积的变化规律
积的变化规律

交流后说明思路。
通过口算练习为解决新知做铺垫。
使学生通过观察,计算、思考、对比,能够自主发现并总结因数变化引起的积的变化规律
尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力
初步获得探索规律的一般方法和经验,发展学生的推理能力。
培养学生用数学语言表达数学结论的能力
同学们都这么爱动脑思考,你一定也发现了第二组算式的特点?谁来说一说?
引导学生概括:两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几。
(3)整体概括规律
问:谁能用一句话将发现的两条规律概括为一条?
引导学生总结规律。
两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,它们的乘积不变。
3、验证规律
(24○6)×(75×6)=1800(36×4)×(104○4)=3744
(24○3)×(75○□)=1800(36○□)×(104○□)=3744
板
×20=40×4=
6×200=20×4=
一个因数不变,一个因数不变,
另一个因数乘几,另一个因数除以几,
积也要乘几。积也要除以几。
(1)、独立思考,完成下列计算,发现规律、
说规律。
6×12=
(6×2)×(12÷2)=
(6÷2)×(12×2)=
18×24=
(18÷2)×(24×2)=
(18×2)×(24÷2)=
(2)、组织全班交流,概括规律
两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,它们的乘积不变。
6、总结
这节课你学会了什么?还有什么疑问?你对哪些过程最感兴趣?你还想知道什么?
4、学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
积的变化规律

《积的变化规律》教学设计教材分析:《积的变化规律》是人教版《义务教育课程标准实验教科书数学》四年级上册第三单元的内容。
在乘法运算中探索积的变化规律是整数四则运算中内容结构的一个重要方面,教材以两组乘法算式为载体,引导学生探究积的变化规律。
这一规律是学生计算思维能力的一次飞跃,是学生的思维由单一、松散向灵活、多样化转变的一个突破口。
四年级学生已初步具有一定的探索能力,在乘法口算练习中已经出现过此类习题,并且在学习大数的认识时曾经用计算器研究过一些乘法计算的特殊例子,而这些都为学生探索积的变化提供了基础。
因此在教学中我通过引导学生通过独立观察、讨论、计算、分析,然后全班交流,归纳出积的变化规律,并会用数学语言表达,获得一定的价值体验。
教学目标:1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。
2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
4、培养学生从正反两个方面观察事物的辨证思想。
教学重点:发现并运用积的变化规律。
教学难点:积的变化规律的探究策略。
教学准备:课件、练习题卡等。
教学过程:一、创设情境,揭示课题出示:一个文具盒6元,买2个多少钱?20个呢?200个呢?生读题,口头列式,板书:6×2= 126×20=1206×200=1200结合算式复习乘法各部分名称,引入课题。
二、自主探究,发现规律1、研究一个因数不变,另一个因数变大,积的变化情况。
6×2= 12(元) 6×20=120(元) 6×200=1200(元)(1)引导学生自己观察发现,并把自己的发现结果在小组内交流。
(2)指名汇报,板书:一个因数不变,另一个因数乘几,积也乘几。
四年级积的变化规律

积的变化规律的练习题知识点:1、两数相乘,一个因数不变,另一个因数扩大几倍,积就扩大几倍。
一个因数不变,另一个因数缩小几倍,积就缩小几倍。
2、两数相乘,一个因数扩大a倍,一个因数扩大b倍,积就扩大a×b倍。
两数相乘,一个因数除以a,另一个因数除以b,积就除以(a×b)倍。
3、两数相乘,一个因数扩大到原来的a倍,一个因数缩小到原来的1/a,积不变。
4、两数相乘,一个因数扩大到原来的a倍,一个因数缩小到原来的1/b,积就×a÷b;例如:两数相乘积是10,一个因数扩大到原来的3倍,一个因数缩小到原来的1/2,积就变成10×3÷2=15一、填空题1、两个因数分别是14和9,积是(),如果把9乘以4,积是()。
2、两个因数分别是18和4,积是(),如果把18除以2,积是()。
3、两个因数分别是15和6,积是(),如果把15除以3,6乘以2,积是()。
4、两个数相乘,积是35,如果一个因数扩大到它的2倍,另一个因数扩大到它的3倍,那么得到的新积是()。
5、在乘法算式中,一个因数不变,另一个因数乘8,积就();一个因数不变,另一个因数除以9,积就();一个因数除以4,另一个因数乘以8,积就()。
6、在乘法算式12×40,如果一个因数乘以4,另一个因数除以4,积就是()。
7、两个数相乘,积是36,如果一个因数扩大到它的4倍,另一个因数缩小为它的1/3,那么得到的新积是()。
8、两个数相乘,积是75,如果一个因数扩大到它的2倍,另一个因数缩小为它的1/5,那么得到的新积是()。
9、两个数相乘,积是81,如果一个因数缩小为它的1/9,另一个因数缩小为它的1/3,那么得到的新积是()。
10、由8×20=160可得16×20=(),32×20=(),32×40=(),4×20=(),16×10=()。
积的变化规律

课程解读一、学习目标:1. 会根据积的变化规律直接写出得数。
2. 掌握乘法的估算方法。
在解决具体问题的过程中,能应用合适的方法进行估算,养成估算的习惯。
二、重点、难点:1. 根据积的变化规律直接写出得数。
2. 在解决具体问题的过程中,能应用合适的方法进行估算。
三、考点分析:1. 根据积的变化规律直接写出得数。
2. 在解决具体问题的过程中,能应用合适的方法进行估算。
知识梳理典型例题[方法应用题]例1. 根据15×42=630,直接写出下面各题的得数。
思路分析:(1)题意分析:本题考查根据积的变化规律直接写出得数。
(2)解题思路:首先将各式与已知式子相比较,看看因数有什么变化,然后根据积的变化规律直接写出得数。
解答过程:解题后的思考:先找到不变的因数,再观察另一个因数的变化情况,就可以判断积的情况了。
变化的一个因数乘几,积也乘几;变化的一个因数除以几,积也跟着除以几。
例2. 市政府前面的广场上有一个边长是40米,面积是1600平方米的正方形草坪,现在扩大草坪面积,把边长扩大为原来的2倍,扩宽后的草坪面积是多少平方米?思路分析:(1)题意分析:本题考查应用积的变化规律。
(2)解题思路:正方形的面积=边长×边长边长扩大为原来的2倍面积扩大为原来的4倍解答过程:1600×2×2=6400(平方米)答:扩宽后的草坪面积是6400平方米。
解题后的思考:两个因数相乘,一个因数扩大为它的m倍,另一个因数也扩大为它的m倍,则积就扩大为它的m×m倍。
例3.红旗广场有一块长方形绿地,面积是480平方米,现在把这块绿地的长和宽分别增加为原来的4倍和3倍,扩大后的绿地面积是多少?思路分析:(1)题意分析:本题考查应用积的变化规律。
(2)解题思路:长方形的面积=长×宽长扩大为原来的4倍宽扩大为原来的3倍面积扩大为原来的12倍解答过程:4×3=12480×12=5760(平方米)答:扩大后的绿地面积为5760平方米。
积的变化规律3条

积的变化规律3条
积的变化规律有以下几条:
1、两个数相乘,一个因数扩大(或缩小)N倍,另一个因数不变,那么它们的积也扩大N倍。
(N为非0自然数)。
2、一个因数扩大a倍,一个因数扩大b倍,积就扩大a*b倍。
3、两个数相乘,一个因数扩大了N倍,另一个因数缩小了N倍,那么它们的积不变。
4、总结:积的变化规律是指因数的变化所引起的积的变化。
如一个因数扩大n倍,另一个因数不变,则积也扩大n倍。
一个因数扩大n倍,另一个因数缩小n倍,则积不变。
两个因数所得结果,叫做积。
也可阐述为其中一个因数表示另一个因数的数量,这么多的这个因数之和为这个乘式的积。
一个乘式中的各个数字为这个乘式的因数。
积的变化规律

《积的变化规律》教学设计岳西县莲云乡平岗小学储希让【教材简析】(一)教学内容及前后联系本节课的教学内容是人教版四年级上册第三单元“三位数乘两位数”例4《积的变化规律》。
此内容是在学生学习并掌握了三年级上册的《多位数乘一位数》,下册的《除数是一位数的除法》、《两位数乘两位数》,以及本单元的口算、笔算乘法的基础上进行的,是本册计算教学的重要组成部分,也是学生在第二学段要学习的较复杂的整数计算知识之一。
本节课是对以前所学计算方法的提高与延伸。
课中归纳出来的规律,为学生以后学习乘法的分配律、小数乘法和正比例函数做好知识铺垫,使学生在计算或解决实际问题时,能综合考虑已有的多个信息,选择合理灵活的方法,提高思维能力。
【学情分析】(一)已有的知识基础学生已经学习并已经掌握多位数乘一位数、除数是一位数的除法、两位数乘两位数、三位数乘两位数的口算、笔算和计算器计算的方法,初步具有了灵活选择计算方法的尝试和体验。
(二)已有的经验1、生活经验:对于乘法算式中,一个因数不变,另一个因数乘(或除以)几,积也跟着乘(或除以)几的规律生活中较常见,如平常所说的“一传十,十传百”等。
学生也粗略地接触过此类实际问题,有过解决此类问题的尝试。
2、学习经验:学生能熟练地进行一些口算、笔算和计算器计算,初步具有分析问题的方法和体验,并有过这方面的尝试。
初步具有一定的概括、归纳、推理的能力,有过探寻乘法算式中数值规律的活动,有一定的数感。
【教学目标】知识与能力让学生经历积的变化规律的发现过程,会用数学语言描绘这个规律,感悟函数的思想。
能将此规律灵活运用到计算和解决实际问题之中,让学生获得探索和发现数学规律的一般方法和体验。
培养学生的推理能力和概括、表达能力,锻炼学生思维的灵活性。
过程与方法通过对两组算式的比较,发现因数的变化与积的变化之间的规律,通过对比分析,归纳出因数变化与积的变化的一般规律。
态度、情感与价值观使学生在比较分析中发现数学问题,并享受成功的喜悦,同时感受到事物之间的密切相关,受到辨证思想教育,树立合作探究的意识。
《积的变化规律》教学反思 15篇

《积的变化规律》教学反思 15篇《积的变化规律》教学反思1《积的变化规律》是人教版教材数学四年级上册第四单元的内容。
它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。
本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。
在教学中我先创设情境,让学生列出相应的乘法算式,通过对算式的观察,让学生讨论自己的发现,然后引出新知,再让学生根据自探提示自主的去探索规律、验证规律,并使用规律.,本课主要是学生自主地去学习,我鼓励学生积极发言,大胆猜想,小心求证,积极主动地探索新知,让学生体会成功的喜悦,激发了学习兴趣,增强了自信心。
这节课上下来还是存在许多问题:1、由于本课例题比较简单,大部分学生通过口算就能直接算出答案,无需通过积的变化规律进行计算,这就给部分思维发散性较差的学生形成了一个假象,以至无法真正懂得该规律的应用。
这在后面拓展应用知识时表现的尤为明显,部分学生还是用以前的老方法进行计算,而不是找到规律直接写得数。
在以后的教学中,要特别关注思维慢一些的学生,加强对他们的引导,使他们能更积极更有目标的去思考,增强学生的自信心,使学生能积极主动地去获取知识。
2、要用好评价语言,鼓励学生参与到课堂学习中。
这节课的主要特点是让学生在一个愉悦的学习环境中进行思考、探索、讨论、发言,但是大部分学生还是不敢举手大胆的交流。
这部分学生主要是害怕自己说错了,让别的同学取笑。
针对学生不敢发言,在以后的课堂教学中要注意多给学生鼓励,多给学生信心,以使学生畅所欲言。
3、对于积的变化规律的运用,学生对于基本的练习能够运用自如,但是灵活度较高的练习就有些困难。
因此,在选择练习时应关注练习的广度,让学生见多识广、灵活运用。
4、学生参与探索活动,经历发现规律的过程是新课标教材编排的意图,面对新的数学问题,教师鼓励学生在主动观察、猜测、讨论、交流和验证等数学活动中,感受到数学问题的探究性和挑战性,通过看、想、说、动手做、练的过程,顺利的完成本课的教学任务,并能充分体现了数学学习的“亲历性”,努力使学生在获得对数学理解的同时,在思维能力、情感态度等多方面也得到一定的进步和发展。
积的变化规律

《积的变化规律》说课稿一、说教材1.教学内容:本节课是人教版四年级上册51页的教学内容。
2.教材分析:本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘(或除以)几,得到的积会有什么变化。
通过引导学生观察、猜想和验证,使学生更加关注规律的发现过程,将学生的思维从繁杂的计算中解脱出来,为学生进一步加深对乘法运算的理解以及今后自主探索做好准备。
3.教学目标基于以上认识,我从知识和能力、过程与方法、情感态度与价值观三个维度设计了以下教学目标:(1)通过经历积的变化规律的发现过程,体会两个变量的相互关系,初步渗透函数思想。
(2)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。
(3)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。
4.教学重点和难点(1)重点:使学生探索并掌握一个因数不变,另一个因数另一个因数乘(除以)几,积也会乘(或除以)几的变化规律。
(2)难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考意识。
二、说教法和学法(1)教法:让学生在具体的情境中用观察、验证来探索积的变化规律,教师引导与学生自主探究相结合,充分发挥学生学习的主动性。
(2)学法:通过观察交流,让学生经历提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索数学规律的经验。
三、说教学过程结合本课特点,我设计了以下五个教学环节:1、创设情景,导入新课师:秋天到了,猴王要给小猴子们分苹果,每只小猴子分5个,两个小猴子需分几个?4个?12个?24个?『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的数感及提出数学问题的能力。
2、合作探究,发现规律引导学生观察、比较上面的算式,看看自己有那些发现?在小组合作的基础上,引导学生发现:一个因数没变,另一个因数越变越大,积也越变越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【教学内容】
教科书第51页第例3,以及相应的“做一做”,练习九第1、4、53.题。
【教学目标】
知识与技能:
使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
过程与方法:
尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
情感、态度与价值观:
初步获得探索规律的一般方法和经验,发展学生的推理能力。
【教学重难点】
教学重点:让学生通过自探找出规律
教学难点:总结应用规律
【教具准备】
教具:课件
【教学过程】
一、复习导入
1.唱儿歌:数青蛙:
一只青蛙一张嘴,两只眼睛四条腿;
两只青蛙两张嘴,四只眼睛八条腿;
三只青蛙三张嘴,六只眼睛十二条腿;
四只青蛙四张嘴,八只眼睛十六条腿;
……
想一想,你能把这组算式继续写下去吗?试一试,你一定能行!
2.导入新课:
实这个问题的思考是有一定数学规律的,那么这其中的奥秘是什么呢?这就是这节我们要研
(板书课题:积的变化规律)究的¬¬¬¬¬¬¬——积的变化规律。
3、围绕课题质疑:
看到这个课题,你想知道哪些问题?
二、探索新知
1、出示例3-(1),课件出示:
6×2=
6×20=
6×200=
(1)从上往下观察第一组题:
与第一个算式比较,第二个算式的因数是怎样变化的?积是怎样变化的?
(2)第三个算式与第一个算式比较,第三个算式的因数是怎样变化的?积是怎样变化的?(3)你能用一句话将两组题中已经发现的规律概括起来吗?
一个因数不变,另一个因数乘10(或扩大10倍),积也乘10 (或扩大10倍)。
(4)用刚才得出的规律根据8×50=400,直接写出积。
16×50=
32×50=
从这一组算式中你又发现什么规律?
两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。
2. 出示例3-(2),课件出示:
20×4=
10×4=
5×4=
1)从上往下观察第一组题:
与第一个算式比较,第二个算式的因数是怎样变化的?积是怎样变化的?
(2)第三个算式与第一个算式比较,第三个算式的因数是怎样变化的?积是怎样变化的?(3)你能用一句话将两组题中已经发现的规律概括起来吗?
一个因数不变,另一个因数除以2,积也除以2。
(4)根据8×50=400,直接写出积。
8×25=
2×50=
从这一组算式中你又发现什么规律?
两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几。
3.总结积的变化规律。
两数相乘,一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。
三、巩固练习
1.教科书第51页“做一做”第1题。
算出每一组题中第一题的积,然后很快写出下面两题的积。
12×3= 48×5= 24×5=
120×3= 48×50= 24×25=
1200×3= 48×500= 24×75=
2. 根据8×50=400直接写出下面各题的积。
16×50=
32×50=
8×50=
4×50=
3.根据积的变化规律填表格。
因数1616161616
因数241020100
积32
4.闯关游戏,多样题型强化学生对“积的变化规律”的理解。
(1)第一关:火眼金睛。
判断:
(1)两数相乘,一个因数不变,另一个因数乘5,积应该乘4。
()
(2)两数相乘,一个因数除以10,另一个因数不变,积也除以10。
()
(2)第二关:活学活用。
找出规律再填空。
16×17=272 16×68=()
16×34=() 16×85=()
16×51= () 16×102=()
(3)第三关:随机应变。
(4)第四关:大显身手。
四、质疑再探
学生可以将不明白的问题提出来集体解决。
五、总结
通过本节课的学习,你有什么收获?
【板书设计】
积的变化规律
例3:观察下面的两组题,说一说你发现了什么?
第一组:6×2 = 12 第二组:20×4= 80
6×20 = 120 10×4= 40
6×200= 1200 5×4 = 20
两个数相乘,一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
这就是积的变化规律。