弹性力学作业答案Word版

合集下载

弹性力学课后答案

弹性力学课后答案

弹性力学课后答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。

2-4 按习题2-2分析。

2-5 在的条件中,将出现2、3阶微量。

当略去3阶微量后,得出的切应力互等定理完全相同。

2-6 同上题。

在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。

其区别只是在3阶微量(即更高阶微量)上,可以略去不计。

2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。

2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。

2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。

2-10 参见本章小结。

2-11 参见本章小结。

2-12 参见本章小结。

2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设 )。

2-14 见教科书。

2-15 2-16 见教科书。

见教科书。

2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。

2-18 见教科书。

2-19 提示:求出任一点的位移分量和,及转动量,再令 ,便可得出。

第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。

3-2 用逆解法求解。

由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。

3-3 见3-1例题。

3-4 本题也属于逆解法的问题。

首先校核是否满足相容方程。

再由求出应力后,并求对应的面力。

本题的应力解答如习题3-10所示。

应力对应的面力是:主要边界:所以在边界上无剪切面力作用。

(完整版)弹塑性力学作业(含答案)(1)

(完整版)弹塑性力学作业(含答案)(1)

第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。

解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得: 代入弹性力学的有关公式得: 己知 σx = -10 σy= -4 τxy = +2由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。

2—6. 悬挂的等直杆在自重W 作用下(如图所示)。

材料比重为γ弹性模量为 E ,横截面面积为A 。

试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。

解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅;所以离下端为z 处的任意一点c 的线应变εz 为:z z z E Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=ooooV ;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆===oV ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。

试确定外法线为n i(也即三个方向余弦都相等)的微分斜截面上的总应力n P v、正应力σn 及剪应力τn 。

弹性力学(徐芝纶)前四章习题答案

弹性力学(徐芝纶)前四章习题答案

著应力,对远处影响忽略不计。
3.解:平衡微分方程组为:
3
其中
fx
V x
V , f y y .
x x
yx y
fx
0
y
y
xy x
fy
0
取该方程组的一组特解: x V , y V , xy 0
齐次方程组
x x y
y
yx y
xy x
0
的通解为
0
所以微分平衡方程组的解为
界条件。
(4)位移单值条件为:令应力分量表达式中可能留有的待定函数或待定常数通过积分产生
的多值项为 0。
1
2.解:
1
F X
Y 图a
F
X
Y 图b
h Z
Y 图c
(1) 在图 b 中,我们由剪力平衡方程和弯矩平衡方程得到:
1
F Q 0 ,即 Q F
M Fx 0 ,即 M Fx
在图 a 中,有:
4
4
x(3h 2 A hB C) 0 即 3h 2 A hB C 0
4
4
以上四式联立得:
A
2 g h2
,
B
0, C
3 g 2h
,
D
g 2
代入(a),并注意 E F G 0 得:
x
6 g h2
x2 y+
4 g h2
y3
6Hy
2K
y
2 g h2
y3
3 g 2h
y
gy
g 2
xy
x
2 y 2
y
2 x2
xy
2 xy
x
2 y 2
V
y

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

弹性力学(徐芝纶)第四章习题答案

弹性力学(徐芝纶)第四章习题答案

第四章 习题解答4-14-2、解:本题为轴对称应力问题,相应的径向位移为: ()()()()()θ+θ+⎥⎦⎤⎢⎣⎡υ-+υ-+-υ-+υ+-=sin cos ln K I Cr 12Br 311r Br 12r A 1E 1u r (1) 轴对称应力通式为()()02ln 232ln 2122=+++-=+++=θθτσσr r C r B rAC r B r A由应力边界条件()()()()0,00,===-=====b r r b r r a r r a r r q θθτστσ并结合位移单值条件可知B=0,求得:22222222ab qa C a b qb a A -=--= 因半径的改变与刚体位移I ,K 无关,且为平面应变问题,将A 、B 、C 代入(1)式,并将υυυυ-→-→1,12EE 得:内半径的改变:()()()⎪⎪⎭⎫⎝⎛-+-+-=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυυυ11*111112222222222222a b a b Eqa a a b qa a a b q b a E u ar r外半径的改变:()()()2222222222221*11111a b ab E qa b a b qa b a b q b a Eu br r --=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυ 圆筒厚度的改变:()()()⎪⎪⎭⎫⎝⎛-++---=∆-∆=∆==υυυ112a b a b E qa u u R ar r b r r4-2另解:半径为r 的圆筒周长为r π2,受载后周长则为 ()θθεπεππ+=+1222r r r , 于是半径为 ()θε+1r ,半径的改变量则为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=⎪⎭⎫⎝⎛---=C r A C rA r E E r r r 212111*2222υυυσυυσυεθθ将对应的A 、C 及r=a,b 分别代入,可求出内外半径的改变及圆筒厚度的改变。

弹性力学简明教程(第四版)_第四章_课后作业题答案

弹性力学简明教程(第四版)_第四章_课后作业题答案

弹性力学简明教程(第四版)_第四章_课后作业题答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第四章 平面问题的极坐标解答【4-8】 实心圆盘在r ρ=的周界上受有均布压力q 的作用,试导出其解答。

【解答】实心圆盘是轴对称的,可引用轴对称应力解答,教材中的式(4-11),即22(12ln )2(32ln )20AB CAB C ρϕρϕσρρσρρτ⎫=+++⎪⎪⎪⎪=-+++⎬⎪⎪⎪=⎪⎭ (a) 首先,在圆盘的周界(r ρ=)上,有边界条件()=r q ρρσ=-,由此得-q 2(12ln )2AB C ρσρρ=+++= (b)其次,在圆盘的圆心,当0ρ→时,式(a )中ρσ,ϕσ的第一、第二项均趋于无限大,这是不可能的。

按照有限值条件(即,除了应力集中点以外,弹性体上的应力应为有限值。

),当=0ρ时,必须有0A B ==。

把上述条件代入式(b )中,得/2C q =-。

所以,得应力的解答为-q 0ρϕρϕσστ===。

【4-9】 半平面体表面受有均布水平力q ,试用应力函数2(sin 2)ΦρB φC φ=+求解应力分量(图4-15)。

【解答】(1)相容条件:将应力函数Φ代入相容方程40∇Φ=,显然满足。

(2)由Φ求应力分量表达式=-2sin 222sin 222cos 2B C B C B Cρϕρϕσϕϕσϕϕτϕ⎧+⎪⎪=+⎨⎪=--⎪⎩(3)考察边界条件:注意本题有两个ϕ面,即2πϕ=±,分别为ϕ±面。

在ϕ±面上,应力符号以正面正向、负面负向为正。

因此,有2()0,ϕϕπσ=±= 得0C =; -q 2(),ρϕϕπτ=±= 得2qB =-。

将各系数代入应力分量表达式,得sin 2sin 2cos 2q q q ρϕρϕσϕσϕτϕ⎧=⎪⎪=-⎨⎪=⎪⎩ 【4-14】 设有内半径为r 而外半径为R 的圆筒受内压力q ,试求内半径和外半径的改变量,并求圆筒厚度的改变量。

《弹性力学》试题参考答案

《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中,Mdxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得, )1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

弹性力学-04(习题答案)

弹性力学-04(习题答案)

1 )
(sin
22
sin
21)
y
q0
2
2(2
1) (sin
22
sin
21)
xy
q0
2
(cos 22
cos 21)
aa q
证法1:(叠加法)
y
1
O 2
P
x
证法1:(叠加法) 分析思路:
aa q
y
1
O 2
P
x
aa
q
y
O
P x
q
aa
y
O
P x
求解步骤: 由楔形体在一面受均布压力问题的结果:
刚体
r
a2b2
(1 2)b2
a2
q(
1 b2
1
r
2
2
)
a2b2
(1 2)b2
a2
q(
1 b2
1
2
r2
)
ra
r
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
q
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
习题4-4 矩形薄板受纯剪,剪力集度为q,如图所示。如果离板边较 远处有一小圆孔,试求孔边的最大和最小正应力。
解:由图(a)给出的孔 边应力结果:
q
q(1 2cos 2 )
得:
q
x
q
r
q
q
x
r
q 1 2cos 2( 45)
y (a)
q1 2cos 2( 45)
q1 2sin 2 q1 2sin 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1.弹性力学的基本假设为均匀性、各向同性、 连续性 、 完全弹性 和 小变形 。

2.弹性力学正面是指 外法线方向与坐标轴正向一致 的面,负面指 外法线方向与坐标轴负向一致 的面。

3.弹性力学的应力边界条件表示在边界上 应力 与 面力 之间的关系式。

除应力边界条件外弹性力学中还有 位移 、 混合 边界条件。

4.在平面应力问题与平面应变问题中,除 物理 方程不同外,其它基本方程和边界条件都相同。

因此,若已知平面应力问题的解答,只需将其弹性模量E 换为 ()21E -μ,泊松比μ换为()1μ-μ,即可得到平面应变问题的解答。

5.平面应力问题的几何形状特征是 一个方向上的尺寸远小于另外两个方向上的尺寸;平面应变问题的几何形状特征是 一个方向上的尺寸远大于另外两个方向上的尺寸。

二、单项选择题
1. 下列关于弹性力学问题中的正负号规定,正确的是 D 。

(A) 应力分量是以沿坐标轴正方向为正,负方向为负 (B) 体力分量是以正面正向为正,负面负向为正 (C) 面力分量是以正面正向为正,负面负向为负 (D) 位移分量是以沿坐标轴正方向为正,负方向为负
2. 弹性力学平面应力问题中应力分量表达正确的是 A 。

(A) 0z σ= (B) [()]/z z x y E σεμεε=-+ (C) ()z x y σμσσ=+ (D) z z f σ=
3. 弹性力学中不属于基本方程的是 A 。

(A) 相容方程 (B) 平衡方程 (C) 几何方程 (D) 物理方程
4. 弹性力学平面问题中一点处的应力状态由 A 个应力分量决定。

(A) 3 (B) 2 (C) 4 (D) 5
三、简答题
1. 求解弹性力学问题的三类基本方程是什么?仅由基本方程是否可以求得具体问题的解答?为什么?
答:平衡方程,几何方程和物理方程。

仅由基本方程不可以求得具体解答,因为缺少边
界条件,只能得到问题的通解而不是特解。

2. 简述圣维南原理及其在弹性力学中的简化作用。

答:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢和主矩
相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用: (1)将次要边界上复杂的面力做分布的面力替代;
(2) 将次要的位移边界条件转化为应力边界条件处理。

四、计算题
如图所示,设单位厚度的悬臂梁在左端受到集中力和力矩作用,体力忽略不计,l h >>。


用应力函数233
Axy By Cy Dxy =+++ϕ求解应力分量。

解:(I) 显然,应力函数
233Axy By Cy Dxy ϕ=+++ (1)
满足双调和方程。

(II) 写出应力的表达式(不计体力)
22266x B Cy Dxy y
∂ϕ
σ==++∂ (2)
220y x
∂ϕ
σ==∂ (3)
M
223xy A Dy x y
∂ϕ
τ=-
=--∂∂ (4) (III) 通过边界条件确定待定系数
边界条件为: 边界2
h
y =-
上: 2
0h y y =-
σ= (5)
2
0h xy
y =-
τ= (6)
边界2
h
y =
上: 2
0h y y =
σ= (7) 2
0h xy
y =
τ= (8)
由(2)(4)(5)(6)式有
2
302h A D ⎛⎫
---= ⎪⎝⎭
23
04
A h D += (9)
由(2)(4)(7)(8)式也可得到(9)式。

在边界0x =上,用圣维南原理提出如下边界条件
()20
2
1h h x N
x dy F
=-σ⋅⋅=-⎰ (10)
()20
2
1h h xy s
x dy F =-τ
⋅⋅=-⎰
(11)
()20
2
1h h x x dy y M =-σ
⋅⋅⋅=-⎰ (12)
将(2)代入(10)得到
()22
26h h N
B Cy dy F
-+⋅=-⎰ 2N Bh F =-
2N
F B h
=-
(13) 将(4)代入(11)得到
()2
22
3h h s
A Dy dy F -+⋅=⎰
2 1
4
s F
A Dh
h
+=(14)联立(9)(14)得到
3 2s
F
A
h
=(15)
3
2s
F D h =-
(16) 将(2)代入(12)得到
()22
26h h B Cy y dy M -+⋅=-⎰
3
2M
C h =-
(17) 由(13)(15)(16)(17)及(2)(3)(4)得到
331212N s x F F
M y xy h h h
σ=-
-- (18) 0y σ= (19)
2
3362s s xy F F y h h
τ=-
+ (20)
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档