透射电镜制样要求与制样方法
透射电镜制样流程

透射电镜制样流程透射电镜(Transmission Electron Microscopy,TEM)制样是指通过一系列的化学和物理方法来制取透射电镜所需的样品。
透射电镜是一种高分辨率的显微镜,可以在纳米尺度下观察材料的原子结构和微观形态。
为了获取高质量的TEM图像,制样过程非常关键。
下面将详细介绍透射电镜制样的流程。
1.样品制备:样品可以是纳米颗粒、薄膜、纤维或生物样品等。
首先,准备适宜的基底材料,如碳膜覆盖的铜网格或碳膜覆盖的铜刀片。
样品通常需要制成非常薄的切片,通常在50到100纳米的厚度范围内。
制备方法包括机械切割、电解石蠟切片、离子切割或电离蚀刻等。
2.固定和固化:对于生物样品,需要先进行固定处理,以保持样品的形态和结构。
常用的固定剂包括戊二醛、酸性醛或重金属盐。
然后,固定的样品需要进一步处理以固化,如用过氧化物、树脂或聚合物进行浸渍,以增加样品的稳定性。
3.切割和悬浮:将固化的样品切割成适当的尺寸和形状。
使用超微切割机、离子切割仪或其他切割工具进行切割。
切割后,样品通常会悬浮在水或有机溶液中,以便进一步处理。
4.脱水和对比染色:脱水是将样品从水中逐渐转移到有机溶剂中的过程。
这种处理可以控制样品的体积,以减少对比染色和观察中的伪影。
脱水通常通过渗透固定液逐渐转移,然后通过有机溶剂(如醋酸乙酯、丙酮或丙二醇)进行交换。
5.嵌入:将样品嵌入到透明的聚合物或树脂中。
嵌入过程中,通常采用逐渐增加浓度的树脂混合物,以确保样品得到完全浸透。
然后,将样品与树脂进行硬化,通常在高温下进行。
6.超薄切片:将固化的样品切割成非常薄的切片。
使用超薄切片机和钻磨刀片进行切割。
切割后的切片应尽快收集并转移到透明的铜网格或铜刀片上。
7.超薄切片处理:超薄切片通常需要进行后继处理以增强对比度和解决其他问题。
这可能包括染色、胶层增强或薄膜剥离等方法。
8.观察:将制备好的样品放入透射电镜中进行观察。
在观察前,样品需要在真空中或过氮气中去除气泡和其他杂质。
透射电镜制样步骤以及注意事项

透射电镜制样步骤以及注意事项透射电子显微镜(Transmission Electron Microscope,简称TEM)是目前最常用的高分辨率电子显微镜,可以用于观察物质的微观结构。
制备TEM样品的过程非常重要,下面将详细介绍TEM制样的步骤以及需要注意的事项。
制备TEM样品的步骤一般包括样品的选择、固定与固化、切片、薄化、网格制备和贴膜等。
第一步是样品的选择,样品应具有研究价值且适合观察。
例如,生物样品可以是细胞、组织或器官的薄片,金属样品可以是扁平的块状、粉末或薄膜等。
第二步是固定与固化。
对于生物样品,常用的固定方法包括浸泡法、灌注法和切片冷冻法;对于无机样品,可以使用固定剂将样品固定在固定剂中。
第三步是切片。
将固定好的样品切割成薄片,一般要求薄片的厚度在100 nm以下,通常使用超薄切片机来进行切割。
第四步是薄化。
将切割好的样品进行薄化处理,使其达到TEM观察所需的薄度。
常见的薄化方法有机械薄化、电化学薄化和离子薄化等。
第五步是网格制备。
将薄化好的样品放置在铜网格上,网格的选取应该根据所研究样品的性质和需要进行选择。
最后一步是贴膜。
将组织切片或带有样品的网格进行贴膜,以保护样品并提高图像的对比度。
在以上步骤中,需要注意的事项有:1.样品在制备过程中要避免受到污染或氧化,尽量在纯净无尘的环境中进行操作。
2.固定剂的选择要合理,不同的样品可能需要使用不同的固定剂,应根据需要进行选择。
3.切片时要注意刀片的尖锐度和切割角度,以免对样品造成损伤或变形。
4.薄化过程中要控制好加工参数,以保证样品的均匀薄化。
5.制作网格时应选择合适的网格尺寸和类型,以适应观察需求。
6.贴膜时要使薄膜均匀平整,并避免出现气泡或杂质。
总之,TEM制样是一项复杂而关键的过程,要保证样品的质量和可观察性,需要仔细选择方法、控制操作参数、注意样品的保护与处理。
合理的样品制备能够获得高质量的TEM图像,并提供准确的实验数据和结论。
透射电镜细胞样品制备流程

透射电镜细胞样品制备流程透射电镜细胞样品制备流程概述透射电镜(TEM)是一种常用于观察细胞结构和超微结构的高分辨率显微镜。
样品制备是进行TEM观察的关键步骤,正确的制备流程能够保证样品的质量和结构完整性。
流程步骤1.选择适合的细胞样品–根据研究目的选择不同类型的细胞样品,如培养细胞、动物细胞组织或植物细胞等。
–样品选择要考虑细胞生长状态、形态和结构的要求。
2.采集样品–从培养皿中取出细胞,或从动物或植物组织中切取适当大小的样品。
–注意避免样品受到污染或损坏。
3.固定样品–使用适当的固定剂,如戊二醛、冰醋酸或凝胶固定剂,对样品进行固定处理。
–固定剂的选择要根据样品类型和所需观察结构的特点。
4.去除固定剂–使用缓冲液或盐水洗涤样品,去除多余的固定剂。
–洗涤时间和次数需根据固定剂的种类和浓度进行调整。
5.后续处理–为了进一步增强对样品的对比度和分辨率,可以对样品进行染色处理。
–常用的染色剂包括重质金属盐、乙酸铀和铅染色剂等。
6.样品包埋–涂覆样品表面的浸渍剂,如环氧树脂或丙烯酸树脂。
–用于支撑样品的网格可以放置在浸渍剂中。
7.制备超薄切片–使用超薄切片机将包埋的样品切割成透明的超薄切片。
–切片的厚度通常控制在70-100纳米之间。
8.将切片转移到网格上–使用特殊工具将切片转移到电子显微镜用的网格上。
–要小心操作,避免切片受到损坏或污染。
9.干燥和稳定–将转移到网格上的切片进行脱水和干燥处理,以提高稳定性。
–常见的方法包括用醇溶液进行脱水,然后使用气体吹干。
10.开始透射电镜观察–将处理完的样品装入透射电镜,调整参数和放大倍数。
–进行细胞结构和超微结构的观察和拍摄。
结论透射电镜细胞样品制备是进行TEM观察的关键步骤。
通过选择合适的细胞样品、适当的固定、去固定剂和染色处理,以及正确的样品包埋和超薄切片制备,可以确保样品的质量和结构完整性。
准确无误的制备流程能够为细胞学研究提供可靠的数据支持。
注意事项1.样品的选择要根据研究目的和所需观察结构的特点进行。
透射电镜样品制备方法

透射电镜样品制备方法
首先,样品的准备是透射电镜制备的第一步。
在进行透射电镜
样品制备之前,需要选择合适的样品。
样品可以是固体材料、生物
组织、纳米材料等,根据研究的目的和对象进行选择。
在选择样品
的过程中,需要考虑样品的形态、尺寸、结构等因素,以确保样品
能够满足透射电镜观察和分析的要求。
其次,样品的制备过程需要严格控制。
对于固体材料样品,通
常需要将样品切割成薄片或薄膜,以确保透射电镜的电子束能够穿
透样品并产生清晰的像像。
对于生物组织样品,通常需要进行化学
固定、脱水、包埋等处理,以保持样品的形态和结构。
对于纳米材
料样品,通常需要将样品分散在适当的溶剂中,并在透射电镜网格
上制备成薄膜。
在样品制备的过程中,需要注意避免样品的污染和
损坏,确保样品的原貌和结构不受影响。
最后,在透射电镜样品制备完成后,需要进行适当的检测和验证。
可以通过光学显微镜、扫描电子显微镜等手段对样品进行初步
的观察和分析,以确保样品的质量和完整性。
在透射电镜观察之前,还需要对样品进行真空干燥等处理,以避免在透射电镜中产生气泡
和水膜等影响观察效果的问题。
总之,透射电镜样品制备是透射电镜观察和分析的基础,正确的样品制备方法对于获得准确、可靠的实验结果至关重要。
在进行透射电镜样品制备时,需要选择合适的样品、严格控制制备过程,并进行适当的检测和验证,以确保样品的质量和完整性。
希望本文提供的透射电镜样品制备方法能够对相关研究工作有所帮助。
透射电镜样品制备步骤

透射电镜样品制备步骤透射电镜是一种重要的材料表征技术,它利用电子的波动性和微粒性来观察材料的结构和性质。
为了能够使用透射电镜观察样品,首先需要对样品进行制备。
透射电镜样品制备步骤如下:1.选择合适的样品:透射电镜样品可以是固体、液体、薄膜或纳米颗粒等。
根据研究目的和样品性质选择合适的样品。
2.样品预处理:根据样品性质的不同,进行必要的预处理。
例如,对于固体样品,可以选择切割、抛光或电解抛光等方法来得到平滑的表面。
3.样品固定:将样品固定到透射电镜样品架上。
不同的样品有不同的固定方法。
例如,对于固体样品,可以使用导电胶将其固定在样品架上。
4.薄层制备:对于厚度过大的样品,需要将其制备成透明的薄层以便透射电镜观察。
常用的方法有机械研磨、电子束刻蚀或离子束刻蚀等。
5.样品清洁:将样品放入超声波清洗机中进行清洗,以去除可能附着在样品表面的杂质或污染物。
6.特殊处理:如果需要对样品进行特殊处理,例如加热、冷冻处理或受到特定环境气氛的影响等,根据需要进行相应的处理。
7.样品干燥:将样品放入真空或氮气环境中,以确保样品干燥。
避免样品受到水汽的污染。
8.获得薄片:使用切片机将固态样品切割成适当厚度的薄片。
为了获得高质量的薄片,可以选择特殊的切片工具和技术,例如离子束切片或低速钻磨切片。
9.薄片形状整理:使用不同的研磨和抛光方法,将薄片的形状和表面进行调整,以确保样品的平滑度和一致性。
10.网格制备:将薄片粘贴在透射电镜网格上。
网格可以增强样品的稳定性和保护,同时提供用于定位和标识的标记。
11.后续处理:根据研究目的和透射电镜分析的要求,可以对样品进行进一步处理。
例如,可以进行染色、脱膜、溅射或腐蚀等处理。
以上是透射电镜样品制备的一般步骤。
不同样品和研究目的可能会有所不同。
因此,根据具体的研究需求和样品特点,制备过程可以做相应的调整和优化。
透射电镜的样品制备方法详解

透射电镜的样品制备透射电镜的样品制备是一项较复杂的技术,它对能否得到好的TEM像或衍射谱是至关重要的.投射电镜是利用样品对如射电子的散射能力的差异而形成衬度的,这要求制备出对电子束"透明"的样品,并要求保持高的分辨率和不失真.电子束穿透固体样品的能力主要取决加速电压,样品的厚度以及物质的原子序数.一般来说,加速电压愈高,原子序数愈低,电子束可穿透的样品厚度就愈大.对于100~200KV的透射电镜,要求样品的厚度为50~100nm,做透射电镜高分辨率,样品厚度要求约15nm(越薄越好).透射电镜样品可分为:粉末样品,薄膜样品,金属试样的表面复型.不同的样品有不同的制备手段,下面分别介绍各种样品的制备.(1)粉末样品因为透射电镜样品的厚度一般要求在100nm以下,如果样品厚于100nm,则先要用研钵把样品的尺寸磨到100nm以下,然后将粉末样品溶解在无水乙醇中,用超声分散的方法将样品尽量分散,然后用支持网捞起即可.(2)薄膜样品绝大多数的TEM样品是薄膜样品,薄膜样品可做静态观察,如金相组织;析出相形态;分布,结构及与基体取向关系,错位类型,分布,密度等;也可以做动态原位观察,如相变,形变,位错运动及其相互作用.制备薄膜样品分四个步骤:a将样品切成薄片(厚度100~200微米),对韧性材料(如金属),用线锯将样品割成小于200微米的薄片;对脆性材料(如Si,GaAs,NaCl,MgO)可以刀将其解理或用金刚石圆盘锯将其切割,或用超薄切片法直接切割.b切割成φ3mm的圆片用超声钻或puncher将φ3mm薄圆片从材料薄片上切下来.c预减薄使用凹坑减薄仪可将薄圆片磨至10μm厚.用研磨机磨(或使用砂纸),可磨至几十μm.d终减薄对于导电的样品如金属,采用电解抛光减薄,这方法速度快,没有机械损伤,但可能改变样品表面的电子状态,使用的化学试剂可能对身体有害.对非导电的样品如陶瓷,采用离子减薄,用离子轰击样品表面,使样品材料溅射出来,以达到减薄的目的.离子减薄要调整电压,角度,选用适合的参数,选得好,减薄速度快.离子减薄会产生热,使样品温度升至100~300度,故最好用液氮冷却样品.样品冷却对不耐高温的材料是非常重要的,否则材料会发生相变,样品冷却还可以减少污染和表面损伤.离子减薄是一种普适的减薄方法,可用于陶瓷,复合物,半导体,合金,界面样品,甚至纤维和粉末样品也可以离子减薄(把他们用树脂拌合后,装入φ3mm金属管,切片后,再离子减薄).也可以聚集离子术(FIB)对指定区域做离子减薄,但FIB很贵.对于软的生物和高分子样品,可用超薄切片方法将样品切成小于100nm的薄膜.这种技术的特点是样品不会改变,缺点是会引进形变.(3)金属试样的表面复型即把准备观察的试样的表面形貌(表面显微组织浮凸)用适宜的非晶薄膜复制下来,然后对这个复制膜(叫做复型)进行透射电镜观察与分析.复型适用于金相组织,断口形貌,形变条纹,磨损表面,第二相形态及分布,萃取和结构分析等.制备复型的材料本身必须是"无结构"的,即要求复型材料在高倍成像时也不显示其本身的任何结构细节,这样就不致干扰被复制表面的形貌观察和分析.常用的复型材料有塑料,真空蒸发沉积炭膜(均为非晶态物质).常用的复型有:a塑料一级复型,分辨率为10~20nm;b炭一级复型,分辨率2nm,c塑料-炭二级复型,分辨率10~20nm;d萃取复型,可以把要分析的粒子从基体中提取出来,这种分析时不会受到基体的干扰.除萃取复型外,其余复型只不过是试样表面的一个复制品,只能提供有关表面形貌的信息,而不能提供内部组成相,晶体结构,微区化学成分等本质信息,因而用复型做电子显微分析有很大的局限性,目前,除萃取复型外,其他复型用的很少.。
场发射透射电镜(TEM)测试制样说明

场发射透射电镜(TEM)测试制样说明测试样品范围:各种材料内部微结构进行观察;粉末、纳米颗粒形貌和粒径观察选区电子衍射和晶体结构分析;金属、陶瓷、半导体、塑料、农作物、细胞等显微结构;配合EDS能谱仪可以对各种元素进行定性和半定量微区分析,元素检测范围:B~U元素。
透射电镜(TEM)测试制样要求:1. 透射电镜能够观察200nm以下的样品;2. 对于粉末和液体样品,要求样品均匀分散在支持膜上并且干燥;3. 块体样品,要求样品大小为直径3mm的圆,厚度为200nm以下;高分辨样品要求厚度在10nm以下;4. 含磁样品需要在委托测试单中重点标识,需要特殊处理,否则不予测试;5. 需要离子减薄的金属、陶瓷样品,需要已预减到150微米以下,否则不予制样和测试。
透射电镜生物样品制备步骤:1.取材:组织块小于1立方毫米2.固定:2.5%戊二醛,磷酸缓冲液配制固定2小时或更长时间。
用0.1M磷酸漂洗液漂洗15分三次1%锇酸固定液固定2-3小时用0.1M磷酸漂洗液漂洗15分三次3.脱水:50%乙醇15-20分70%乙醇15-20分90%乙醇15-20分90%乙醇90%丙酮(1:1)15-20分90%丙酮15-20分以上在4度冰箱内进行100%丙酮室温15-20分三次4.包埋:纯丙酮+包埋液(2:1)室温3-4小时纯丙酮+包埋液(1:2)室温过夜纯包埋液37度2-3小时5.固化:37度烘箱内过夜45度烘箱内12小时60度烘箱内24小时6.超薄切片机切片70 nm7.醋酸铀-柠檬酸铅双染色负染色的操作方法用一根细滴吸管吸一滴样品悬液滴在有膜的铜网上,滴样时要防止铜网被液体吸到管上来或翻转而被污染。
如果用Formvar膜时,在制好膜后,可以直接在粘于滤纸上的铜网进行负染色操作。
如果用碳膜时,要用镊子夹着铜网,滴液后静置数分钟,然后用滤纸从铜网边缘吸去多余的液体,滴上负染色液,染色1~2分钟用滤纸吸去负染色液,再用蒸馏水滴在铜网上洗1~2次,用滤纸吸去水,待干后可用于电镜观察。
tem透射电镜的样品制备方法

tem透射电镜的样品制备方法TEM(透射电子显微镜)是一种常用的高分辨率显微镜,可以观察到物质的结构和组成。
样品制备对于TEM观测至关重要,良好的样品制备可以提供高质量的显微图像。
以下是TEM透射电镜的样品制备方法的详细讨论。
1.样品选择:选择适合TEM观察的样品,典型的样品包括纳米材料、生物细胞、材料薄膜等。
根据需要选择合适的样品尺寸和形状。
2.样品固定:根据样品的特性和需要,采取合适的方法将样品固定在支撑物上。
常用的方法包括离心沉淀、滴定、蒸发浓缩等。
对于生物样品,可以使用化学固定剂(如戊二醛)进行化学固定。
3.样品切片:对于大尺寸或不透明的样品,需要将其切割成薄片,一般要求切片尺寸在100 nm以下。
常用的切片工具有超声切割仪、离子切割仪等。
切割样品时要注意样品的定位和定向,以确保观察到感兴趣的区域。
4.样品脱水:对于生物样品,需要将其进行脱水处理。
脱水可以使用乙醇和丙酮等有机溶剂,逐渐将样品中的水分替换为有机溶剂。
脱水过程中要避免剧烈振荡,以防止样品的破坏。
5.样品浸渍:将脱水后的样品浸渍在透明介质中,如环氧树脂或聚合物。
浸渍过程中需要避免气泡和异物的进入,以保持样品的质量。
6.样品调平:将浸渍后的样品放在平板上,用研磨纸将其调平。
调平过程中要注意避免样品的损坏。
7.样品切割:将调平后的样品切成适当尺寸的小块,便于后续的操作。
切割时要使用锋利的刀具,以保证切面的平整度。
8.样品研磨:使用研磨纸或研磨腰带对样品进行研磨,以使其表面更加平整。
研磨过程中要注意研磨力度的控制,以免样品的破损。
9.样品薄化:使用电子束或离子束对样品进行薄化处理,将其厚度控制在适当的范围内。
薄化过程中要注意能量和时间的控制,以避免样品的损坏。
10.样品清洁:最后,使用有机溶剂或气流将样品上的杂质去除,使样品表面干净。
以上就是TEM透射电镜的样品制备方法的详细讨论。
不同的样品可能需要不同的制备方法,需要根据实际情况进行调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
透射电镜制样要求与制样方法
1. 样品一般应为厚度小于100nm的固体。
2. 样品在电镜电磁场作用下不会被吸出,附于极靴上。
3. 样品在高真空中能保持稳定。
4. 不含有水分或其它易挥发物,含有水分或其他易挥发物的试样应先烘干。
TEM样品常放置在直径为3mm的200目载网上
纳米粉末样品的制备方法
1、研磨法
将(研磨后的)粉末放在去离子水或无水乙醇溶液里,用超声波分散器将需要观察的粉末分散成悬浮液。
用滴管滴几滴在覆盖有支持膜的电镜载网上,待其干燥(或用滤纸吸干)后, 即成为电镜观察用的粉末样品。
载网种类:
方华支持膜:方华支持膜的化学成分是聚乙烯醇缩甲醛,由于是纯的有机膜,所以膜的弹性好,厚度通常为 10nm 左右,透射电镜观察时背底影响小。
但方华膜因导电性不好,在电子束照射下,易因高温或电荷积累,产生样品漂移甚至膜破损,通常在 100kV 电镜和生物样品中使用较多。
碳支持膜:是一种最常用的支持膜,有两层膜结构。
从下至上依次为裸网、方华膜和碳膜,由于碳层具有较强的导电性和导热性,弥补了无碳方华膜的荷电效应以及热效应,增强了膜整体的稳定性,适合大多数纳米材料和生物样品的一般形貌观察用于常规样品制样。
微栅:在膜上制作出微孔,以便使样品搭载在微孔边缘,使样品“无膜”观察,提高图象衬度。
观察管状、棒状、纳米团聚物效果好,特别是观察这些样品的高分辨像及mapping时更是最佳选择。
超薄碳膜:在微栅的基础上叠加了一层很薄的碳膜,一般为3-5纳米。
这层超薄碳膜的目的是用超薄碳膜把微孔堵住。
主要针对粒度较小的纳米材料。
如10纳米以下分散性很好的纳米材料,如果用微栅
可能从微孔中漏出,如果在微栅孔边缘,由于膜厚可能会影响观察。
所以用超薄碳膜就会得到很好的效果。
纯碳膜:当样品所用的有机溶剂(氯仿、甲苯等)能够溶解方华膜时,载网膜中就要去除方华膜,只剩碳膜,称为纯碳膜,碳膜的厚度通常为 20nm 左右,在高分辨观察时背底的影响也比较明显。
双联载网支持膜:将两片载网膜连在一起,负载样品后,将样品夹住,形成三明治的结构,加强了对样品的固定,比如应用于磁性材料可避免其吸附到透射电镜的极靴上。
载网膜的选择
由上述介绍的载网膜的结构及特点,可根据样品的特征选择合适的载网膜,汇总如下表所示,需要说明的是一些特殊情况:(1)用能谱分析铜元素时,不能选用铜载网,要选用镍、钼等其他材质的载网膜,同理分析碳元素时,要用氮化硅膜。
(2)在做高分子、生物样品切片后需要染色时要用裸网或微栅,因为染色剂通常会染方华膜。
(3)在负载一些二维方向尺度较大的薄膜样品时,比如大面积的石墨烯膜、有机膜,如果用碳支持膜背底影响较大用微栅膜在低倍观察时有微栅孔的结构,因此可选用目数较高的裸网,如1000 目、2000 目的铜裸网。
2、树脂包埋法
理想的包埋剂应具有:高强度,高温稳定性,与多种溶剂和化学药品不起反应。
目前常用国产环氧树脂618、Epon812环氧树脂、及低黏度包埋Spurr。
包埋剂配制及使用过程中的注意事项:
(1)所有容器及玻璃棒等应是清洁和干燥的;
(2)配制过程中应搅拌均匀,使用过程中应避免异物,特别是水、乙醇、丙酮等混入包埋剂;
(3)配制好的包埋剂应密封保存,避免受潮。
剩余包埋剂可密封并储存在-10—-20℃冰箱中,延长其使用期。
包埋方法:
将待观察的样品块放入灌满包埋剂的适当模具(如胶囊)中,恒温箱内加温固化,Spurr70℃烤箱内8h即可固化,国产树脂618、Epon812环氧树脂需37℃过夜,经45℃ 12h、60℃ 24h可固化。
将包埋固化后的样品取出,用超薄切片机切片后,分散于载网上,即可制得透射观察所需要的样品。
块体样品的制备方法
1、离子减薄
特点:不受材料电性能的影响,即不管材料是否导电,金属或非金属或者二者混合物,不管材料结构多复杂均可用此方法制备薄膜。
(1)样品裁剪:将样品冲压成直径3mm的圆片。
(2)研磨抛光:将样品圆片用手动研磨盘手动研磨至厚度低于80微米的圆片。
(3)凹坑:凹坑仪单面凹坑至圆片中心厚度为10-30微米。
(4)离子减薄:设置好离子枪角度、减薄时间、加速电压将样品减薄至出现足够薄区
2、电解双喷
特点:受材料电性能的影响,只能用于金属样品,并且耗时短成本低。
(1)样品裁剪:将样品冲压成直径3mm的圆片。
(2)研磨抛光:将样品圆片用手动研磨盘手动研磨至厚度低于100微米的圆片。
(3)凹坑:凹坑仪单面凹坑至圆片中心厚度为10-30微米。
(4)电解双喷:设置好电解液、电压、温度将样品减薄至出现足够薄区
(分析测试中心配备了国际尖端的离子减薄仪与电解双喷仪)。