= (DM/BG)·(EN/CF) ∴MN 2 =DM·EN 25.(1)抛物线y=ax 2 +bx+3经过A(-3,0),B(-1,0)两点 ∴9a-3b+3=0 且a-b+3=0 解得a=1 b=4∴抛物线的解析式为y=x 2 +4x+3(2)由(1)配方得y= (x+2) 2 -1∴抛物线的顶点M(-2,,1)∴直线OD的解析式为y=x 于是设平移的抛物线的顶点坐标为(h, h),∴平移的抛物 线解析式为y=(x-h) 2 +h.①当抛物线经过点C时,∵C(0,9), ∴h 2 +h=9, 解得h=. ∴ 当 ≤h< 时,平移的抛物线与射线CD只有一个公共点. ②当抛物线与直线CD只有一个公共点时, 由方程组y=(x-h) 2 +h,y=-2x+9. 得 x 2 +(-2h+2)x+h 2 +h-9=0,∴△=(-2h+2) 2 -4(h 2 +h9)=0, 解得h=4. 此时抛物线y=(x-4) 2 +2与射线CD唯一的公共点为(3,3), 符合题意. 综上:平移的抛物线与射线CD只有一个公共点时,顶点横坐标 的值或取值范围是 h=4或 ≤h<. (3)方法1