不同高程系统之间的关系和转换
2000大地高程转85高程

2000大地高程转85高程
2000年大地高程是指根据2000年的大地水准面测量的高程数据,而85高程是指根据1985年的高程基准面测量的高程数据。
在
中国,大地高程和85高程是两种不同的高程系统,它们之间存在一
定的转换关系。
要将2000年的大地高程转换为85高程,通常需要进行高程数
据的基准面转换。
这个转换过程一般需要通过专业的测绘机构或者
地理信息系统进行。
具体的转换方法包括了解当地的高程基准面变
换参数、采用大地水准面模型进行转换等。
需要注意的是,由于大地高程和85高程是基于不同的高程基准
面测量的,因此转换时需要考虑到基准面的差异,以及转换参数的
精确性。
另外,在实际的测量和转换过程中,还需要考虑到地球椭
球体参数、大地水准面的变化等因素,以确保转换结果的准确性和
可靠性。
总之,将2000年的大地高程转换为85高程是一个复杂的过程,需要专业的测绘技术和地理信息系统支持,以确保转换结果的准确
性和可靠性。
关于56黄海高程-、85国家高程-、吴淞高程之间的关系

关于56黄海高程、85国家高程、吴淞高程之间的关系54北京坐标系54北京坐标系即54国家坐标系,采用克拉索夫斯基椭球参数。
西安坐标系80西安坐标系即80国家坐标系,采用国际地理联合会(IGU)第十六届大会推荐的椭球参数,大地坐标原点在陕西省泾和县永乐镇的大地坐标系。
我国常用高程系统大全:(1) 波罗的海高程波罗的海高程十0.374米=1956年黄海高程中国新疆境内尚有部分水文站一直还在使用“波罗的海高程”。
(2) 黄海高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。
原点设在青岛市观象山。
该原点以“1956年黄海高程系”计算的高程为72.289米。
1985国家高程72.289-0.029=72.26(3) 1985国家高程基准85国家高程基准是指以青岛水准原点和青岛验潮站1952年到1979年的验潮数据确定的黄海平均海水面所定义的高程基准,其水准点起算高程为72.260米。
由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为:1985年国家高程基准高程=1956年黄海高程-0.029m。
1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。
(5) 广州高程及珠江高程广州高程=1985国家高程系+4.26(米)广州高程=黄海高程系+4.41(米)广州高程=珠江高程基准+5.00(米)(6)大连零点日本入侵中国东北期间,在大连港码头仓库区内设立验潮站,并以多年验潮资料求得的平均海面为零起算,称为“大连零点”。
该高程系的基点设在辽宁省大连市的大连港原一号码头东转角处,该基点在大连零点高程系中的高程为3.765米。
各种高程的换算关系

港口水利工程高程、水位关系转换56黄海高程基准和85国家高程基准的关系国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“1985国家高程基准”,新的比旧的低0.029m 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。
但由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为:1985年国家高程基准高程=1956年黄海高程-0.029m。
1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。
各高程系统之间的关系56黄海高程基准:+0.00085高程基准(最新的黄海高程):56高程基准-0.029吴淞高程系统:56高程基准+1.688珠江高程系统:56高程基准-0.586我国目前通用的高程基准是:85高程基准一直没搞清楚56黄海高程基准和85高程基准的关系!总算搞明白了!还不明白的看一下吧!标高/绝对标高/高度/建筑标高/结构标高绝对标高:相对对海平面的高度,海平面的标高规定为0,在以上的为正值,以下的为负值,相平的为0,也叫海拔高度,高程相对标高:对于一个地区,通常市政国土部门会测量出某个特定的、固定的点的绝对标高,其他的测点相对于绝对标高的高度,其上为正,下为负;建筑标高:建筑标高和结构标高差别在于装修,通常情况下,施工放线会在结构高度上作出而不是装修高度,一些地区经常忽略掉建筑标高和结构标高的差别。
以上的量单位只能是米(m)高度,值具体的、竖直方向上的距离只能为正或者0,不能为负数,单位是毫米(mm)在生产建设和手工计算习惯意识里,标高;是在建筑房屋时所用的一个术语,一般都是建筑第一层地面是0点,在建筑方线时以这一平面为基点,向下或向上算高度!高程;通俗地讲,就是某一水平面或一点,与相对照的海平面平均高度的高差,其高程即海拔为多少米,称为水准点。
广州地区各高程系统关系

广州地区各高程系统换算关系
(广东水准原点高程)
[1] 1985国家高程基准H=5.744m
[2] 1956年黄海高程系统H=5.586m
[3] 珠江基面高程系H=5.000m
[4] 珠江统一基准面(沿河基面)高程系H=110.000m(现已不采用)
[5] 广州城建高程系H=10.000m
各高程系统之间的换算关系:
[1] 广州城建高程= 1985国家高程基准+4.256米
[2] 广州城建高程=1956年黄海高程系统+4.414米
[3] 广州城建高程=珠江基面高程系+5.000米
[4] 1985国家高程基准=1956年黄海高程系统+0.158米
[5] 1985国家高程基准=珠江基面高程系+0.744米
[6] 1956年黄海高程系统=珠江基面高程系+0.586米
(注:以上各个高程系统之间的换算关系仅限于广州地区使用。
)。
高程系统概况介绍

高程系统在测量中常用的高程系统有大地高系统、正高系统和正常高系统。
一、大地高系统大地高系统是以参考椭球面为基准面的高程系统。
某点的大地高是该点到通过该点的参考椭球的法线与参考椭球面的交点间的距离。
大地高也称为椭球高,大地高一般用符号H表示。
大地高是一个纯几何量,不具有物理意义,同一个点,在不同的基准下,具有不同的大地高。
二、正高系统正高系统是以大地水准面为基准面的高程系统。
某点的正高是该点到通过该点的铅垂线与H表示。
大地水准面的交点之间的距离,正高用符号g三、正常高正常高系统是以似大地水准面为基准的高程系统。
某点的正常高是该点到通过该点的铅垂H表示。
线与似大地水准面的交点之间的距离,正常高用γ四、高程系统之间的转换关系图1 高程系统间的相互关系h。
大地高与正高之间的大地水准面到参考椭球面的距离,称为大地水准面差距,记为g关系可以表示为:g g h H H +=似大地水准面到参考椭球面的距离,称为高程异常,记为ζ。
大地高与正常高之间的关系可以表示为:ζγ+=H HGPS 高程的方法由于采用GPS 观测所得到的是大地高,为了确定出正高或正常高,需要有大地水准面差距或高程异常数据。
五、 等值线图法从高程异常图或大地水准面差距图分别查出各点的高程异常ζ或大地水准面差距g h ,然后分别采用下面两式可计算出正常高γH 和正高g H 。
正常高: ζγ-=H H正高: g g h H H -=在采用等值线图法确定点的正常高和正高时要注意以下几个问题:⏹ 注意等值线图所适用的坐标系统,在求解正常高或正高时,要采用相应坐标系统的大地高数据。
⏹ 采用等值线图法确定正常高或正高,其结果的精度在很大程度上取决于等值线图的精度。
六、 地球模型法地球模型法本质上是一种数字化的等值线图,目前国际上较常采用的地球模型有OSU91A 等。
不过可惜的是这些模型均不适合于我国。
七、 高程拟合法1. 基本原理所谓高程拟合法就是利用在范围不大的区域中,高程异常具有一定的几何相关性这一原理,采用数学方法,求解正高、正常高或高程异常。
高程系统及其相互关系

高程控制 网的布设
高程测量
外业计算
内业计算
确定地面点正常高流程
Process of Getting Normal Height
往测高差=所有往测测站高差读数中数之和
往 h12
高程控制 网的布设
往测
高程测量
1
水 准 返测
… …
水
2
准
点
外业计算
点
测站
内业计算
返 h12
返测高差=所有返测测站高差读数中数之和
i i ζ i H 大 H常,( i 1, ,n ) ζ为似大地水准面差距
1
2
… n
4.3.不同高程系统之间的关系
二、GPS水准
Relation of different height system
i vi a0 a1 xi a2 yi a3 xi a4 xi yi a5 yi a6 xi a7 xi yi a8 xi yi a9 yi
p gdh (GPU )
1 GPU =1千伽米=105厘米2/秒2
4.2.高程系统
Height System
大地高 正 高
几何意义 物理意义 半物理意义 物理意义 物理意义
H正 H常
H力
1 gdh gm 1
正常高 力 高
m
1
gdh
gdh
45
重力位数
p gdh
(路线闭合差) W HA h中2 h中2 HB A1 12
外业计算
(路线闭合差改正)v i
即简单的平差
R
n 1
Ri
W
i
内业计算
各个高程基准面的关系

1985年国家基准面在1956年黄海基准面上面0.03m。
大沽基准面在不同地区有所浮动,具体位置具体查询。
我国常见的高程系统及其换算关系高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。
国家高程基准是根据验潮资料确定的水准原点高程及其起算面。
目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。
1.“1956年黄海高程”我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。
该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。
原点设在青岛市观象山。
1956黄海高程水准原点的高程是72.289米。
该高程系与其他高程系的换算关系为:“1956年黄海高程”=“1985年国家高程基准”+0.029(米)“1956年黄海高程”=“吴凇高程基准”-1.688(米)“1956年黄海高程”=“珠江高程基准”+0.586(米)2.“1985国家高程基准”由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。
1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。
1985国家高程系统的水准原点的高程是72.260米。
习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。
该高程系与其他高程系的换算关系为:“1985年国家高程基准”=“1956年黄海高程”-0.029(米)“1985年国家高程基准”=“吴凇高程基准”-1.717(米)“1985年国家高程基准”=“珠江高程基准”+0.557(米)3.“吴凇高程基准”“吴凇高程基准”采用上海吴淞口验潮站1871~1900年实测的最低潮位所确定的海面作为基准面,该系统自1900年建立以来,一直为长江的水位观测、防汛调度以及水利建设所采用。
正高、正常高、大地高

正高、正常高、大地高之间的关系
1.正高系统是以大地水准面为基准面的高程系统。
某点的正高是该点到通过该点的铅垂线与大地水准面的交点之间的距离,正高用符号Hg表示。
2.正常高系统是以似大地水准面为基准的高程系统。
某点的正常高是该点到通过该点的铅垂线与似大地水准面的交点之间的距离,正常高用Hg表示。
3.大地高系统是以参考椭球面为基准面的高程系统。
某点的大地高是该点到通过该点的参考椭球的法线与参考椭球面的交点间的距离。
大地高也称为椭球高,大地高一般用符号H表示。
大地高是一个纯几何量,不具有物理意义,同一个点,在不同的基准下,具有不同的大地高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同高程系统之间的关系和转换
概述:
不同高程系统是指在地球表面上测量和表示高程的不同方法和标准。
由于地球是一个不规则的椭球体,不同的高程系统会采用不同的基准和测量方法。
本文将介绍几种常见的高程系统,包括大地水准面、椭球面高程、正高程和大地水准面与椭球面的转换关系。
一、大地水准面(Mean Sea Level)
大地水准面是指地球上所有点的平均海平面。
它是一个理想的参考面,用于测量和比较不同地点的高程。
在大地水准面上,海平面的高程被定义为0。
大地水准面可以通过水准测量和重力测量等方法来确定和维护。
二、椭球面高程(Ellipsoidal Height)
椭球面高程是指相对于一个参考椭球体的高程。
参考椭球体是一个近似于地球形状的椭球体,可以通过测量和计算得到。
椭球面高程的基准点通常是一个参考椭球体上的某个点,称为基准点。
椭球面高程与大地水准面的高程之间存在一定的差异,这个差异被称为大地水准面偏差。
三、正高程(Orthometric Height)
正高程是指相对于大地水准面的高程。
它是通过测量从地面到大地水准面的垂直距离来确定的。
正高程可以通过水准测量和重力测量
等方法来测量和计算。
在测量正高程时,需要考虑地球表面的地形起伏和重力变化等因素。
四、大地水准面与椭球面的转换关系
由于大地水准面和椭球面是两种不同的高程系统,它们之间存在一定的转换关系。
常见的转换方法有以下几种:
1. 大地水准面高程到椭球面高程的转换:
大地水准面高程可以通过加上大地水准面偏差来转换为椭球面高程。
大地水准面偏差可以通过水准测量和重力测量等方法来确定。
2. 椭球面高程到大地水准面高程的转换:
椭球面高程可以通过减去大地水准面偏差来转换为大地水准面高程。
3. 正高程到椭球面高程的转换:
正高程可以通过加上大地水准面偏差来转换为椭球面高程。
4. 椭球面高程到正高程的转换:
椭球面高程可以通过减去大地水准面偏差来转换为正高程。
需要注意的是,大地水准面和椭球面的转换关系是基于特定的基准点和参考椭球体来确定的,不同的基准点和参考椭球体会导致不同的转换结果。
结论:
不同高程系统之间存在一定的关系和转换方法。
大地水准面是一个理想的参考面,用于测量和比较不同地点的高程。
椭球面高程和正高程是相对于参考椭球体和大地水准面的高程。
大地水准面和椭球面之间可以通过加减大地水准面偏差来相互转换。
在实际应用中,根据具体需求和测量要求选择合适的高程系统和相应的转换方法非常重要。