2013年甘肃省白银市中考数学试卷

合集下载

2013年甘肃省定西市中考数学试卷(含答案)

2013年甘肃省定西市中考数学试卷(含答案)

甘肃省定西市2013年中考数学试卷参考答案一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)(2012•绍兴)3的相反数是(B)A.3B.﹣3 C.D.﹣2.(3分)(2013•白银)下列运算中,结果正确的是(A)A.4a﹣a=3a B.a10÷a2=a5C.a2+a3=a5D.a3•a4=a123.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是(C)A.B.C.D.4.(3分)(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是(B)A.B.C.D.5.(3分)(2013•白银)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是(C)A.15°B.20°C.25°D.30°6.(3分)(2008•包头)一元二次方程x2+x﹣2=0根的情况是(A)A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)(2012•广西)分式方程的解是(D)A.x=﹣2 B.x=1 C.x=2 D.x=38.(3分)(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为(D)A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=489.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c <0;④a﹣b+c>0;⑤4a+2b+c>0,错误的个数有(B)A.1个B.2个C.3个D.4个10.(3分)(2010•岳阳)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是(C)A.B.C.D.二、填空题:本大题共8小题,每小题4分,共32分,把答案写在题中的横线上11.(4分)(2011•连云港)分解因式:x2﹣9=(x+3)(x﹣3).12.(4分)(2012•广安)不等式2x+9≥3(x+2)的正整数解是1,2,3.13.(4分)(2012•随州)等腰三角形的周长为16,其一边长为6,则另两边为6,4或5,5.14.(4分)(2009•朝阳)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.15.(4分)(2013•白银)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD.(答案不唯一,只需填一个)16.(4分)(2012•温州)若代数式的值为零,则x=3.17.(4分)(2012•盐城)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t=2或0.18.(4分)(2013•白银)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4.三、解答题(一):本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。

2013甘肃白银中考数学考试试题

2013甘肃白银中考数学考试试题

甘肃省白银市2013年中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内3.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的B4.(3分)(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )B5.(3分)(2013•白银)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )27.(3分)(2012•广西)分式方程的解是( )8.(3分)(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增9.(3分)(2013•白银)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,在下列五个结论中: ①2a ﹣b <0;②abc <0;③a+b+c <0;④a ﹣b+c >0;⑤4a+2b+c >0, 错误的个数有( )10.(3分)(2010•岳阳)如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图象大致是( )B二、填空题:本大题共8小题,每小题4分,共32分,把答案写在题中的横线上11.(4分)(2011•连云港)分解因式:x 2﹣9= . 12.(4分)(2012•广安)不等式2x+9≥3(x+2)的正整数解是 . 13.(4分)(2012•随州)等腰三角形的周长为16,其一边长为6,则另两边为 . 14.(4分)(2009•朝阳)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米. 15.(4分)(2013•白银)如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 .(答案不唯一,只需填一个)16.(4分)(2012•温州)若代数式的值为零,则x= .17.(4分)(2012•盐城)已知⊙O 1与⊙O 2的半径分别是方程x 2﹣4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t= .18.(4分)(2013•白银)现定义运算“★”,对于任意实数a 、b ,都有a ★b=a 2﹣3a+b ,如:3★5=32﹣3×3+5,若x ★2=6,则实数x 的值是 .三、解答题(一):本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。

甘肃省白银市2013年中学考试数学试卷(解析汇报版)

甘肃省白银市2013年中学考试数学试卷(解析汇报版)

甘肃省白银市2013年中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内 1.(3分)(2012•绍兴)3的相反数是( )2.(3分)(2013•白银)下列运算中,结果正确的是( )3.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ) ...4.(3分)(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()...5.(3分)(2013•白银)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )6.(3分)(2008•包头)一元二次方程x 2+x ﹣2=0根的情况是( )7.(3分)(2012•广西)分式方程的解是( )8.(3分)(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( )9.(3分)(2013•白银)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,在下列五个结论中:①2a ﹣b <0;②abc <0;③a +b +c <0;④a ﹣b +c >0;⑤4a +2b +c >0, 错误的个数有( )10.(3分)(2010•岳阳)如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图象大致是( ).. .二、填空题:本大题共8小题,每小题4分,共32分,把答案写在题中的横线上 11.(4分)(2011•连云港)分解因式:x 2﹣9= . 12.(4分)(2012•广安)不等式2x +9≥3(x +2)的正整数解是 . 13.(4分)(2012•随州)等腰三角形的周长为16,其一边长为6,则另两边为 .14.(4分)(2009•朝阳)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.15.(4分)(2013•白银)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个)16.(4分)(2012•温州)若代数式的值为零,则x= .17.(4分)(2012•盐城)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t= .18.(4分)(2013•白银)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.三、解答题(一):本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。

甘肃省中考数学真题试题(A卷)(解析版)

甘肃省中考数学真题试题(A卷)(解析版)

2013年兰州市初中毕业生学业考试数 学(A )全卷共150分,考试时间120分钟. 参考公式:二次函数顶点坐标公式:(a b 2-,a b ac 442-)一、选择题:本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013·兰州)下图是由八个相同的小正方体组合而成的几何体,其左视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】从左面可看到从左往右三列小正方形的个数为2,3,1.【解答】B【点评】左视图是从物体的左面看得到的视图.2.(2013·兰州)“兰州市明天降水概率是30%”,对此消息下列说法中正确的是( )A .兰州市明天将有30%的地区降水B .兰州市明天将有30%的时间降水C .兰州市明天降水的可能性较小D .兰州市明天肯定不降水【考点】概率的意义.【分析】兰州市明天降水概率是30%,即降水可能性比较小.【解答】C【点评】随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.3.(2013·兰州)二次函数y=2(x -1)2+3的图象的顶点坐标是( )A .(1,3)B .(1-,3)C .(1,3-)D .(1-,3-)【考点】二次函数的性质.【分析】∵y=2(x -1)2+3,∴顶点坐标是(1,3).【解答】A4.(2013·兰州)⊙O1的半径为1cm ,⊙O2的半径为4cm ,圆心距O1O2=3cm ,这两圆的位置关系是( )A .相交B .内切C .外切D .内含【考点】圆与圆的位置关系.【分析】∵R -r=4-1=3,O1O2=3cm ,∴两圆内切.【解答】B【点评】两圆的位置关系有5种:①外离;②外切;③相交;④内切;⑤内含.若d >R +r ,则两圆相离;若d=R +r ,则两圆外切;若d=R -r ,则两圆内切;若R -r <d <R +r ,则两圆相交.5.(2013·兰州)当x >0时,函数y=-x 5的图象在( )A .第四象限B .第三象限C .第二象限D .第一象限【考点】反比例函数的性质. 【分析】∵反比例函数y=-x 5中,k=-5<0,∴此函数的图象位于二、四象限,∵x >0,∴当x >0时函数的图象位于第四象限.【解答】A【点评】反比例函数y=x k(k≠0)的图象是双曲线;当k <0时,双曲线的两支分别位于第二、第四象限.6.(2013·兰州)下列命题中是假命题的是( )A .平行四边形的对边相等B .菱形的四条边相等C .矩形的对边平行且相等D .等腰梯形的对边相等【考点】命题与定理;平行四边形的性质;菱形的性质;矩形的性质;等腰梯形的性质.【分析】A 、根据平行四边形的性质得出平行四边形的对边相等,此命题是真命题,不符合题意;B 、根据菱形的性质得出菱形的四条边相等,此命题是真命题,不符合题意;C 、根据矩形的性质得出矩形的对边平行且相等,此命题是真命题,不符合题意;D 、根据等腰梯形的上下底边不相等,此命题是假命题,符合题意.【解答】D7.(2013·兰州)某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计A .平均数是58B .中位数是58C .极差是40D .众数是60【考点】极差;算术平均数;中位数;众数.【分析】A .x =(52+60+62+54+58+62)÷6=58;故此选项正确;B .∵6个数据按大小排列后为52,54,58,60,62,62,∴中位数为(60+58)÷2=59;故此选项错误;C .极差是62-52=10,故此选项错误;D.62出现了2次,最多,∴众数为62,故此选项错误.【解答】A8.(2013·兰州)用配方法解方程x2-2x -1=0时,配方后所得的方程为( )A .(x +1)2=0B .(x -1)2=0C .(x +1)2=2D .(x -1)2=2【考点】解一元二次方程(配方法).【分析】把方程x2-2x -1=0的常数项移到等号的右边,得到x2-2x=1,方程两边同时加上一次项系数一半的平方,得到x2-2x +1=1+1,配方得(x -1)2=2.【解答】D【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9.(2013·兰州)△ABC 中,a 、b 、c 分别是∠A、∠B、∠C 的对边,如果a2+b2=c2,那么下列结论正确的是( )A .c sinA=aB .b cosB=cC .a tanA=bD .c tanB=b【考点】勾股定理的逆定理;锐角三角函数的定义.【分析】由于a2+b2=c2,根据勾股定理的逆定理得到△ABC 是直角三角形,且∠C=90°,再根据锐角三角函数的定义得到正确选项.【解答】A【点评】判断三角形是否为直角三角形,已知三角形三边的长,利用勾股定理的逆定理加以判断.10.(2013·兰州)据调查,2011年5月兰州市的房价均价为7600元/m2,2013年同期将达到8200元/m2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为( )A .7600(1+x%)2=8200B .7600(1-x%)2=8200C .7600(1+x )2=8200D .7600(1-x )2=8200【考点】由实际问题抽象出一元二次方程.【分析】2012年同期的房价为7600×(1+x ),2013年的房价为7600(1+x )(1+x )=7600(1+x )2,即所列的方程为7600(1+x )2=8200.【解答】C【点评】2013年的房价8200=2011年的房价7600×(1+年平均增长率)2.11.(2013·兰州)已知A (-1,y1),B (2,y2)两点在双曲线y=x m23+上,且 y1>y2,则m 的取值范围是( )A .m <0B .m >0C .m >-23D .m <-23【考点】反比例函数图象上点的坐标特征.【分析】将A (-1,y1),B (2,y2)两点分别代入双曲线y=x m 23+得,y1=-2m -3,y2=223m+,∵y1>y2,∴-2m -3>223m +,解得m <-23.【解答】D【点评】函数图象上的点符合函数解析式.12.(2013·兰州)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水的最大深度为2cm ,则该输水管的半径为( )A .3cmB .4cmC .5cmD .6cm【考点】垂径定理的应用;勾股定理.【分析】如图所示:过点O 作OD⊥AB 于点D ,连接OA ,∵OD⊥AB,∴AD=21AB=21×8=4cm,设OA=r ,则OD=r -2,在Rt△AOD 中,OA2=OD2+AD2,即r2=(r -2)2+42,解得r=5cm .【解答】C【点评】根据题意作出辅助线,构造出直角三角形是解答此题的关键.13.(2013·兰州)二次函数y=ax2+bx +c (a≠0)的图象如图所示,则下列说法不正确的是( )A .b2-4ac >0B .a >0C .c >0D .-a b2<0【考点】二次函数图象与系数的关系.【分析】A 、正确,∵抛物线与x 轴有两个交点,∴△=b2-4ac >0;B 、正确,∵抛物线开口向上,∴a>0;C 、正确,∵抛物线与y 轴的交点在y 轴的正半轴,∴c>0;D 、错误,∵抛物线的对称轴在x 的正半轴上,∴-a b2>0.【解答】D【点评】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.14.(2013·兰州)圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为( )A .3cmB .6cmC .9cmD .12cm【考点】圆锥的计算.【分析】圆锥的底面周长是6πcm ,设母线长是l ,则l π=6π,解得l=6.【解答】B【点评】圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.(2013·兰州)如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A .B .C .D .【考点】动点问题的函数图象.【分析】不妨设线段AB 长度为1个单位,点P 的运动速度为1个单位,则:(1)当点P 在A→B 段运动时,PB=1-t ,S=π(1-t )2(0≤t<1);(2)当点P 在B→A 段运动时,PB=t -1,S=π(t -1)2(1≤t≤2).综上,整个运动过程中,S 与t 的函数关系式为S=π(t -1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.【解答】B【点评】这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.二、填空题:本大题共5小题,每小题4分,共20分.16.(2013·兰州)某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是 .【考点】列表法与树状图法.【分析】画树状图:∵共有20种等可能的结果,选出一男一女的有12种情况,∴选出一男一女的概率是2012=53. 【解答】53【点评】列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17.(2013·兰州)若041=-+-a b ,且一元二次方程02=++b ax kx 有实数根,则k 的取值范围是 .【考点】根的判别式;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】∵|b-1|+4-a =0,∴b-1=0,4-a =0,解得b=1,a=4;又∵一元二次方程kx2+ax +b=0有两个实数根,∴△=a2-4kb≥0且k≠0,即16-4k≥0,且k≠0,解得k≤4且k≠0.【解答】k≤4且k≠0【点评】注意关于x的一元二次方程的二次项系数不为零.18.(2013·兰州)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是度.【考点】圆周角定理.【分析】连接OE,∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,∴点E,A,B,C共圆,∵∠ACE=3×24=72°,∴∠AOE=2∠ACE=144°.∴点E在量角器上对应的读数是144°.【解答】144【点评】注意掌握辅助线的作法,注意数形结合思想的应用.19.(2013·兰州)如图,在直角坐标系中,已知点A(3-,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013 的直角顶点的坐标为.【考点】规律型(点的坐标).【分析】∵点A(-3,0)、B(0,4),∴AB=2243+=5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为4+5+3=12,∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0).【解答】(8052,0)【点评】观察图形,得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.20.(2013·兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线kxy+=221与扇形OAB的边界总有两C B个公共点,则实数k 的取值范围是 .【考点】二次函数的性质.【分析】由图可知,∠AOB=45°,∴直线OA 的解析式为y=x ,联立⎪⎩⎪⎨⎧+==,21,2k x y x y 消掉y得x2-2x +2k=0,△=(-2)2-4×1×2k=0,即k=21时,抛物线与OA 有一个交点,此交点的横坐标为1,∵点B 的坐标为(2,0),∴OA=2,∴点A 的坐标为(2,2),∴交点在线段AO 上;当抛物线经过点B (2,0)时,21×4+k=0,解得k=-2,∴要使抛物线y=21x2+k 与扇形OAB 的边界总有两个公共点,实数k 的取值范围是-2<k <21.【解答】-2<k <21【点评】联立两函数解析式确定交点个数,根据图形求出有一个交点时的最大值与最小值.三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分)(2013·兰州)(1)计算:(-1)2013-2-1+sin30°+(π-3.14)0(2)解方程:x2-3x -1=021.【考点】解一元二次方程-公式法;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)先计算负整数指数幂、零指数幂以及特殊角的三角函数值,然后计算加减法;(2)利于求根公式x=a acb b 242-±-来解方程.【解答】解:(1)原式=-1-21+21+1=0;(2)关于x 的方程x2-3x -1=0的二次项系数a=1,一次项系数b=-3,常数项c=-1,则 x═a ac b b 242-±-=2133±,解得x1=2133+,x2=2133-.【点评】利于公式x=a acb b24 2-±-来解方程时,需要弄清楚公式中的字母a、b、c所表示的含义.22.(本小题满分5分)(2013·兰州)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论.)22.【考点】作图(应用与设计作图).【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求.【点评】基本作图要熟练掌握,注意保留作图痕迹.23.(本小题满分6分)(2013·兰州)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用1减去其它各组所占的比例即可求得喜欢B 项目的人数百分比,利用百分比乘以360度求得扇形的圆心角的度数;(2)根据喜欢A 的有44人,占44%即可求得调查的总人数,乘以对应的百分比即可求得喜欢B 的人数,作出统计图;(3)总人数1000乘以喜欢乒乓球的人数所占的百分比求解.【解答】解:(1)1-44%-8%-28%=20%,所在扇形统计图中的圆心角的度数是360×20%=72°;(2)调查的总人数是44÷44%=100(人),则喜欢B 的人数是:100×20%=20(人);(3)全校喜欢乒乓球的人数是1000×44%=440(人).【点评】读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(本小题满分8分)(2013·兰州)如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB )是1.7m ,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M 在同一条直线上,测得旗杆顶端M 仰角为45°;小红的眼睛与地面的距离(CD )是1.5m ,用同样的方法测得旗杆顶端M 的仰角为30°.两人相距28米且位于旗杆两侧(点B 、N 、D 在同一条直线上).求出旗杆MN 的高度.(参考数据:4.12≈,7.13≈,结果保留整数.)24.【考点】解直角三角形的应用(仰角俯角问题).【分析】过点A 作AE⊥MN 于E ,过点C 作CF⊥MN 于F ,则EF=0.2m .由△AEM 是等腰直角三角形得出AE=ME ,设AE=ME=xm ,则MF=(x +0.2)m ,FC=(28-x )m .在Rt△MFC 中,由tan∠MCF=FC MF ,得出33=x x -+282.0,解方程求出x 的值,则MN=ME +EN .【解答】解:过点A 作AE⊥MN 于E ,过点C 作CF⊥MN 于F ,则EF=AB -CD=1.7-1.5=0.2(m ),在Rt△AEM 中,∵∠AEM=90°,∠MAE=45°,∴AE=ME.设AE=ME=xm ,则MF=(x +0.2)m ,FC=(28-x )m .在Rt△MFC 中,∵∠MFC=90°,∠MCF=30°,∴MF=CF•tan∠MCF,∴x+0.2=33(28-x ),解得x≈10.0,∴MN=ME+EN≈10+1.7≈12米.答:旗杆MN 的高度约为12米.25.(本小题满分9分)(2013·兰州)已知反比例函数y1=-x 5的图象与一次函数y2=ax +b 的图象交于点A (1,4)和点B (m ,2-).(1)求这两个函数的表达式;(2)观察图象,当x>0时,直接写出y1>y2时自变量x 的取值范围;(3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)先根据点A 的坐标求出反比例函数的解析式为y1=x 4,再求出B 的坐标是(-2,-2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x 的取值范围x <-2 或0<x <1.(3)根据坐标与线段的转换可得出:AC 、BD 的长,然后根据三角形的面积公式求出答案.【解答】解:(1)∵函数y1=x k 的图象过点A (1,4),即4=1k,∴k=4,即y1=x 4,又∵点B (m ,-2)在y1=x 4上,∴m=-2,∴B(-2,-2),又∵一次函数y2=ax +b 过A 、B 两点,即⎩⎨⎧=+-=+-,4,22b a b a 解得⎩⎨⎧==.2,2b a ∴y2=2x+2.综上可得y1=x 4,y2=2x +2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,∴x<-2 或0<x <1.(3)由图形及题意可得:AC=8,BD=3,∴△ABC 的面积S△ABC=21AC×BD=21×8×3=12.【点评】数形结合思想.26.(本小题满分10分)(2013·兰州)如图1,在△OAB 中,∠OAB=90°,∠AOB=30°,OB=8.以OB 为边,在△OAB 外作等边△OBC,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.26.【考点】平行四边形的判定与性质;等边三角形的性质;翻折变换(折叠问题).【分析】(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA ,再根据等边对等角可得∠DAO=∠DOA=30°,∠AEO=60°,再证明BC∥AE,CO∥AB,证出四边形ABCE 是平行四边形;(2)设OG=x ,由折叠可得:AG=GC=8-x ,再利用三角函数可计算出AO ,再利用勾股定理计算出OG 的长.【解答】(1)证明:在Rt△OAB 中,D 为OB 的中点,∴DO=DA,∴∠DAO=∠DOA =30°, ∠EOA=90°,∴∠AEO =60°.又∵△OBC 为等边三角形,∴∠BCO=∠AEO =60°,∴BC∥AE.∵∠BAO=∠COA =90°,∴OC∥AB,∴四边形ABCE 是平行四边形.(2)解:设OG=x ,由折叠可知AG=GC=8-x ,在Rt △ABO 中,∵∠OAB =90°,∠AOB =30°,OB=8, ∴OA=OB·cos30°=8×23=34.在Rt△OAG 中,OG2+OA2=AG2,x2+(43)2=(8-x )2,解得x=1,∴OG=1.27.(本小题满分10分)(2013·兰州)如图,直线MN 交⊙O 于A 、B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE⊥MN 于E .(1)求证:DE 是⊙O 的切线;(2)若DE=6cm ,AE=3cm ,求⊙O 的半径.【考点】切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.【分析】(1)连接OD ,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D 在⊙O 上,故DE 是⊙O 的切线.(2)由直角三角形的特殊性质,可得AD 的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【解答】(1)证明:连接OD .∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D 在⊙O 上,∴DE 是⊙O 的切线.(2)解:∵∠AED=90°,DE=6,AE=3, ∴AD=22AE DE +=2236+=35.连接CD .∵AC 是⊙O 的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE. ∴AE AD =AD AC .∴353=53AC.则AC=15(cm ).∴⊙O 的半径是7.5cm .28.(本小题满分12分)(2013·兰州)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C1与经过点A 、D 、B 的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,23-),点M 是抛物线C2:y=mx2-2mx -3m (m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【考点】二次函数综合题.【分析】(1)将y=mx2-2mx -3m 化为交点式,即可得到A 、B 两点的坐标;(2)先用待定系数法得到抛物线C1的解析式,再根据三角形的面积公式得S△PBC = S△POC + S△BOP –S△BOC,配方法得到△PBC 面积的最大值;(3)先表示出DM2,BD2,MB2,再分两种情况:①DM2+BD2=MB2时;②DM2+MB2=BD2时,讨论即可求得m 的值.【解答】(1)解:令y =0,则 0322=--m mx mx ,∵m <0,∴0322=--x x ,解得11-=x ,32=x ,∴A(1-,0)、B (3,0).(2)存在.∵设抛物线C1的表达式为)3(1-+=x x a y )((0≠a ),把C (0,23-)代入可得21=a ,∴C1:23212--=x x y . 设P (n ,23212--n n ), ∴ S△PBC = S△POC + S△BOP –S△BOC =162723432+--)(n , ∵43-=a <0, ∴当23=n 时,S△PBC 最大值为1627. (3)由C2可知: B (3,0),D (0,m 3-),M (1,m 4-),BD2=992+m , BM2=4162+m ,DM2=12+m ,∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况.当∠BMD=90°时,BM2+ DM2= BD2 ,4162+m +12+m =992+m ,解得221-=m , 222=m (舍去);当∠BDM=90°时,BD2+ DM2= BM2 ,992+m +12+m =4162+m ,解得11-=m ,12=m (舍去) .综上 1-=m ,22-=m 时,△BDM 为直角三角形. 【点评】涉及的知识点有:抛物线的交点式,待定系数法,三角形的面积公式,配方法的应用,勾股定理,分类思想的运用,综合性较强.。

2013甘肃白银中考数学

2013甘肃白银中考数学

白银市2013年普通高中招生考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合要求的,请将符合题意的选项字母填入题后的括号内. 1.(2013甘肃白银,1,3分)3的相反数是( )A .3B .-3C .31 D .31 【答案】B2.(2013甘肃白银,2,3分)下列运算中,结果正确的是( )A .4a -a =3aB .a 10÷a 2=a 5C .a 2+a 3=a 5D .a 3·a 4=a 12 【答案】A3. (2013甘肃白银,3,3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( )【答案】C4. (2013甘肃白银,4,3分)如图是由两个相同的正方体和一个圆锥体组成的立体图形,其主视图是( )【答案】B5. (2013甘肃白银,5,3分)如图,把一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是( )A .15°B .20°C .25°D .30°【答案】C6. (2013甘肃白银,6,3分)一元二次方程x 2+x -2=0根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【答案】A7. (2013甘肃白银,7,3分)分式方程321+=x x 的解是( ) A .x =-2 B .x =1 C .x =2 D .x =3 【答案】D8. (2013甘肃白银,8,3分)某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x ,则可列方程为( )A .48(1-x )2=36 B .48(1+x )2=36 C .36(1-x )2=48 D .36(1+x )2=48 【答案】D9. (2013甘肃白银,9,3分)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,在下列五个结论中:①2a -b <0 ②abc <0 ③a +b +c <0 ④a -b +c >0 ⑤4a +2b +c >0,错误..的个数有( )A .1个B .2个C .3个D .4个【答案】B10.(2013甘肃白银,10,3分)如图,已知⊙P 的圆心在定角α∠(0°<α<180°) 的角平分线上运动,且⊙P 与α∠的两边相切,则图中阴影部分的面积S 关于⊙P 的半径r (r >0)变化的函数图象大致是( )【答案】C二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上. 11.(2013甘肃白银,11,4分)分解因式:x 2-9=______. 【答案】(x +3)(x -3)12.(2013甘肃白银,12,4分)不等式2x +9≥3(x +2)的正整数解是______. 【答案】1,2,313.(2013甘肃白银,13,4分)等腰三角形的周长为16,其一边长为6,则另两边为______. 【答案】5,5或6,414.(2013甘肃白银,14,4分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长______米.【答案】515.(2013甘肃白银,15,4分)如图,已知BC =EC ,∠BCE =∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为______.(答案不唯一,只需填一个)【答案】AC =DC 或∠B =∠E 或∠A =∠D16.(2013甘肃白银,16,4分)若代数式112--x 的值为零,则x =______. 【答案】317.(2013甘肃白银,17,4分)已知⊙O 1与⊙O 2的半径分别是方程x 2-4x +3=0的两根,且圆心距O 1O 2=t +2,若这两个圆相切..,则t =_______. 【答案】0或218.(2013甘肃白银,18,4分)定义运算“★”:对于任意实数a 、b ,都有a ★b =a 2-3a +b ,如:3★5=32-3×3+5.若x ★2=6,则实数x 的值是_______. 【答案】-1或4三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(2013甘肃白银,19,6分)计算:01)3(8)41(45cos 2-----︒-π.【答案】解:原式=122)4(222----⨯=12242--+=23-.20.(2013甘肃白银,20,6分)先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛+-x xx ,其中x =23-. 【答案】解:11112-÷⎪⎭⎫ ⎝⎛+-x x x =x x x x x )1)(1(1-+⋅+=x -1. 当x =23-时,x -1=25123-=--.21.(2013甘肃白银,21,8分)两个城镇A 、B 与两条公路l 1、l 2位置如图所示.电信部门需在C 处修建一座信号发射塔,要求发射塔到两个城镇A 、B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,那么点C 应选在何处?请在下图中,用尺规作图找出所有符合条件的点C .(不写已知、求作、作法,只保留作图痕迹)【答案】解:如图所示:22.(2013甘肃白银,22,8分)某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF (如图所示).已知立杆AB 的高度是3米,从侧面D 点测得路况警示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况警示牌宽BC 的值.【答案】解:在Rt △ABD 中,∠BAD =90°,∠ADB =45°,AB =3,∴AD =AB =3. 在Rt △ADC 中,∠DAC =90°,∠ ADC =60°,AD AC ADC =∠tan . ∴ADBCAB +=︒60tan . ∴333BC+=. ∴333-=BC . 答:路况警示牌宽BC 为)333(-米.23.(2013甘肃白银,23,10分)如图,一次函数221-=x y 与反比例函数xmy =的图象相交于点A ,且点A 的纵坐标为1. (1)求反比例函数的解析式;(2)根据图象写出当x >0时,一次函数的值大于反比例函数的值的x 的取值范围.【答案】解:(1)把y =1代入221-=x y 得2211-=x ,解得x =6,所以点A 的坐标为(6,1),把点A 的坐标(6,1)代入x m y =得61m=,解得m =6.所以反比例函数的解析式为xy 6=.(2)x >6.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(2013甘肃白银,24,8分)为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别.摸球之前将袋内的小球搅匀.甲先摸两次,每次摸出一个球(第一次摸后不放回).把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球.如果甲摸出的两个球都是红色,甲得1分,否则甲得0分.如果乙摸出的球是白色,乙得1分,否则,乙得0分.得分高的获得入场券,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率; (2)请你用所学的知识说明这个游戏是否公平? 【答案】解:(1) 列表如下:甲得1分的情况有:(1,2),(1,3), (2,1),(2,3), (3,1),(3,2),所以甲得1分的概率为P =21126=. 或画树状图如下:甲得1分的情况有:(1,2),(1,3), (2,1),(2,3), (3,1),(3,2),所以甲得1分的概率为P =21126=. (2) 乙得1分的概率为41.甲得1分的概率为21.所以这个游戏不公平.25.(2013甘肃白银,25,10分)在读书月活动中,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其它四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次抽样调查一共抽查了________名同学; (2)条形统计图中,m =_____,n =_______;(3)扇形统计图中,艺术类读物所在扇形的圆心角是________度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其它类读物多少册比较合理?【答案】解:(1) 200.(2) 40, 60. (3) 72. (4) 30÷200×6000=900.购买其它类读物900册比较合理.26.(2013甘肃白银,26,10分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连结BF .(1)线段BD 与CD 有何数量关系,为什么?(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?请说明理由.【答案】解:(1)BD =CD .理由如下: ∵AF ∥BC , AF =BD ,∴四边形AFBD 是平行四边形.∴AF =BD . ∵AF ∥BC , ∴∠AFE =∠DCE , ∠F AE =∠CDE , 又E 是AD 的中点,∴AE =DE . ∴△AFE ≌△DCE . ∴AF =CD . 又AF =BD ,∴BD =CD . (2) △ABC 满足AB =AC 时,四边形AFBD 是矩形.理由如下:∵AB =AC ,BD =CD ,∴AD ⊥BC . ∴∠ADB =90°. 又四边形AFBD 是平行四边形,∴四边形AFBD 是矩形.27.(2013甘肃白银,27,10分)如图,在⊙O 中,半径OC 垂直于弦AB ,垂足为点E .(1)若OC =5,AB =8,求tan ∠BAC ;(2)若∠DAC =∠BAC ,且点D 在⊙O 的外部,判断直线AD 与⊙O 的位置关系,并加以证明.【答案】解:(1) ∵OC ⊥AB ,∴AE =21AB =21×8=4. 又OA =OC =5,在Rt △AOE 中,OE =3452222=-=-AE OA . ∴CE =OC -OE =5-3=2. 在Rt △AEC 中,tan ∠BAC =2142==AE EC . (2) AD 与⊙O 相切.理由如下:延长AO 交⊙O 于点F ,连结FC 、BC .∵OC ⊥AB ,∴BC ⌒=AC ⌒.∴∠ABC =∠BAC ,又∠DAC =∠BAC ,∴∠DAC =∠ABC .又∠ABC =∠AFC ,∴∠DAC =∠AFC.∵AF为⊙O直径,∴∠ACF =90°. ∴∠AFC +∠CAF =90°. ∴∠DAC +∠CAF =90°. 即∠DAF =90°. ∴AD 与⊙O 相切.28.(2013甘肃白银,28,12分)如图,在直角坐标系xoy 中,二次函数y =x 2+(2k -1)x +k +1的图象与x 轴交于O 、A 两点. (1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B ,使△AOB 的面积等于6.求点B 的坐标; (3)对于(2)中的点B ,在此抛物线上是否存在点P ,使∠POB =90°?若存在,求出点P 的坐标,并求出△POB 的面积;若不存在,请说明理由.【答案】解:(1)把点O (0,0)代入y =x 2+(2k -1)x +k +1得:0=k +1.解得k =-1. ∴y =x 2-3x . (2)设B (m ,m 2-3m ).当y =0时,x 2-3x =0.x =0或x =3.所以点A 坐标为(3,0).则有:633212=-⨯⨯m m .解得:m =-1或m =4. 这时B (-1,4)或(4,4). ∵点B 在对称轴右边,∴点B 的坐标为 (4,4).(3)存在. 如图, ∵点B 的坐标为 (4,4). ∴∠BOA =45°. 而∠POB =90°,∴∠POA =45°. 故可设P (n ,-n ). 把点P (n ,-n )代入y =x 2-3x 得:-n =n 2-3n . ∴n =0(舍去)或n =2. ∴P (2,-2). 这时,OB =244422=+,OP =222222=+. ∴△POB 的面积为:822242121=⨯⨯=⋅OP OB .。

甘肃省白银市中考数学真题试题(含解析)

甘肃省白银市中考数学真题试题(含解析)

精品
. D. 利用旋转的性质得出四边形 AECF 的面积等于正方形 ABCD 的面积,进而可求出正方 形的边长,再利用勾股定理得出答案. 此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是 解题关键.
9. 如图, 过点


,点 B 是 x 轴
下方 上的一点,连接 BO,BD,则
11. 计算: 【答案】0 【解析】解:
______.
, 故答案为:0. 根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题. 本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它 们各自的计算方法.
12. 使得代数式
有意义的 x 的取值范围是______.
【答案】
【解析】解: 代数式
A.
B.
C.
D.
【答案】C
【解析】解:

故它的补角的度数为 .
故选:C.
根据互为补角的两个角的和等于 列式进行计算即可得解.
本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于 .
精品
4. 已知
. ,下列变形错误的是
A.
B.
C.
D.
【答案】B
【解析】解:由 得,

A、由原式可得:
,正确;
B、由原式可得
8. 如图,点 E 是正方形 ABCD 的边 DC 上一点,把
绕点 A 顺时针旋转 到
的位置,若四边形 AECF
的面积为 25,
,则 AE 的长为
A. 5
B.
C. 7
D.
【答案】D
【解析】解: 把
顺时针旋转
的位置,
四边形 AECF 的面积等于正方形 ABCD 的面积等于 25,

2013中考数学试题及答案(word完整版)(1)

二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。

中考数学真题及答案 甘肃白银数学 含解析 学科网

2014年甘肃省白银市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填涂在答题卡上.1.(3分)(2014?白银)﹣3的绝对值是()A.3B.﹣3C.﹣D.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:﹣3的绝对值是3.故选:A.点评:此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2014?白银)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.×107B.×108C.×109D.×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于350 000 000有9位,所以可以确定n=9﹣1=8.解答:解:350 000 000=×108.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2014?白银)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分根据从正面看得到的图形是主视图,可得答案.析:解解:主视图是正方形的右上角有个小正方形,答:故选:D.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.点评:4.(3分)(2014?白银)下列计算错误的是()A.?=B.+=C.÷=2D.=2考二次根式的混合运算.点:利用二次根式的运算方法逐一算出结果,比较得出答案即可.分析:解解:A 、?=,计算正确;答:B 、+,不能合并,原题计算错误;C 、÷==2,计算正确;D 、=2,计算正确.故选:B.点评:此题考查二次根式的运算方法和化简,掌握计算和化简的方法是解决问题的关键.5.(3分)(2014?白银)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个B.3个C.2个D.1个考点:平行线的性质;余角和补角.分析:由互余的定义、平行线的性质,利用等量代换求解即可.解答:解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选C.点评:此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.6.(3分)(2014?白银)下列图形中,是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,答:是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.7.(3分)(2014?白银)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断考点:直线与圆的位置关系.分设圆的半径为r,点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,析:则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.解答:解:设圆的半径为r,点O到直线l的距离为d,∵d=5,r=6,∴d<r,∴直线l与圆相交.故选A.点评:本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.8.(3分)(2014?白银)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6B.x(5﹣x)=6C.x(10﹣x)=6D.x(10﹣2x)=6考点:由实际问题抽象出一元二次方程.专几何图形问题.题:分析:一边长为x米,则另外一边长为:5﹣x,根据它的面积为5平方米,即可列出方程式.解答:解:一边长为x米,则另外一边长为:5﹣x,由题意得:x(5﹣x)=6,故选:B.点评:本题考查了由实际问题抽相出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.9.(3分)(2014?白银)二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)考点:二次函数图象与系数的关系.分析:此题可将b+c=0代入二次函数,变形得y=x2+b(x﹣1),若图象一定过某点,则与b无关,令b的系数为0即可.解答:解:对二次函数y=x2+bx+c,将b+c=0代入可得:y=x2+b(x﹣1),则它的图象一定过点(1,1).故选D.点评:本题考查了二次函数与系数的关系,在这里解定点问题,应把b当做变量,令其系数为0进行求解.10.(3分)(2014?白银)如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(≤x≤),EC=y.则在下面函数图象中,大致能反映y 与x之闻函数关系的是()A.B.C.D.考点:动点问题的函数图象.分析:通过相似三角形△EFB∽△EDC 的对应边成比例列出比例式=,从而得到y与x之间函数关系式,从而推知该函数图象.解答:解:根据题意知,BF=1﹣x,BE=y﹣1,且△EFB∽△EDC,则=,即=,所以y=(≤x≤),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选C.本题考查了动点问题的函数图象.解题时,注意自变量x的取值范围.点评:二、填空题:本大题共8小题,每小题4分,共32分.把答案写在答题卡中的横线上.11.(4分)(2014?白银)分解因式:2a2﹣4a+2= 2(a﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:先提公因式2,再利用完全平方公式分解因式即可.解答:解:2a2﹣4a+2,=2(a2﹣2a+1),=2(a﹣1)2.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)(2014?白银)化简:= x+2 .考点:分式的加减法.专题:计算题.分析:先转化为同分母(x﹣2)的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.13.(4分)(2014?白银)等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是8 cm.考点:勾股定理;等腰三角形的性质.分析:利用等腰三角形的“三线合一”的性质得到BD=BC=6cm,然后在直角△AB D 中,利用勾股定理求得高线AD的长度.解答:解:如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案是:8.点评:本题主要考查了等腰三角形的三线合一定理和勾股定理.等腰三角形底边上的高线把等腰三角形分成两个全等的直角三角形.14.(4分)(2014?白银)一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a= 1 .考点:一元二次方程的定义.专题:计算题.分析:根据一元二次方程的定义和一元二次方程的解的定义得到a+1≠0且a2﹣1=0,然后解不等式和方程即可得到a的值.解答:解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为1.点评:本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+bx+c=0(a≠0).也考查了一元二次方程的解的定义.15.(4分)(2014?白银)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.考点:特殊角的三角函数值;三角形内角和定理.分析:先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.解答:解:∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.点评:本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.16.(4分)(2014?白银)已知x、y为实数,且y=﹣+4,则x﹣y= ﹣1或﹣7 .考点:二次根式有意义的条件.专题:计算题.分析:根据一对相反数同时为二次根式的被开方数,那么被开方数为0可得x可能的值,进而得到y的值,相减即可.解答:解:由题意得x2﹣9=0,解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.点评:考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.17.(4分)(2014?白银)如图,四边形ABCD是菱形,O是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .考点:中心对称;菱形的性质.分析:根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.解答:解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.点评:本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.18.(4分)(2014?白银)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= 552.考点:规律型:数字的变化类.专题:压轴题;规律型.分析:13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.点评:本题的规律为:从1开始,连续n个数的立方和=(1+2+…+n)2.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(6分)(2014?白银)计算:(﹣2)3+×(2014+π)0﹣|﹣|+tan260°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣8+﹣+3=﹣5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2014?白银)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.如果有>0,求x的解集.考点:解一元一次不等式.专题:阅读型.分析:首先看懂题目所给的运算法则,再根据法则得到2x﹣(3﹣x)>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.解答:解:由题意得2x﹣(3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1.点评:此题主要考查了一元一次不等式的解法,关键是看懂题目所给的运算法则,根据题意列出不等式.21.(8分)(2014?白银)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.考点:作图—复杂作图;线段垂直平分线的性质.专题:作图题;证明题;压轴题.分析:(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.解答:(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.点评:本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,难度不大,需熟练掌握.22.(8分)(2014?白银)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条只显示,且∠CAB=75°.(参考数据:sin75°=,cos75°=,tan75°=)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).考点:解直角三角形的应用.分析:(1)在Rt△ACD中利用勾股定理求AD即可.(2)过点E作EF⊥AB,在RT△EFA中,利用三角函数求EF=AEsin75°,即可得到答案.解答:解:(1)∵在Rt△ACD中,AC=45cm,DC=60cm∴AD==75(cm),∴车架档AD的长是75cm;(2)过点E作EF⊥AB,垂足为F,∵AE=AC+CE=(45+20)cm,∴EF=AEsin75°=(45+20)sin75°≈≈63(cm),∴车座点E到车架档AB的距离约是63cm.点评:此题主要考查了勾股定理与三角函数的应用,关键把实际问题转化为数学问题加以计算.23.(10分)(2014?白银)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)由题意,根据对称性得到B的横坐标为1,确定出C的坐标,根据三角形AOC的面积求出A的纵坐标,确定出A坐标,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出直线AC的解析式.解答:解:(1)∵直y=mx与双曲线y=相交于A(﹣1,a)、B两点,∴B点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(﹣1,2),将A(﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;(2)设直线AC的解析式为y=kx+b,∵y=kx+b经过点A(﹣1,2)、C(1,0)∴,解得k=﹣1,b=1,∴直线AC的解析式为y=﹣x+1.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象与性质,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(8分)(2014?白银)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点(x,y)在函数y=﹣x+5图象上的概率.考点:列表法与树状图法;一次函数图象上点的坐标特征.分析:(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案解答:解:列表得:y1234x(x,y)1(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.点评:此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.25.(10分)(2014?白银)某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题:(1)此次调查的学生人数为200 ;(2)条形统计图中存在错误的是 C (填A、B、C、D中的一个),并在图中加以改正;(3)在图2中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据A、B的人数和所占的百分比求出抽取的学生人数,并判断出条形统计图A、B长方形是正确的;(2)根据(1)的计算判断出C的条形高度错误,用调查的学生人数乘以C所占的百分比计算即可得解;(3)求出D的人数,然后补全统计图即可;(4)用总人数乘以A、B所占的百分比计算即可得解.解答:解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×(20%+40%)=360(人),答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(10分)(2014?白银)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)考点:三角形中位线定理;平行四边形的判定;菱形的判定.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE=BC,GF∥BC且GF=BC,从而得到DE∥GF,DE=GF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)根据邻边相等的平行四边形是菱形解答.解答:(1)证明:∵D、E分别是AB、AC边的中点,∴DE∥BC,且DE=BC,同理,GF∥BC,且GF=BC,∴DE∥GF且DE=GF,∴四边形DEFG是平行四边形;(2)解:当OA=BC时,平行四边形DEFG是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及平行四边形与菱形的关系,熟记的定理和性质是解题的关键.27.(10分)(2014?白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O 交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.考点:切线的判定.专题:计算题.分析:(1)连接OD,OE,由AB为圆的直径得到三角形BCD为直角三角形,再由E 为斜边BC的中点,得到DE=BE=DC,再由OB=OD,OE为公共边,利用SSS得到三角形OBE与三角形ODE全等,由全等三角形的对应角相等得到DE与OD垂直,即可得证;(2)在直角三角形ABC中,由∠BAC=30°,得到BC为AC的一半,根据BC=2DE 求出BC的长,确定出AC的长,再由∠C=60°,DE=EC得到三角形EDC为等边三角形,可得出DC的长,由AC﹣CD即可求出AD的长.解答:(1)证明:连接OD,OE,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=DC,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.点评:此题考查了切线的判定,以及全等三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.28.(12分)(2014?白银)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)联结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.考点:二次函数综合题.专题:压轴题.分析:(1)根据向右平移横坐标加写出平移后的抛物线解析式,然后写出顶点M的坐标,令x=0求出A点的坐标,把x=3代入函数解析式求出点B的坐标;(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,然后求出∠EAB=∠EBA=45°,同理求出∠FAM=∠FMA=45°,然后求出△ABE和△AMF相似,根据相似三角形对应边成比例列式求出,再求出∠BAM=90°,然后根据锐角的正切等于对边比邻边列式即可得解;(3)过点P作PH⊥x轴于H,分点P在x轴的上方和下方两种情况利用α的正切值列出方程求解即可.解答:解:(1)抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,点B(3,1);(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==;(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,x2﹣2x﹣2=﹣×=﹣,∴点P的坐标为(,﹣),综上所述,点P的坐标为(3,1)或(,﹣).点评:本题是二次函数的综合题型,主要利用了二次函数图象与几何变换,抛物线与坐标轴的交点的求法,相似三角形的判定与性质,锐角三角形函数,难点在于作辅助线并分情况讨论.。

2013年中考数学真题

2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。

2013年数学中考试卷及答案

2013年数学中考试卷及答案2013年中考数学试卷包括三个部分:①阅读理解,②解答题,③计算题和填空题。

各部分题量如下:①阅读理解1道;②解答题1道;③计算题1道;④计算题2道。

其中填空1道、解答题1道。

这道试卷主要考查了学生的知识迁移能力,即学生在解决实际问题的过程中发现问题、解决问题能力,同时也考察了学生语言表达能力。

答题时间为45分钟。

①阅读理解2个大题、②解答题2个小题,③计算题1个小题。

要求学生能较熟练地运用所学知识解决问题,能从自己或他人熟悉的情境中发现新问题并提出不同观点、结论,以及能进行简单地推理、判断、证明。

一、试题主要考查了数形结合和空间想象能力。

这是对学生数形结合、空间想象能力的有力考查。

例如第2、3题有一个明显的特征,就是考查了关于物体的面积的计算;第8、9、10题考查了坐标系知识;第9、10、11题和第20题考查了椭圆的面积计算;第22题考查了圆锥曲线与圆锥坐标系之间的联系;第23题考查了三角形的面积计算两种方法中的一种;第24题解答了一道关于四线段的平行四边形的图形,用三角形的基本性质求直线(圆)与直角三角形(直角)的值;第25题在解答一道关于圆锥曲线的问题中,以圆上一个坐标为圆心,画出一个圆并作线段证明了这个圆的面积;第26题考查了一个关于抛物线的图形求点坐标的问题;第26题考查了一道利用图象(点)表示三角形内角的面积;第27题以圆为背景考查了一枚圆心和圆对称方程组)的求解过程、求圆面积的方法;这就涉及了圆锥曲线的画法和圆几何图形、圆与平行四边形等数学知识和概念的考查。

同时通过这些题目也让学生充分感受到学习数学的乐趣和快乐。

这体现了中考数学命题在知识考查中体现了回归教材这一特点。

特别是在一些重要章节与重点内容中体现了数形结合、空间想象等考查特点。

例如第1、2、3、5题分别考查了点的坐标及面积。

第3、5、6题考查了圆的面积计算和坐标系中相关公式的掌握或应用等。

二、考查了学生的运算能力,也包括空间想象能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年甘肃省白银市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内
D

3.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()
B D
4.(3分)(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()
B D
5.(3分)(2013•白银)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()
2
7.(3分)(2012•广西)分式方程的解是()
8.(3分)(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方
9.(3分)(2013•白银)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:
①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,
错误的个数有()

10.(3分)(2010•岳阳)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()
B D
CAO=
AB=AC=
=2××=)
二、填空题:本大题共8小题,每小题4分,共32分,把答案写在题中的横线上
11.(4分)(2011•连云港)分解因式:x2﹣9=(x+3)(x﹣3).
12.(4分)(2012•广安)不等式2x+9≥3(x+2)的正整数解是1,2,3.
13.(4分)(2012•随州)等腰三角形的周长为16,其一边长为6,则另两边为6,4或5,5.
14.(4分)(2009•朝阳)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.
根据相似三角形的性质可知=,即=,
15.(4分)(2013•白银)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD.(答案不唯一,只需填一个)

16.(4分)(2012•温州)若代数式的值为零,则x=3.
由题意得=0
解:由题意得,
17.(4分)(2012•盐城)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t=2或0.
18.(4分)(2013•白银)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4.
三、解答题(一):本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。

19.(6分)(2012•广元)计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.
,有理数的负整数指数次幂等于正整数指数次幂的倒数,二次根式的化简,任何﹣(﹣﹣
=2×2
+4﹣

20.(6分)(2011•朝阳)先化简,再求值:,其中x=﹣.

时,原式﹣﹣
21.(8分)(2013•白银)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
22.(8分)(2013•白银)某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.

CA=3
3
3
23.(10分)(2013•白银)如图,一次函数与反比例函数的图象相交于点A,且点A的纵坐标为1.
(1)求反比例函数的解析式;
(2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.
y=
1=
)代入
y=
四、解答题(二):本大题共5小题,共50分,解答时,应写出必要的文字说明、证明过程或演算步骤。

24.(8分)(2013•白银)为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.
(1)运用列表或画树状图求甲得1分的概率;
(2)请你用所学的知识说明这个游戏是否公平?
=
25.(10分)(2012•乐山)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了200名同学;
(2)条形统计图中,m=40,n=60;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
×
)艺术类读物所在扇形的圆心角是:
26.(10分)(2013•白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)BD与CD有什么数量关系,并说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
中,
27.(10分)(2013•白银)如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.
(1)若OC=5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.
AE=BE=
OE=
==
28.(12分)(2013•白银)如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.
AO•BD=6
=4,
OP==2
PO•BO=×=8。

相关文档
最新文档