受弯构件正截面受弯承载力构造要求
合集下载
03受弯构件正截面承载力计算

越显
0.4
著,受压区应力图形逐渐呈曲线分
Mcr
xn=xn/h0
布。
0 0.1 0.2 0.3 0.4 0.5
15
3.2 梁的受弯性能
第三章 钢筋混凝土受弯构件正截面承载力
带裂缝工作阶段(Ⅱ阶段) ◆ 荷载继续增加,钢筋拉应力、挠度 变形不断增大,裂缝宽度也不断开展, 但中和轴位置没有显著变化。
M/Mu
1.0 Mu 0.8 My
0.6
0.4
Mcr
0
fcr
fy
3.2 梁的受弯性能
fu f
18
第三章 钢筋混凝土受弯构件正截面承载力
屈服阶段(Ⅲ阶段)
◆ 由于混凝土受压具有很长的下
降段,因此梁的变形可持续较长,
但有一个最大弯矩Mu。
◆ 超过Mu后,承载力将有所降低,
直至压区混凝土压酥。Mu称为极
增大,混凝土受压的塑性特征表现的更为充分。
◆ 同时,受压区高度xn的减少使得钢筋拉力 T 与混凝土压力C
之间的力臂有所增大,截面弯矩也略有增加。
◆ 由于在该阶段钢筋的拉应变和 受压区混凝土的压应变都发展很
快,截面曲率f 和梁的挠度变形f 也迅速增大,曲率f 和梁的挠度变
形f的曲线斜率变得非常平缓,这 种现象可以称为“截面屈服”。
限弯矩,此时的受压边缘混凝土
的压应变称为极限压应变ecu,对
应截面受力状态为“Ⅲa状态”。
M/Mu
1.0
Mu
◆ ecu约在0.003 ~ 0.005范围,超过
0.8 My
0.6
该应变值,压区混凝土即开始压
0.4
第三章 钢筋混凝土受弯构件正截面承载力
h0
分布筋
0.4
著,受压区应力图形逐渐呈曲线分
Mcr
xn=xn/h0
布。
0 0.1 0.2 0.3 0.4 0.5
15
3.2 梁的受弯性能
第三章 钢筋混凝土受弯构件正截面承载力
带裂缝工作阶段(Ⅱ阶段) ◆ 荷载继续增加,钢筋拉应力、挠度 变形不断增大,裂缝宽度也不断开展, 但中和轴位置没有显著变化。
M/Mu
1.0 Mu 0.8 My
0.6
0.4
Mcr
0
fcr
fy
3.2 梁的受弯性能
fu f
18
第三章 钢筋混凝土受弯构件正截面承载力
屈服阶段(Ⅲ阶段)
◆ 由于混凝土受压具有很长的下
降段,因此梁的变形可持续较长,
但有一个最大弯矩Mu。
◆ 超过Mu后,承载力将有所降低,
直至压区混凝土压酥。Mu称为极
增大,混凝土受压的塑性特征表现的更为充分。
◆ 同时,受压区高度xn的减少使得钢筋拉力 T 与混凝土压力C
之间的力臂有所增大,截面弯矩也略有增加。
◆ 由于在该阶段钢筋的拉应变和 受压区混凝土的压应变都发展很
快,截面曲率f 和梁的挠度变形f 也迅速增大,曲率f 和梁的挠度变
形f的曲线斜率变得非常平缓,这 种现象可以称为“截面屈服”。
限弯矩,此时的受压边缘混凝土
的压应变称为极限压应变ecu,对
应截面受力状态为“Ⅲa状态”。
M/Mu
1.0
Mu
◆ ecu约在0.003 ~ 0.005范围,超过
0.8 My
0.6
该应变值,压区混凝土即开始压
0.4
第三章 钢筋混凝土受弯构件正截面承载力
h0
分布筋
混凝土受弯构件正截面承载力计算

h0—有效高度。 1.最大配筋率及界限相对受压区高度
r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y
令
x
h0
则
r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。
r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y
令
x
h0
则
r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。
混凝土结构设计原理-受弯构件正截面承载力

受弯构件正截面承载力计算
第一阶段:构件未开裂,弹性工作阶段。 第二阶段:带裂缝工作阶段。 第三阶段:钢筋塑流阶段。
受弯构件正截面承载力计算
阶段Ia — 抗裂计算依据; 阶段II — 变形、裂缝宽度计算依据; 阶段IIIa — 承载力计算依据。
受弯构件正截面承载力计算
二 钢筋混凝土梁正截面的破坏形式
受弯构件正截面承载力计算
钢筋的布置 Construction of reinforced bars
梁腹板高度hw>450mm时,要求在梁两侧沿高度每隔200mm设置一根纵 向构造钢筋,以减小梁腹部的裂缝宽度,直径≥10mm。
1. 为保证耐久性、防火性以及钢筋与混凝土的粘结性能,钢筋的混凝 土保护层厚度一般不小于25mm,与环境类别有关;
HRB335 钢筋 HRB400 钢筋
b s,max b s,max
最大配筋率ρmax
b max b
1 f c
fy
受弯构件正截面承载力计算
最小配筋率ρmin
最小配筋率规定了少筋和适筋的界限
min
As ft 0.45 bh fy
且同时不应小于0.2%
受弯构件正截面承载力计算
2.
3.
矩形截面梁高宽比h/b=2.0~3.5;T形截面梁高宽比h/b=2.5~4.0;
梁的高度h通常取为1/10~ 1/15梁跨,由250mm以50mm为模数增大; 梁宽为120、150、180、200、220、250、300……
受弯构件正截面承载力计算
三 受弯构件的力学特性
P
A B
M
P C D A
少筋梁:一裂即坏,裂缝很宽,脆性破坏,截面过大不经济,设计时应避免。 适筋梁:受拉钢筋屈服,混凝土达抗压极限强度,充分利用材料,作为设计依据 超筋梁:压区混凝土的压碎,受拉钢筋未屈服,脆性破坏,设计时应避免。
钢筋混凝土受弯构件正截面承载力计算

结性能,钢筋的混凝土保护层厚度c一般不小于 25mm;
并符合附录四附表4—1的规定。 截面有效高度 h0 h as
Ý¡ 30mm
1.5d cݡ cmin
d
混凝土保护层计算厚度as:
h0
钢筋一层布置时 as=c+d/2 ,
钢筋二层布置时 as=c+d+e/2, a
其中e为钢筋之间净距。
Ý¡ cmin 1.5d
4.1 概述
第三章 钢筋混凝土受弯构件正截面承载力计算
3.2 受弯构件正载面的试验研究
b
一、适筋梁正截面受力过程
As
ec f
xn
h h0
a
h0:有效截面高度 es 平截面假定
应变片
第三章 钢筋混凝土受弯构件正截面承载力计算
应变图
ec max
应力图 M
et max
Mcr
M
ey
My
M
xf D
Mu Z
现浇梁板:常用C15~C25级混凝土 预制梁板:常用C20~C30级混凝土
● 另一方面,RC受弯构件是带裂缝工作的,由于裂缝宽度 和挠度变形的限制,高强钢筋的强度也不能得到充分利用。
梁常用Ⅱ~Ⅲ级钢筋,板常用Ⅰ~Ⅱ级钢筋。
第三章 钢筋混凝土受弯构件正截面承载力计算
◆截面尺寸确定 ● 截面应具有一定刚度,满足正常使用阶段的验算能
基本公式: fcbx f y As
KM
fcbx(h0
x) 2
f y As (h0
x) 2
x≥bh0时, 会产生超筋破坏。此时截面承载力用
bh0 代入计算 KM
第三章 钢筋混凝土受弯构件正截面承载力计算
钢筋混凝土受弯构件正截面承载力计算

为保证钢筋混凝土结构的耐久性、防火性以及钢
筋与混凝土的粘结性能,钢筋的混凝土保护层厚
5度、一配般筋不率小于2A 5msm% ; ....4...2()
bh0
用下述公式表示
As bh0
%
公式中各符号含义:
As为受拉钢筋截面面积; b为梁宽;h0为梁的有效 高度,h0=h-as;as为所有受拉钢筋重心到梁底面 的距离,单排钢筋as= 35mm ,双排钢筋as= 55~60mm 。
M/ M u
Mu
1.0
0.8 My
0.6
II
0.4
III III a II a
M cr I a
I
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
说明:
对于配筋合适的梁,在III
阶段,其承载力基本保持不 变而变形可以很大,在完全
M/ M u
Mu
1.0
破坏以前具有很好的变形能 力,破坏预兆明显,我们把
0.8 My
通常采用两点对称集中加荷,加载点位于梁跨度 的1/3处,如下图所示。这样,在两个对称集中荷载间 的区段(称“纯弯段”)上,不仅可以基本上排除剪力的 影响(忽略自重),同时也有利于在这一较长的区段上(L /3)布置仪表,以观察粱受荷后变形和裂缝出现与开 展的情况。在“纯弯段”内,沿梁高两侧布置多排测 点,用仪表量测梁的纵向变形。
梁破坏时的极限弯矩Mu小于在正常情况下的开
裂弯矩Mcr。梁配筋率越小, Mcr -Mu的差值越大; 越大(但仍在少筋梁范围内), Mcr -Mu的差值越小。
当Mcr -Mu =0时,它就是少筋梁与适筋梁的界限。这
时的配筋率就是适筋梁最小配筋率的理论值min。
第4章受弯构件的正截面受弯承载力

11
净距30mm 钢筋直径1.5d h h0=h-60
净距25mm 钢筋直径d
b
净距25mm 钢筋直径d
12
《规范》4.2.7 构件中的钢筋可采用并筋的配置形式。直 径28mm 及以下的钢筋并筋数量不应超过3 根;直接32mm 的钢筋并筋数量宜为2 根;直径36mm 及以上的钢筋不应 采用并筋。并筋应按单根等效钢筋进行计算,等效钢筋的 等效直径应按截面面积相等的原则换算确定。
应变测点 P
P
1 1 ( ~ )L 3 4
百分表 L
弯矩M图
剪力V图
图4-4试验梁
19
适筋梁跨中弯矩M/Mu~ f的曲线如图
图4-5
M/Mu-f图
20
(4)实验过程分析: A.三阶段的划分原则: 第Ⅰ阶段:弯矩从零到受拉区边缘即将开裂,结束时称为 Ⅰa阶段,其标志为受拉区边缘混凝土达到其极限拉应 0 变 tu;
h
as
As
b
c
f
s
xn
Mcr
阶段 I a
As as
b
h0
h
c
f
s
xn
M
ft
阶段
As as
h0
h
s
22
*第Ⅰ阶段:未裂阶段
从开始加荷到受拉区混凝土开裂,梁的整个截面均参 加受力,由于弯矩很小,沿梁高量测到的梁截面上各个纤 维应变也小,且应变沿梁截面高度为直线变化。虽然受拉 区混凝土在开裂以前有一定的塑性变形,但整个截面的受 力基本接近线弹性,荷载-挠度曲线或弯矩-曲率曲线基本 接近直线。截面抗弯刚度较大,挠度和截面曲率很小,钢 筋的应力也很小,且都与弯矩近似成正比,受压区与受拉 区应力分布图形均为三角形。 在弯矩增加到Mcr时,受拉区边缘纤维的应变值即将 到达混凝土受弯时的极限拉应变实验值ε tu0,截面遂处 于即将开裂状态,称为第I阶段末,用Ia表示,受压区应 力分布图形接近三角形,受拉区应力分布图形则成曲线 23 分布。
受弯构件正截面承载力计算

破坏特征:一裂即坏
无明显预兆,脆性破坏,避免采用
目录
4.1
4.2
(a)适筋
4.3
梁
4.4
4.5
(b) 超筋 梁
4.6
4.7
(c) 少筋 梁
钢筋混凝土梁正截面破坏形态
Back
目录
4.4 受弯构件正截面承载力计算基本规定 4.1 4.2
4.4.1 基 本 假
4.3
定
4.4
• 1. 平截面假定
4.5
图4.4 并筋
Back
目录
4.3 受弯构件正截面受力性能
4.1
4.2
4.3
4.3.1试验研究
4.4
4.5
4.6
4.7
(b) (a)
(a) 试验梁测点布置
(b) 截面及应变分 布
图4.5 钢筋混凝土简支梁受弯试验
目录
1 适筋梁受力过程的三个阶段 4.1 4.2 4.3 4.4 4.5 4.6 4.7
• (5) 梁最外层钢筋(从箍筋外皮算起)至混凝土表面的最小距 目录
离为钢筋的混凝土保护层厚度c,其值应满足《规范》规定的最 4.1
小保护层厚度中规定(见附表14),且不小于受力钢筋的直径d。
截面有效高度h0=h-c-dv-d/2,其中dv是箍筋直径。
4.2
(6) 钢筋的净间距:
4.3
• 水平方向的净间距:梁上部钢筋水平方向的净间距不应小于 4.4
目录 4.1 4.2 4.3 4.4 4.5 4.6 4.7
目录
4.1
例4.2 某钢筋混凝土矩形截面梁,混凝 4.2
土保护层厚为25mm(二a类环境),b=250mm, 4.3
h=500mm , 承 受 弯 矩 设 计 值 M=160 , 采 用 4.4
无明显预兆,脆性破坏,避免采用
目录
4.1
4.2
(a)适筋
4.3
梁
4.4
4.5
(b) 超筋 梁
4.6
4.7
(c) 少筋 梁
钢筋混凝土梁正截面破坏形态
Back
目录
4.4 受弯构件正截面承载力计算基本规定 4.1 4.2
4.4.1 基 本 假
4.3
定
4.4
• 1. 平截面假定
4.5
图4.4 并筋
Back
目录
4.3 受弯构件正截面受力性能
4.1
4.2
4.3
4.3.1试验研究
4.4
4.5
4.6
4.7
(b) (a)
(a) 试验梁测点布置
(b) 截面及应变分 布
图4.5 钢筋混凝土简支梁受弯试验
目录
1 适筋梁受力过程的三个阶段 4.1 4.2 4.3 4.4 4.5 4.6 4.7
• (5) 梁最外层钢筋(从箍筋外皮算起)至混凝土表面的最小距 目录
离为钢筋的混凝土保护层厚度c,其值应满足《规范》规定的最 4.1
小保护层厚度中规定(见附表14),且不小于受力钢筋的直径d。
截面有效高度h0=h-c-dv-d/2,其中dv是箍筋直径。
4.2
(6) 钢筋的净间距:
4.3
• 水平方向的净间距:梁上部钢筋水平方向的净间距不应小于 4.4
目录 4.1 4.2 4.3 4.4 4.5 4.6 4.7
目录
4.1
例4.2 某钢筋混凝土矩形截面梁,混凝 4.2
土保护层厚为25mm(二a类环境),b=250mm, 4.3
h=500mm , 承 受 弯 矩 设 计 值 M=160 , 采 用 4.4
钢筋混凝土受弯构件正截面承载力计算—受弯构件的构造要求

封闭式双肢箍筋
封闭式四肢箍筋
肢数
单肢——一般不采用。 双肢——一般采用开口式双肢箍筋。 四肢——所箍受拉钢筋每层多于5根或所箍受压钢筋每层多余3根时采用。
梁的钢筋
配筋率ρ(%)
As
bh0
即:纵向受力钢筋截面面积As与混凝土的有效面积的百分比。
b为矩形截面宽度或T形截面梁肋宽度;
受压区
截面的有效高度h0:
受拉受受钢拉拉筋钢钢筋筋
受拉受受钢拉拉筋钢钢筋筋
受拉受受钢拉拉筋钢钢筋筋
截面形式和尺寸
梁 矩形、T形、工字形、箱形(矩形、T形中小跨径时采用, 工字形、箱形跨径较大时采用)。
截面形式和尺寸
截面形式和尺寸
建筑工程中受弯构件常用的 截面形式
次梁 主梁
尺寸要求
梁的尺寸要求
矩形 120,150,180,200,220,250,其后按50mm一级增加(当梁 梁宽b 高h≤800mm时)或按100mm一级增加(当梁高h>800mm时)。
02 与计算相辅相成;
03 反映实际工程设计的特点。
截面形式和尺寸
板 矩形(实心、空心)
整体式板 受拉受受钢拉拉筋钢钢筋筋
受压受受区压压区区
装配式实心板受压受受区压压区区
装配式空心板受压受受区压压区区
受拉受受钢拉拉筋钢钢筋筋
受拉受受钢拉拉筋钢钢筋筋
受压受受区压压区区
受压受受区压压区区
受压受受区压压区区
矩形 300,350,400,450 其后按50mm一级增加; 梁高h 800,900,100 其后按100mm一级增加。
矩形梁 高宽比
h/b
一般2.0~2.5。
装配式 高跨比h/L:1/11~1/16,肋宽b常取150~180mm 。翼缘悬臂端 T形梁 厚度不应小于100mm,梁肋处翼缘厚度不宜小于梁高h的1/10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受弯构件正截面受弯承载力构造要求
受弯构件是在实际工程中经常使用的一种构件形式,它在建筑、桥梁、机械等领域都有广泛的应用。
为了确保受弯构件的安全可靠使用,需要对
其正截面的受弯承载力进行构造要求。
下面将详细介绍受弯构件正截面受
弯承载力的构造要求。
1.正截面有效高度
正截面有效高度是指从正截面底边至压力纬线的距离。
在确定正截面
有效高度时,需要考虑构件的几何形状、受力特点以及受力荷载等因素。
正截面有效高度的确定对于受弯构件的受弯承载力具有重要影响,一般采
用弯曲变形能量原理进行计算。
2.受压区的构造要求
受压区是指正截面中压力产生的区域。
受压区的构造要求包括混凝土
的尺寸、钢筋的布置以及受压区尺寸的确定等。
为了保证受压区的承载能力,混凝土的强度等级应符合设计要求,并且钢筋的强度、布置密度等参
数也需要满足相应的要求。
3.受拉区的构造要求
受拉区是指正截面中拉力产生的区域。
受拉区的构造要求包括混凝土
保护层、钢筋的布置以及受拉区尺寸的确定等。
为了保证受拉区的承载能力,混凝土的保护层厚度应满足设计要求,并且钢筋的强度、布置密度等
参数也需要满足相应的要求。
另外,为了提高受弯构件的受弯承载力,可以采用增加截面尺寸、增加受力钢筋数量、采用高强度混凝土等方法。
在设计过程中,需要根据实际情况合理选取合适的构造要求。
总之,受弯构件正截面受弯承载力的构造要求是确保受弯构件在受弯荷载作用下安全可靠使用的重要措施。
通过合理设计正截面的有效高度、受压区和受拉区的构造要求,可以提高受弯构件的受弯承载力,确保其满足工程要求。