冰蓄冷空调常识

冰蓄冷空调常识
冰蓄冷空调常识

冰蓄冷空调系统常识

冰蓄冷是利用冰的熔解热进行蓄冷,因此蓄冷密度较水蓄冷大,相同蓄冷能力的蓄冰槽与蓄水槽之体积比1:8~10。与水蓄冷相比,冰蓄冷系统的优点是:蓄冷密度高,使用蓄冷槽体积较小;温度稳定,便于控制。

常见的冰蓄冷系统形式:

1、冰球式(Ice Ball):将溶液注入塑胶球内但不充满,预留一膨胀空间。将塑料球放入蓄冰罐内,再注入冷水机组制出的低温乙二醇水溶液,使冰球内的溶液冻结起来。融冰时,让从空调负荷端流回的温度较高的乙二醇水溶液通过冰罐内塑胶球将冰球内的冰融化而释冷。

2、完全冻结式(Total-Freeze-Up):是将塑料或金属管伸入蓄冰筒(槽)内,管内通以冷水机组制出的低温乙二醇水溶液(也称二次冷剂),使蓄冰筒内90%以上的水冻结起来。融冰时,让从空调负荷端流回的温度较高的乙二醇水溶液通过塑料或金属管内部,将管外的冰融化而释冷。

冰蓄冷空调系统是怎样运行的?

夜间,冷水机组保持乙烯乙二醇溶液在-3℃~ -4℃运行,此时的乙烯乙二醇溶液会在机组与冰筒的热交换之间对流,慢慢的将冰筒内的水结成冰块。在制冰运行时,乙烯乙二醇溶液是不通过空气处理机组的。

日间,由冷水机组回来的11℃部分溶液通过冰筒冷却至1℃;另一部分11℃的溶液则与冰筒出来的1℃溶液混合在一起而成为6℃,再而进入空气处理机组,约在13℃离去。设定在6℃的三通控制阀操作此混合状态。空气处理机组将24℃的空气冷却到13℃﹙常温系统﹚。

春秋季的日间,可以随意由冷水机组或蓄冰筒提供建筑物的全部冷量。

市场应用较成熟的有盘管式、冰球式、冰晶式。

盘管式特点:蓄冷及放冷过程稳定,水力管网易于平衡。蓄冰及融冰速度较慢;盘管管道较细,流动阻力大。

冰球式特点:设备结构简单,阻力小,技术要求低。蓄冰及融冰速度较快。缺点:冰球需密集堆放,会造成冰球外冷媒水的流量不均及旁通,易引起传热的不稳定,冰球间反复挤压影响寿命。

蓄冰装置中使用塑料换热管与金属换热管之比较

金属管的导热系数比之塑料管要大很多,但是,在对冰筒的影响方面,这只是一个并不重要的方面。

(1)如果对蓄冰筒的整体换热效果进行考虑,会发现绝大部分热阻(也即影响结冰/融冰的根本原因)

是在蓄冷材料方面,即水这一侧。换热盘管材料本身对于总热阻的影响非常之小。

(2)高灵已经公布了在多种条件下蓄冰筒蓄冷/释冷的运行性能数据。这些数据都是由实际测量得出的结果,而不是由模拟或计算所得。可以完全参考这些测试结果去评价材料不同所导致的结果。

(3)传热不仅取决于盘管材料本身的导热系数,而且和换热面积有关。这也是高灵冰筒要在190型蓄冰筒中使用长达4300米塑料盘管的原因。高灵蓄冰筒中结冰厚度平均只有12mm (4)除了换热面积和材料性质外,冰筒中的传热还和盘管中液体流动状态及盘管粗细、盘管间距等因素有关。

(5)如果把高灵产品和其它产品的制冰温度进行比较,会发现在多项能效指标中,高灵产品是最高的。要知道,正是结冰过程决定了效率以及制冷机的运行费用。

(6)高灵冰筒盘管中的逆流设计(相邻管中的液体流动方向相反),保证了全长度盘管都是有效换热面积。

(7) 最后一点,正确的选择塑料材质以及优化的设计确保了高灵冰筒中的盘管有极好的防腐蚀性能。蓄冰产品采用金属盘管换热器的设备,其对水质的处理有很严格的规定,这是为了防止25%的乙烯乙二醇溶液对金属管道的腐蚀。而高灵产品对此无特别要求。

蓄冰筒与金属方箱型蓄冰槽的比较

(1)能效

方箱型蓄冰筒中的结冰厚度平均为30mm (产品如BAC ),高灵产品中盘管外的结冰厚度为12.7mm 。若冰筒的结冰厚度较厚,则需要更低的蒸发温度及更长的制冰时间,从而导致机组效率及储能效率较低。

(2)导热系数/运行压力

方箱型蓄冰桶中盘管材质为聚丙烯材料(产品如FAFCO ),其导热系数仅为高灵冰筒中使用的Polythylene 的1/3~1/4,这势必影响其蓄能效果。此外,聚丙烯材料的最大承受压力为3~4bar ,高灵冰筒可达6bar 。 暖通百科

(3)冰体积测量

换热盘管置于直接蒸发式蓄冰槽中时,经过多次蓄冰/释冰循环后,会产生残留冰,不能完全融解。这样,在槽中靠上的盘管附近,会有管外水流短缺现象,从而影响运行效果并导致蓄冰体积测量的误差。

(4)空气搅动

高灵蓄冰筒采用专利逆流设计,全部换热盘管的表面都被充分利用,无需空气搅拌器。空气搅动不仅需要额外耗能以驱动风机,而且会引入热空气而抵消一部分蓄存的冷量。

(5)技术参数的可靠性

高灵公布的技术参数已经通过了多家官方实验室的检测。

盘管与封装式/冰球系统的比较

(1)能效 制冰方式

主要优点 主要缺点 水与冷媒直

接热交换方

热交换效率高;生成冰激凌式冰,融冰过程负荷跟随性好。 水与氟利昂反应生成腐蚀性气体腐蚀管壁 静态制冰 易于实现。

随着制冰量的增加,水与冷媒之间的换热热阻增大,换热效率降低,制冷机工况变坏

水溶液动态

制冰 制冰过程中一直保持较高的热交换效率,制冷机运行在较佳工况;

生成冰缴凌式冰,融冰

过程负荷跟随性好。 水溶液价格较昂贵;水溶液中细菌易于繁殖;随着制冰量的增加,水溶液浓度升高,相变温度降低,制冷机蒸发温度降低,工况变坏。

过冷水动态

制冰 同上

运行不稳定,容易发生冻结。

直径70mm的冰球其结冰厚度为37.5mm,100mm直径的冰球其结冰厚度为50mm。而蓄冰筒的换热盘管其结冰厚度仅有12.7mm,较厚的结冰厚度需要更低的蒸发温度,也就意味着降低储能效率和增加运行费用。

(2)蓄冰率

冰球系统的冰与蓄冰容器体积比只有65%。另外,一个冰球中只有85%的体积充注为水,其余空间留作水结冰膨胀之用。这样,为达到相同的蓄冰量,冰球式系统就需要更多的空间。(3)运输重量

冰球在出厂前就需灌装水,所以,运输的重量要大很多。

(4)融冰不均衡

冰球外的乙二醇溶液流动状况随冰罐形状的不同而有所不同。结了冰的冰球容易漂浮起来,而球外液体会从阻力较小的通路流过,这就造成了运行效果的不确定性,在水平放置的冰罐中尤甚。

(5)乙二醇消耗量

冰球式蓄冰罐中35%的体积是乙二醇溶液,相比之下,高灵冰筒中只需要占总体积5%的乙二醇溶液。故此,冰球式系统的初投资要大很多。

(6)蓄冰量的测量

冰球在结冰时体积并不膨胀,所以无法确定结冰的多少,也不能安装能量控制系统。

(7)需分别购买冰球、冰罐和冰罐内的配水管,然后在现场组装和保温。冰罐制造需要大量钢材和大量的现场焊接工作,工期较长。

(8)一项工程需用数万个冰球,每年需抽检一部分,也不容易检查出冰球有无泄漏。

冰蓄冷空调系统的运行策略有哪些?

全部蓄能与部分蓄能

全部蓄冷就是白天不开冷水机组,夜间冷水机组工作,将白天建筑物所需的冷负荷由冷水机组制成冰并贮存起来,到第二天,把夜间生产的冰经融化放出冷量来满足建筑物冷负荷的需要。这种方式常常用于改造工程中利用原有的冷水机组,只需增加蓄冷设备和有关的辅助装置。

在新建的建筑中,部分蓄能系统是最实用的,也是一种投资有效的负荷管理策略。在这种负荷均衡的方法中,冷水机组连续运行,它在夜间制冷并蓄存,在白天利用蓄存的冷量和制冷机共同为建筑物提供冷量。

将运行时数从14小时扩展到24小时,可以得到最低的平均负荷需电量,费用大大地减少,而且冷水机组的制冷能力也可减少50-60%或者更多一些。

原则上说,对于设计日尖峰负荷远大于平均负荷,则系统宜采用全部蓄冷;反之,对于设计日尖峰负荷与平均负荷相差不大时,宜采用部分蓄冷。全部蓄冷式系统的投资较高,占地面积较大,除个别建筑物外,

一般不宜采用;而部分蓄冷式系统的初投资与常规空调系统相差不大。

冰蓄冷空调系统的配置形式有那些?

冰蓄冷系统的配置合适与否直接关系到蓄冷系统的运行效果。合理可行的系统配置将会得到稳定可靠的系统工作效能。最终保障建筑物空调系统的正常供冷使用要求。冰蓄冷的配置形式有两种:

(1)并联系统

制冷机组与蓄冰设备并联连接,二者的入口溶液温度相同,能均衡发挥制冷机组和蓄冰设备的效率,适合于常规末端系统。在并联方式下,制冷机组与蓄冰设备分别处于相对独立的环路中,操作控制简单灵活,系统节能效果更为显著,对所有类型冷水机组均适用。

(2)串联系统

制冷机组与蓄冰设备串联,系统的乙二醇温差可达8~10℃,并提供2~3℃冷冻水,适用于大温差送水系统及低温送风系统。

蓄冰介质为何采用乙烯乙二醇?

乙烯乙二醇溶液或盐水仅作为低温低热介质,在蓄冰筒和成套的冷水机组之间,或在冷却排管和蓄冰筒或冷水机组之间传递热量。乙烯乙二醇溶液的采用使系统不会冻结,不需大量充注冷媒,以及避免制冰设备的漏损。暖通在线

盐水蓄冰筒是使低温盐水通过聚乙烯管道循环,PE管盘绕在绝热的聚氨酯筒内。通过乙烯乙二醇在管内循环使周围水结成冰或使冰融化,经过相变的水留在筒内。由于管子周围没有水进行循环,冰筒会冻成固体,这种冰筒不存在用空气泵搅拌的问题。这种结构的盐水蓄冰桶是一个密封系统,和成套制冷设备或汽车蓄电池很相似。

盐水蓄冰桶的传热面积是冷媒蓄冰时传热面积的4—5倍。扩大了传热面积,使盐水温度靠近制冰的温度。

离心式和螺杆式冰水机组生产-5度至-3度的盐水,很适合实际应用。离心式冷水机组在低温应用方面如食品加工、化妆品、药品、洁净室等其它工业方面的应用,当然也包括溜冰场,都收到了良好的效果。

如何决定制冰时间?

如何决定制冰的时间。可供制冰的时间不仅是低峰时间,如果电力公司不能提供低廉的电价,任何时间均可以生产冰。制冰不要和建筑物空调冷却的用电时间相同。如低峰时能提供廉价的电价,尽可能将空调冷却负荷推迟到低峰,则可得到更多的节省。

制冰可在电需求低的时间开始,制冰的冷水机组可以不供给冷负荷,或可以供给少量的冷负荷。制冰循环的起始时间的控制,一般是在黄昏当建筑物关闭时开始。当电力需求达到高峰之前冰筒满载。制冰循环的停止或根据舒适冷却的要求冷水机组开始工作,或蓄冰筒完全结冰,无论那一个首先发生均可。

根据蓄冰筒的设计来决定冰的实际生产量的方法很多。水结成冰时体积膨胀,测量蓄冰筒的水位可以得出制冰的百分比。结冰后传热效率降低,离开蓄冰筒的乙二醇溶液温度降低,当蓄冰筒出口处乙二醇溶液温度达到预定的温度时停止制冰。

常见的融冰方式有哪些?

常见的融冰办法有:冷水机组优先供给、蓄冰优先供给和限定需求量。

冷水机组优先供给:冷水机组优先供给负荷系统是:冷水机组和其下游的蓄冰筒串联。冷水机组和蓄冰筒上的调节阀安置在冷却的乙二醇管道上指定位置。由于冷水机组位于上游,故先进行制冷。冷水机组能满足负荷要求时,蓄冰筒则处于旁路,只有当冷水机组不能满足负荷时才用冰补充。冷水机组优先供给负荷是最简单的融冰途径,它始终需要提供稳定可靠的控制。当回流的乙二醇温度最高时,冷水机组功率最大。由冰来承担部分负荷可仅通过冷水机组温度的调整而得到改变。在这种装置中,只有当高峰负荷时冰才融化。它不适合于低峰时使用。如果白天和夜间电费相同,制冰比制冷更昂贵,因此蓄冰只在确实需要减少电力需求,或电力需求不敷使用时才采用。

冰优先供给负荷:冰优先供给负荷系统是蓄冰筒和其下游的冷水机组串联。冷水机组和蓄冰筒上的调节阀都安置在冷却的乙二醇管道上指定位置。由于蓄冰筒位于上游,故首先承担负荷。当蓄冰能承担负荷时,冷水机组停止工作。只有在蓄冰冷量不满足负荷时,冷水机组才进行补充。冰优先供给负荷能始终提供稳定可靠的控制。由冰承担部分负荷时,可通过改变调节阀的位置得到调整。由于冰首先承担负荷,冰的消耗量很大。冰优先供给负荷也适用于低温送风系统,由于出口的较低温度的乙二醇是由冷水机组保证的。

限定需求量:限定需求量是指在电网高峰时,限制冷水机组的用电需求。限定需求量系统是把冷水机组和蓄冰筒并联,两个冷源:冰或者冷水机组均可在上游。限定需求量系统具有以

上两种装置的优点。只要允许设计中存在把两个冷源中任何一个置于下游的灵活性。建筑物的自控系统调节冷水机组承担的负荷。精确控制的冷水机组能最大限度地提高蓄冰容量和最大限度地降低电力需求。把白天耗冰量提高到最大,此系统就可以从低峰耗电量中获得最大限度的节省。限定需求量系统的控制离不开建筑物的控制。

蓄冰系统的控制

冷水机组的控制

冷水机组的控制是此类型蓄冰系统的一种关键。全部蓄冰系统和多样的冷水机组系统仅在一个温度下制冷。在冷水机组在一种情况选出和运行,辅助的冷水机组的控制可以不要。但是部分蓄冰系统要求冷水机组既作为制冰设备又作为常规的冷水机组。制冰的开始和结束都需要自动控制。制冰周期是在白天工作开始以前进行,在制冰过程中,冷水机组由蓄冰筒来控制。蓄冰筒必须大于冷水机组的制冰能力,这才能使冷水机组在最大限度制冰能力下运行,不希望无论是离心式还是螺杆式冷水机组在制冰时间卸载。制冷周期的结尾,如冰的厚度达到其最大值,冷水机组的出口溶液温度和冷水机组的温差是较低的。冷水机组必须在最后状况下安全运行。这种方式对制冰来说冷水机组的温度不需要控制。在制冰周期内,冷水机组在最大限度能力情况下运转。冷水机组的控制仅仅是开停冷水机组。当冰筒中蓄满冰时制冰停止,低峰结束若继续制冰会干扰建筑物的需求控制及舒适空调。何时冰筒再装载,有几种方法可以确定,最简单的方法是由冷水机组控制所得到的反应更快,由于电动机电流过载而引起断路。

蓄冰筒的控制

改变溶液通过蓄冰筒的流量可控制蓄冰系统的排放率(溶解水)这可由三通混合阀或调节阀来控制。此阀门可混合冷溶液和旁通蓄冰筒温度较高的溶液以维持出口溶液温度。冻结周期中,所有溶液直接通过冰筒,此情况下冰筒是一个热源。

热交换器的控制

在冷冻水系统中可安置冷水机组的地方即可安装热交换器。在大吨位系统或部分蓄冰系统中,蓄冰系统只是几种冷源中的一种,热交换器的安装位置要保证于与其他冷源的一致性。

热交换器容量的控制有下列几种方法:

1. 冷冻水流量

2. 乙二醇溶液流量

3. 冷冻水温度

4. 乙二醇溶液温度

乙二醇溶液管道或冷冻水管道的三通混合阀用于冷量控制,在冻结周期时,乙二醇溶液管道上的旁通阀可防止接近冻结温度的溶液进入热交换器。此阀也可控制热交换器的冷量。三通阀通过变化送入热交换器乙二醇溶液的流量达到控制热交换器容量的目的。

热交换器冷量也可通过控制冷冻水温度及流量达到。当进入热交换器回水温度升高,热交换器的冷量由热交换器和冰筒相混合的温度来确定。乙二醇溶液的温度决定热交换器的最大冷量。溶冰周期内乙二醇溶液温度在0℃~7℃之间变化。如果控制误差近似值2℃,则热交换器出口冷冻水温度在2℃~9℃之间。该温度均在正常舒适空调应用范围之内。这样看来热交换器的控制也许并不需要,然而,如果对于控制策略来说,溶化量是关键的,那么一些形式的制冰量控制也是需要的。

目前国内外动态制冰的方法大致有以下几种:

1.具有机械刮板装置的制冰法:制冰主要部件是蒸发器用的冰筒,冰筒设计成内

外套筒结构,制冷工质在内筒和外筒之间蒸发。在内筒中装有可旋转的机械刮板,有独立点击驱动,刮板紧贴内壁转动挂下冻结在筒壁上的冰层或冰晶,桶内的载冷剂可以用淡水也可以用盐水(或海水)。用淡水制冰,淡水由设在内筒上方的喷嘴喷入,制冷剂与载冷剂通过内筒壁换热,使载冷剂温度迅速降低,在内筒壁上方结成薄薄的冰层,然后利用旋转的刮板刮下后形成冰片。用这种方法制冰可获得动态片冰,制冰过程连续,制冰量大,制冰设备技术也比较成熟。制冰机蒸发温度一般在-15~30 ,较低的蒸发温度可使冰粒具有较大的过冷度,减小输送过程中冰融化损失,而且便于输送。目前孙村矿所采用的就是这种制冰方式,也可以用这种制冰方法获得冰水混合物的冰浆,盐水(或海水)制冰,盐水(或海水)由内筒下方进入,形成的流冰由上方输出。流态冰的含冰量通常在30%~60%之间,可根据盐水浓度和蒸发温度进行调整。用这种制冰方法可获得冰水混合物——冰浆,其流动性好,便于管道输送。这种制冰工艺要求制冰筒内筒为圆形,内筒材料可用钢板或不绣钢板,对内筒的光洁度,以及机械刮板装置的安装精度要求较高。

2.以水为制冷工质的压缩制冷制取流体冰的方法:以淡水为制冷工质,同时也是制冰原料,采用透平式压缩机(实际上是抽真空)制冷,使水在底压环境下通过闪发式蒸发器蒸发,最低温度可达-3,在低于0时水中有冰晶生成。由于水在低温时比容较大,实际上用这种方法制取的流体冰含量通常很低。该制冰方法的关键设备是透平式压缩机,透平式压缩机生产工艺复杂,价格较高。国内尚未见改种方法的报道。

3.滑落式片冰冰蓄冷空调技术

融冰性能:滑落式片冰系统融冰特性较好,融冰时冰与水直接接触,片状冰具有极大的表面积,换热效率高,同时冰融化后的水直接进入循环系统,循环系统的出水实际上取自冰水混合物的水,在融冰初期和终期均可保持恒定的出水温度。运行策略更灵活,最大限度降低运行费用。

能效比高:滑落式片冰系统制冰时由于没有乙二醇中间换热环节,制冷剂与水直接换热结冰,机组蒸发温度高,制冰时的效率高。由于制冰的效率高,制取相同冷量的冰所消耗的电能少,进一步降低了用户的运行费用。给用户创造了经济效益(少支出就是收益)机组制冰耗电:0.9KWH/TRH系统制冰耗电为1.12KWH/RTH。

蓄冰量增加容易:不增加制冰装置的费用,只需增加蓄冰槽的容积,就可以增加蓄冰量,增加的投资少,效果显著。可以很方便地利用双休日夜间的电力廉价时间加大蓄冰量,减少运行费用,实现周蓄冰。

4.过冷水动态制冰:将控制在非常稳定流动状态下的水通过过冷却器被冷却至过

冷状态(低于0)而不让其结冰,然后高速喷出蓄冰槽,在蓄冰槽中,通过过冷解除装置,如让流动的过冷水与挡板或器壁等固体表面或两部分过冷水之间发生激烈冲击,突然增加其扰动,破坏过冷状态,使之析出冰晶颗粒成为冰水混合物,冰的密度小于水的密度,而浮在蓄冰槽中,水被水泵吸入重新进入过冷器,进行制冷循环。通过安设在蓄冰槽内的不锈钢流亡的微小冰晶在进入过冷器之前被微小冰晶消除器消除。日本对该种制冰方法做出了大量研究,目前该技术可达到-3 左右,处于领先地位。但这种制冰方法至今还不成熟,尚未广泛推广到实际应用中去。由于过冷状态是水的亚稳定状态,现有的技术还不能保证其绝对的稳定存在,很容易受到扰动二发生结冰冻结管道,过冷却器内频繁结冰,频繁融冰,将使得系统的可靠性和用能效率下降。

5.真空制冰法制冰:在一个密闭的容器内,通过不断的抽出含有盐分的水蒸气,达到沸腾与凝结同时存在的三相点状态。在该状态下,冰、液态水和水蒸气共存,通过不断搅拌,冰泥可持续不断的产生。就一般情况而言,每产生7.5Kg的冰泥,约需抽放1Kg的水蒸气。丹麦技术研究所(DTI)开发了真空制冰晶机,用水制冷剂制取冰晶。

优化设计

系统在两大时间段内工作,即在用电低谷段制冰,在用电高峰段利用主机和融冰供冷。在制冰模式下,冷水机组将工作在低的设定点,产生-8.0℃(可调)的乙二醇溶液通过蓄冰装置,使蓄冰内盘管的外壁结冰并储存;在供冷模式下,双工况冷水机组运行并将其出口的乙二醇溶液温度降低至 6.6℃(可调),经过蓄冰装置后其出口温度为3.3℃。

1.设计日的控制

在设计工况下(冷负荷大),在冷负荷高峰时段内冷水机组的容量不能满足节能楼的需要,通过融冰来补充冷量。这时双工况主机在空调制冷工况下运行,满足大楼部分冷负荷的需要,其它的负荷由融冰满足。

2.非设计日的控制

冷负荷相对较大时(负荷为设计负荷的50%以上),冷水机组的冷量将受到限制,从而产生融冰优先操作模式。在这种模式下,这期间融冰首先满足大楼部分冷负荷的需要,其它的负荷由双工况主机在空调制冷工况下满足。一般控制系统根据以往的日建筑冷负荷分布图,加上预报的温度来决定当天的预测性负荷图,来决定当天的运行策略。如果根据模拟软件输入第二天的实际天气情况,可以模拟出第二天的逐时负荷,来决定哪种工作模式,使晚上低谷蓄冰的冷量全部用完,避免浪费;同时以末端空调冷负荷、主机的出口温度、主机的滑阀位置来

决定在当天的哪一时段关闭已运行的部分主机使主机的制冷量达到额定容量的60%以上。

当冷负荷相对较小时,根据模拟结果,供冷负荷在50%以下,该节能楼所需要的空调冷负荷全部由融冰方式提供,不需要开启主机。

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

冰蓄冷设计说明

冰蓄冷设计说明 1.1设计概述 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 成都市电网分时电价表 2.2冰蓄冷系统方案设计 本工程是医药厂房,冷负荷集中在电力高峰时段和电力平峰时段,电力低谷时段,电力低谷时段空调系统根本没有冷负荷,且全年供冷期内负荷极不平衡,选择常规制冷主机设备容量大,且直接制冷的结果是制冷主机高价来制冷,低价电时段闲置,造成不必要的浪费。因此为了减少中央空调白天的用电峰值,充分利用峰谷电差价,大幅度地降低空调的运行费用,同时为了提高空调品质,本工程中央空调设计采用冰蓄冷中央空调系统。

·以上方式中使用最多的为:冰球(或蕊心冰球)和外融冰的盘管式蓄冰装置 ·本工程采用外融冰钢制盘管冰蓄冷方式的冷源。 2)、部分(分量)蓄冰模式:如图2,部分(分量)蓄冰模式是指在夜间非用电高峰时制冷设备运行,蓄存部分冷量。白天空调高 蓄冰方式 动态制冰 静态制冷 冰浆(或冰晶) 片冰滑落式 盘管式蓄冰 封装冰 外融冰 冰球(或蕊心冰球) 外板 内融冰

峰期间一部分空调负荷(尖峰负荷)由蓄冷设备承担,另一部分则由制冷设备负担。在设计计算日(空调负荷高峰期)制冷机昼夜运行。部分蓄冷制冷机利用率高,蓄冷设备容量小,制冷机比常规空调制冷机容量小30-40%,是一种更经济有效的运行模式。根据以上分析考虑初期投资费用及机房占地,本工程冰蓄冷设计采用分量蓄冰模式。,本设计方案采用部分蓄冰模式 3.4蓄冰流程选择 3.4.1 蓄冰流程的选择 蓄冰空调系统在运行过程中制冷机可有两种运行工况,即蓄冰工况和放冷工况。在蓄冰工况时,经制冷机冷却的低温乙二醇溶液进入蓄冰槽的蓄冰换热器内,将蓄冰槽内静止的水冷却并冻结成冰,当蓄冰过程完成时,整个蓄冰设备的水将基本完全冻结。 融冰时,经板式换热器换热后的系统回流温热乙二醇溶液进入蓄冰换热器,将乙二醇溶液温度降低,再送回负荷端满足空调冷负荷的需要。 乙二醇溶液系统的流程有两种:并联流程和串联流程。a、并联流程:这种流程中制冷机与蓄冰罐在系统中处于并联位置,当最大负荷时,可以联合供冷。同时该流程可以蓄冷、蓄冷并供冷、单溶冰供冷、冷机直接供冷等。并联流程原理如图3。 b、串联流程:即制冷机与蓄冰罐在流程中处于串联位置,以一套 循环泵维持系统内的流量与压力,供应空调所需的基本负荷。串联流程配置适当自控,也可实现各种工况的切换。串联系统原理如图4:

冰蓄冷技术(DOC)

1.技术原理 冰蓄冷空调技术是利用夜间电网谷电运转制冷主机制冷,并以冰的形式储存,在白天用电高峰时将冰融化提供空调用冷,从而避免中央空调争用高峰电力的一项调节负荷、节约能源的技术。 (1)削峰填谷、平衡电力负荷。 (2)改善发电机组效率、减少环境污染。 (3)减小机组装机容量、节省空调用户的电力花费。 (4)改善制冷机组运行效率。 (5)蓄冷空调系统特别适合用于负荷比较集中、变化较大的场合加体育馆、影剧院、音乐厅等。 (6)应用蓄冷空调技术,可扩大空调区域使用面积。 (7)适合于应急设备所处的环境,

计算机房、军事设施、电话机房和易燃易爆物品仓库等。 2.冰蓄冷空调系统组成 冰蓄冷空调系统包括:空调主机、冷水泵、冷却水泵、冷却塔、蓄冷水泵、释冷水泵、换热器、储冰槽等。相对于常规空调系统,冰蓄冷系统增加了储冰槽、换热器等装置 3..工艺流程 冰球式(也称封装式)冰蓄冷工艺流程:在制冰时,通常要求制冷主机蒸发器出口温度为零下5摄氏度,因此冰球外循环的介质通常采用乙二醇溶液,乙二醇溶液在冰球外流动,在制冰循环中,从制冷主机出来的低温乙二醇溶液流过冰球表面,使冰球内的水结冰;在融冰供冷时,乙二醇溶液流过冰球表面,通过换热器与流往空调末端的冷冻水热交换,被

冷却后的冷冻水流向各个房间,通过风机盘管供冷,因此,空调末端的形式可以与常规中央空调相同。 冰盘管冰蓄冷工艺流程: 、 4.适用范围: 商场、饭店、写字楼、体育馆、展览馆、影剧院、宾馆、居民小区等场所;制药、食品加工、啤酒工业、奶制品工业等;需要对现有单班、两班空调系统扩大供冷量的场所,可以不增加主机,改造成冰蓄冷系统。5.冰蓄冷空调系统的适用条件 执行峰谷电价,且差价较大的地区。(峰谷电价比至少要达到4:1,否则无经济性可言)

浅谈冰蓄冷空调与常规中央空调的优缺点

浅谈冰蓄冷空调与常规中央空调的优缺点 发表时间:2016-08-18T10:15:48.877Z 来源:《低碳地产》2015年第2期作者:韩广玉 [导读] 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置。 深圳机械院建筑设计有限公司广东深圳 518000 本人前段时间做了一个小型的冰蓄冷项目,通过这个项目认真学习了一下蓄冰系统,在此跟各位浅谈一下蓄冰空调与常规空调优缺点对比,以及本人累积的些许设计经验,希望能对初次做蓄冰项目的设计同行带来一些帮助。 现简单分析一下冰蓄冷中央空调系统、常规空调系统的特点。 1)冰蓄冷中央空调系统特点 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置,利用夜间低谷用电时段开启制冷机组,将蓄冰装置中的水制成冰,白天在空调用电高峰时段利用融冰取冷满足部分空调负荷,宏观上起到调峰移谷,微观上在提高室内空调品质的同时大大降低用户运行费用的作用。 该技术在二十世纪30年代起源于美国,在70年代能源危机中得到发达国家的大力发展。从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。很多国家都采取了奖励措施来推广这种技术,比如韩国转移1KW高峰电力,一次性奖励2000美元,美国一次性奖励500美元,等等。 中国在近年加大对蓄能技术的推广力度,国家计委和经贸委2001年底特地下达《节约用电管理办法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。一些建筑采用蓄能技术后直接给用户带去了收益,节约了运行成本。2001年10月举办APEC会议的10万㎡的上海科技城、广州大学城500万㎡等大型建筑采用的就是冰蓄冷空调系统。 冰蓄冷空调从其原理和实践中可以看出它有如下特点 优点: ①减少冷水机组容量(降低主机一次性投资),总用电负荷少,减少变压器配电容量与配电设施费。 ②冷主机制冷效率高(COP大于5.3),同时利用峰谷荷电价差,大大减少空调年运行费,可节约运行费用35%以上。 ③减少建筑的配电容量,节约变配电的投资,节约约30%(空调的配电投资);免双线路的高可靠性费用,节约投资。 ④使用灵活,部分区域使用空调可由融冰提供,不用开主机,节能效果明显。 ⑤可以为较小的负荷(如只使用个别办公室)融冰定量供冷,而无需开主机。 ⑥在过渡季节,可以融冰定量供冷,而无需开主机,不会出现大马拉小车的状况,运行更合理,费用节约明显。 ⑦具有应急功能,提高空调系统的可靠性。在拉闸限电时更能显示其优势:只要具备带动水泵的电力(如发电机发电、限电减电力供电)就能够融冰供冷,不会出现空调不能使用的状况。 ⑧制冷温度低而稳定,空调效果佳,提高大楼的舒适性和品位。 ⑨有低温冷源制冷速度快,上班前启动时间短。上班前启动时间越长,则空调无效运行越多,无谓的浪费越大。 ⑩作为驱动能源,清洁、环保、稳定、简单可靠,且峰谷电差价在不久的将来势必更优惠(周边省份在去年均已大幅优惠,国外的峰谷差更大)。 对于大型多建筑区域供冷,可以低温供水,降低送水能耗、减少管网投资;同时与每一建筑一个供冷站的形式比可以节约投资、减少管理费用、减少机房面积。 可以为末端提供低温冷冻水,降低末端的投资;加强除湿能力,大幅提高空调舒适性;如果采用低温送风系统,更是可以节约末端的风机能耗、提高空调品质、减少风管的尺寸和投资。 空调系统智能化程度高,可以实现系统的全自动运行,而且具备与大楼的BAS接口,是目前世界上最先进的空调系统。 不足之处: ①如果主机和蓄冰装置等设备均布置于冷冻机房内,蓄冰装置需要占用一定的空间。 ②机房设备投资比常规水冷电制冷和溴化锂机组系统稍高。 ③冰蓄冷只能夏天供冷,需要供热系统。(可以采用热网换热采暖,热网容量远低于溴化锂机组所需,只有50%左右容量)2)常规电制冷中央空调系统特点 是目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点: ①系统简单,占地比其他形式的稍小。

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点 和缺点 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的

运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点: ①系统异常复杂、庞大。冰蓄冷空调除了通常的制冷系统和空调设备外,还配备复杂的蓄冰设备,蓄冰设备包括蓄冷槽,乙二醇溶液泵、制冰泵、蓄冷介质

上海某酒店地源热泵 冰蓄冷设计方案

XX公寓式酒店地源热泵+冰蓄冷设计方案工程概况 XX公寓式酒店位于上海浦东,总占地面积34988 平方米,总建筑面积88375平方米,框架结构。由3幢11层~14层公寓式酒店,1组2层商业裙房及其附属配套设施组成。商业裙房部分夏季空调负荷为2227KW,冬季空调负荷为1486KW;公寓式酒店夏季生活热水负荷为925KW,冬季生活热水负荷为1272kW。 设计方案 本项目商业裙房设计采用中央空调系统,为节约能源采用地源热泵系统,降低建筑能耗,并同时向公寓式酒店供应生活热水。由于商业部分主要为9:00~22:00 营业,故采用冰蓄冷技术进行移峰填谷。采用三台地源热泵机组,其中两台为空调用三工况机组,一台为生活热水用地源热泵机组。地源热泵系统地下换热器采用垂直埋管,并联双U型连接,共计打孔480口。 冰蓄冷部分采用部分负荷蓄冰技术,制冷设备和蓄冰设备并联连接,供应7℃冷冻水,载冷剂采用25%乙二醇溶液。冰蓄冷系统可按以下四种模式运行:主机制冰、主机供冷、融冰供冷、主机与融冰同时供冷。夜间电价低谷时段制冰系统将冰蓄满,白天电价高峰时段融冰供冷,电价平峰时段制冷系统补充供冷,各工况转换通过电动阀门开关自动切换。空调水系统采用二管制,夏季冷冻水供回水温度分别为7℃/12℃,冬季热水供回水温度分别为45℃/40℃。空调末端系统采用风机盘管加新风的形式,便于室温独立控制,气流组织上送上回。 系统运行策略 由于本项目的中央空调系统为多种节能技术综合而成的复合系统,为了有效的实现设计的初衷,真正达到节能环保的要求,需制定专门的地源热泵冰蓄冷空调系统年运行方案,以中央空调能源管理系统的形式实施,实现长期有效稳定的节能运行。 秋、冬、春三季运行策略 XX公寓式酒店项目要求冬季可满足商业部分的供热需求,同时满足公寓式酒店的生活热水供应。此时,三工况地源热泵切换为制热模式满足商业部分的空调采暖需求,而由生活热水地源热泵机组满足生活热水的需求。在春秋季,项目要求满足公寓式酒店的生活热水供应,商业部分没有空调需求。此时生活热水需求由生活热水地源热泵机组满足。以上两种运行模式为较为普遍的热泵机组运行模式,故在此不再赘述。 夏季运行策略 XX公寓式酒店项目要求夏季可满足商业部分的供冷需求,同时满足公寓式酒店的生活热水供应。此时,三工况地源热泵切换为制冷模式,同时能源管理系统切换至冰蓄冷供冷运行模式。根据冰蓄冷运行的特点,有以下四种运行模式: 三工况地源热泵机组制冰模式 利用夜间低电费和商业部分无空调供冷需求的因素,三工况地源热泵机组切换为制冰模式,全力制冰蓄冷,此时公寓式酒店的生活热水需求通过三工况地源热泵机组的热回收模块免费制取。

冰蓄冷中央空调系统

冰蓄冷中央空调系统 摘要:本文在分析了目前为解决峰谷用电量差应运而生的冰蓄冷中央空调系统,对其原理,分类,优缺点,效益等方面做了简要介绍;并在此基础上,说明了评价冰蓄冷系统的一系列指标,如冰蓄冷系统的蒸发温度,制冷率与融冰率,热损失,安全性与可靠性等;此外,介绍了国外的冰蓄冷系统的技术发展趋势及特点,另外,对于国内冰蓄冷系统发展面临的问题也做了总结以及一些可行的建议。 关键词:冰蓄冷;移峰填谷;蓄能 Ice-Thermal-Storage Center Air Conditioning System Abstract: This paper analyses the ice-thermal-storage center air conditioning system for solving the problem of the peak and valley of electricity and introduces the the principle, advantages and disadvantages, classification, benefits and so on. Furthermore, the paper also explains a series of index that evaluate the ice-thermal-storage center air conditioning system, such as the evaporation temperature, the refrigeration rate and thaw rate, the heat loss, the security and reliability and so on. In addition, it shows the technology trends and characteristics of the ice-thermal-storage center air conditioning system abroad and puts forward some suggestions of how to do in our country when we popularize the ice-thermal-storage center air conditioning system. Key words:The ice storage technology,; Peak load shaving; Energy storage 引言 众所周知,夏季用电紧张,时常导致拉闸限电的事情发生。到了夏季,随着空调用电的加大,让城市电力系统峰谷差急剧放大,电网负荷明显加大。中科院广州能源研究所博士冯自平称“电力紧张有很大一部分是由峰谷差造成的,峰谷差造成浪费几乎是‘天文数字’。”,在我国电力结构中,空调是造成电力负荷峰谷差的主要因素之一。 综合全天的电量供应,其实电力紧张只出现在用电高峰时段,用电低谷期发电能力富裕的电量却往往因得不到有效利用而被白白消耗掉,造成巨大的能源浪费。特别在夏季高温期间,电力供需矛盾突出,重点是空调负荷呈现出“爆发性”增长,这种增长与气温密切相关。夏天电力出现缺口的时段主要集中在上午9时至11时、下午1时至3时和晚上6时30分至8时30分,夜间及凌晨为用电低谷期。在用电高峰期,由于负荷增加较大,与低谷形成峰谷差。据有关报道,去年广东空调的负荷绝对值就已超过1000万千瓦,而空调开启带来的负荷占总用电负荷已经达到35%以上。空调用电不仅增加了高峰负荷,而且加大了电网的峰谷差。 我国的电力工业发展很快,96年发电装机容量已达到世界第2位,到97年底全国发电装机容量达2.5亿千瓦,2004年装机容量达到4.4亿千瓦,预计2005年要突破5亿千瓦,仅比美国装机容量少3亿千瓦左右。但是,尽管如此,我国的电力供应仍日益紧缺,尤其是

冰蓄冷设计

东华大学环境学院冰蓄冷设计 姓名:何燕娜 班级:建筑1202 学号: 121430205 2014年12月

1.1 项目概述 本项目为浙江某办公楼建设项目的双工况冰蓄冷系统应用。 1.2 冰蓄冷系统在本项目中的应用 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 本文就对冰蓄冷系统设计进行详细阐述,并和传统的风冷系统进行初投资和运行成本的综合比较。 1.3 冰蓄冷系统的工作模式 冰蓄冷系统的工作模式是指系统在充冷还是供冷,供冷时蓄冷装置及制冷机组是各自单独工作还是共同工作。蓄冷系统需要在几种规定的方式下运行,以满足供冷负荷的要求,常用的工作模式有如下几种: (1)机组制冰模式

在此种工作模式下,通过浓度为25%的乙二醇溶液的循环,在蓄冰装置中制冰。此间,制冷机的工作状况受到监控,当离开制冷机的乙二醇溶液达到最低出口温度时制冷机关闭。此种工作模式的示意图如图1-2所示。 图1-2 机组制冰工作模式示意图 (2)制冰同时供冷模式 当制冰期间存在冷负荷时,用于制冷的一部分低温乙二醇溶液被分送至冷负荷以满足供冷需要,乙二醇溶液分送量取决于空调水回路的设定温度。一般情况下,这部分的供冷负荷不宜过大,因为这部分冷负荷的制冷量是制冷机组在制冰工况下运行提供的。蓄冷时供冷在能耗及制冷机组容量上是不经济合理的,因此,只要此冷负荷有合适的制冷机组可选用,就应设置基载制冷机组专供这部分冷负荷,该工作模式示意图如图1-3所示。 图1-3 制冰同时供冷模式示意图 (3)单制冷机供冷模式: 在此种工作模式下,制冷机满足空调全部冷负荷需求。出口处的乙二醇溶液不再经过蓄冰装置,而直接流至负荷端设定温度有机组维持。该工作模式示意图如图1-4所示。

冰蓄冷空调故障处理案例

冰蓄冷空调故障处理案例1.盘管系统制冰时主机如卸载如何处理? 答:盘管系统制冰时主机如卸载,系统肯定有问题,可以检查:①主机出口温度是否设定为-6.3℃左右②阀门动作是否正常③主机本身有没有问题④流量是否平 衡(可以通过调节阀门来调节管道阻力) 2.冰蓄冷系统的乙二醇浓度一般是多少? 答:乙二醇浓度一般在1.028-1.035之间(25-30%之间,此为20℃环境温度下测),太浓时(1.056)热效降低10%,太稀时冰点上升,制冰时会导致主机冻坏。开 主机前必须测乙二醇浓度(可用量程为1.0-1.1的浓度计,可拿水校一下)。制 冰时一台主机启动,另外的主机停止时,把停机的主机阀门关掉,以免主机冻 坏。制冰时,板换二次侧的冷冻水泵要定时开启,以免结冰。 3.制冰时,拐点出现在什么温度? 答:拐点出 现在什么温度 每一个系统均 不一样,要看主 机出口温度、冰 槽进口温度,一 个典型的曲线 如右。 4.乙二醇泵变频有什么讲究? 答:主机单供冷、主机制冰、联合供冷工况下乙二醇泵是定流量的,流量值为设计流量;单融冰供冷工况乙二醇泵是变流量的。乙二醇泵采用变频控制,但控制依据在不同运行工况下有所不同:在主机开启工作的状态下,乙二醇泵变频的依据就是满

足经过主机的流量基本稳定,由于乙二醇泵是按照联合供冷工况选型的,因此在联合供冷工况下,乙二醇泵工频运行。而在主机单供冷和主机制冰时,如果仍然以工频运行,则乙二醇泵必然出现超流量现象(由于旁通了蓄冰盘管或板式换热器),严重时可能导致乙二醇泵过载损坏。因此为保证乙二醇泵及系统稳定并且节能运行,在这两种工况时则将乙二醇泵分别设定在某一固定频率(该频率在调试时得出),使乙二醇泵流量稳定在设计流量。也就是在主机单供冷、主机制冰、联合供冷工况下乙二醇泵是定流量的,流量值为设计流量。系统在联合供冷主机优先工况下,板换乙二醇进口侧温度不控制,乙二醇泵定流量运行,通过调节蓄冰盘管直通与旁通电动阀直接控制末端供水温度。 5.软化水处理原理一般是怎样的? 答:一般有四个步骤:反洗→吸盐→正洗→正常注水。反洗的作用是冲掉水中的泥沙,吸盐的作用是用Na离子置换Ca、Mg离子。是否是软化水可用专用试剂化验(用来测硬度):红色表示有硬度,蓝色表示为合格的软水。 6.乙二醇定压装置补的是水吗? 答:乙二醇定压装置补的是25%的乙二醇溶液,不是水。 7.分集水器压差设定值如何确定? 答:压差设定值要根据实际的末端情况来设定,具体调试时,把末端全部打开,运行水泵,读此时压差,一般取此时的压差为设定值。 8.定压装置电节点压力计如何设定? 答:电节点压力计的范围一般设置在低压0.5bar高压1.5bar设定点上。 9.乙二醇溶液在管道中是如何灌注的? 答:可从乙二醇补液箱灌注。充填可分为初次充填与补充充填。初次充填时将水及乙烯乙二醇按重量比例加入蓄冰槽,并加适量防腐蚀抑制剂和杀菌灭藻剂。初次充填后,开启乙泵循环24小时,检测其浓度,如未到达规定浓度则需根据检测浓度及缺少量进行补充充填,填充完毕后再进行循环(不小于4小时),系统内溶液完全混合充分,然后在检测其浓度,如未达到继续调整,直至达到规定浓度; 10.传感器信号采集不到怎么办? 答:检查采集模块有没有供电,模块的跳线设置是否正确,外部接线是否正确。11.KEYSTONE阀门一般如何调试设置?

冰蓄冷中央空调技术原理及经济性分析

冰蓄冷中央空调技术原理及经济性分析 江苏安厦工程项目管理有限公司□卢义生 摘要:由于冰蓄冷中央空调系统具有节能环保等诸多优点,近几年在我国得到了迅速发展。以滁州第一人民医院为例,通过冰蓄冷中央空调系统与常规中央空调系统的经济性分析对比,可以看出冰蓄冷中央空调系统在实际应用中的优势。 关键词:冰蓄冷空调系统常规空调系统经济性分析 国外利用机械制冷机的蓄能空调最早出现在二十世纪三十年代,但随着机械制造业的进步,蓄能技术的发展很快停滞下来。直到二十世纪八十年代初期,蓄能空调在美国、日本等发达国家再次得到研究推广。到九十年代中后期,美国、日本、欧洲等国家和我国台湾地区的蓄能空调系统已得到广泛的应用,并取得了良好的经济效益。我国于九十年代中期正式引入冰蓄冷空调系统,近年来国家及地方电力部门相继制定了峰谷电价政策及优惠措施以促进冰蓄冷空调的发展。2000年,国家电力公司国电财[2000]114号文件明确要求加大峰谷电价推广力度,为此,全国多个省市纷纷出台了分时电价政策,一般低谷电价只相当于高峰电价的1/2甚至1/5,而且有取消电力增容费、电贴费等不同程度的优惠,在政策上支持冰蓄冷空调的发展。近两年来,随着我国节能减排政策的不断推广,冰蓄冷空调技术得到了迅猛发展。中国建筑设计研究院机电专业设计研究院总工程师、北京制冷学会常务理事宋孝春表示:“冰蓄冷空调系统是人类在面对能源危机时优化资源配置、保护生态环境的一项技术革新,能产生良好的社会效应和经济效益……。我国冰蓄冷空调市场已走向成熟,全国范围内,近两年的工程几乎等于前十年的总和。未来一段时间内,这个数字仍以几何级数字向上递增……” 1冰蓄冷技术介绍 1.1冰蓄冷系统原理 冰蓄冷中央空调是在夜间利用制冷主机制冰,将冷量以冰的形式蓄存起来,然后在白天根据空调负荷要求释放这些冷量,这样在电力低谷段蓄冰,在用电高峰时期就可以少开甚至不开主机。这样就可以将电网高峰时间的空调用电量转移至电网低谷时使用,从而利用峰谷电价政策,达到为用户节约电费的目的。 在一般大楼中,空调系统用电量占总耗电量的35%~65%,而制冷主机的电耗在空调系统耗电量中又占65%~75%。在常规空调设计中,冷水主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在大部分情况下都处于低效率的部分负荷状态运行,设备利用率也低,投资效益低。

冰蓄冷设计说明书

1.1上级批文详见总论部分; 1.2甲方提供的设计任务书; 1.3建筑专业提出的平面图和剖面图; 1.4室外计算参数(江苏地区) 夏季空调计算干球温度34.1℃ 夏季空调计算日平均温度31℃ 夏季空调计算湿球温度28.6℃ 夏季通风计算干球温度32℃ 夏季空调计算相对湿度69 % 夏季大气压力100.391Kpa 夏季平均风速 3.3m/s 冬季空调计算干球温度-12℃ 冬季通风计算干球温度-4℃ 冬季空调计算相对湿度74% 冬季大气压力102.524 Kpa 冬季平均风速 3.3 m/s 1.6国家主要规范和行业标准 (1)《采暖通风与空气调节设计规范》GB50019-2003; (2)《高层民用建筑设计防火规范》GB50045-95(2001版); (3)《民用建筑热工设计规范》GB50176-93; (4) 全国民用建筑工程设计技术措施《暖通空调·动力》; (5) 《民用建筑隔声设计规范》GBJ118 2 设计范围 本工程总建筑面积为120000平方米 设计范围为采暖、通风、空调、防排烟及冷热源设计。冷冻机房冷却水系统由给排水专业设计。 3 设计原则 满足国家及行业有关规范﹑规定的要求,利用国内外先进的空调技术及设备,创建健康舒适的室内空气品质及环境。

4.3空调系统 经技术﹑经济综合比较及专家组建议,空调方案确定为:独立新风空调系统,即新风机组加辐射冷吊顶。辐射吊顶已被美国能源部列为二十一世纪15项最节能,最有前途的空调技术之一,其突出的优点——更加舒适,更加节能,更加安静,使其成为目前欧美各国首选的空调末端装置,辐射吊顶、全热交换器和低温送风新风系统组成的独立新风系统,已经成为国际公认的最先进的空调系统。4.3.1 首层∽八层及地下一层南区各功能房间 采用独立新风空调系统(DOAS)。新风机组除了承担新风负荷外,还承担室内全部潜热和部分显热负荷,室内剩余的显热负荷由辐射冷吊顶承担。 新风机组选用专用DGKR08型低温送风新风机组,设置在专用的新风机房内,每台机组风量约为7000m3/h-8000m3/h。机组进水温度低于3℃,出水温度为辐射冷吊顶的进水温度(露点温度加1~2℃),由室内露点温度控制,新风机组 出风温度低于7℃。该机组除了具有普通空调机组具有的冷却﹑干燥﹑加热及加湿功能外,还具备有:(1)承担其全部新风负荷,室内全部潜热和部分显热; (2)机组内配置有板式全热交换器,回收焓效率大于50%,温度效率70% 以上;(3)机组内配置驻极静电过滤器,计数效率为99.9%可备光催化材料杀灭,空气阻力小于50Pa。 空调房间冬季加湿采用高品质的干蒸汽加湿,汽源由地下一层锅炉房引来。 新风系统按楼层分南﹑北两个系统设置,以利调节。新风管沿走道吊顶敷设,在进入每个房间的支管上设置E型定风量调节器,送风口采用大诱导比风口下送。排风通过每个房间侧墙上设置的排风口,通过走道吊顶,进入新风机组全热交换器释放能量后排入大气。 辐射板采用国产辐射板。因为它较进口辐射板热阻小,辐射冷/热量大,接头先进,价格便宜等优点。辐射板型号选用600×600规格板,颜色的选用与排版形式随装修进行。 4.3.2 餐厅及厨房。 由于餐厅空调负荷变化大,湿负荷大,空调运行时间短,层高较高等特点。故餐厅单独设置空调系统,空调形式采用独立的低温送风新风系统,送风口采用大诱导比风口下送,排风口为单层百叶风口,通过排风管进入新风机组全热交换器释放能量后排入大气。新风机组选用专用DGKR15型低温送风新风机组,设置在专用的新风机房内,机组风量约为15000m3/h。 厨房采用直流空调系统(冬季加热夏季降温),厨房排风量暂按40次/时,送风量为80% 排风量,其施工图设计待厨房设备确定后进行。 4.3.3 电话机房及计算机主机房 为了保证电话机房、消防值班室及计算机主机房值班空调,另分别设置一套VRV空调系统,室外机设置在屋顶,室内机采用四面吹出式,设置在吊顶上。 4.4空调系统冷源 本工程空调面积为23500m2,预留空调面积5500m2,共计空调面积29000m2。空调冷负荷为3351kW,折算为冷指标为115.56w/m2。空调热负荷为2595.5kW,算为冷指标为89.5w/m2。

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

冰蓄冷空调原理

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。(2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持罐、 槽内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前3.5℃,通过换热板后载冷剂温度上升到10.5℃,载冷剂通过冷冻泵回流制冷机组。

三、夜间蓄冰 夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~-3.5℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在3.5℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷

冰蓄冷系统的设计与施工

冰蓄冷系统的设计与施工 一、工程概述 XXXX位于XX东侧,建设单位是XXX房地产开发有限公司。该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。是全 国最大的冰蓄冷工程项目。该项目由XXXX安装工程有限公司第一项目部进行施工安装。本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层;机房建筑 面积1200m2蓄冰槽520m2)。冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。 二、设备配置 (一)冷源 1. 双工况螺 杆式冷水机组3台(YSFAFAS55CNE约克(合资) 2.基载 离心式冷水机组2台(YKFBEBH55CPE勺克(合资) (二)冷却塔:大连斯频得 冷却塔共计5台,CTA-600UFW两台,CTA-450UFW三台。 (三)板式换热器:丹麦APV 板式换热器共计3台,选用APV板式换热器J185-MGS16/16 (四)蓄冰槽(现场加工) 蓄冰槽共有六台,最大蓄冰量31787.2KW(9040RT。(见表1) (五)乙二醇循环水泵:德国KSB 乙二醇循环水泵共计4台,其中1台备用,并配4台变频器。 (六)冷却水循环泵:德国KSB

冷却水循环泵选用卧式离心泵4台,其中1台备用 三、运行策略: (一)负荷说明 根据建筑使用情况及初步设计估算结果,整幢大楼的尖峰冷负荷为 11428KW(3250RT。由于气温变化,空调系统在整个运行期间日负荷大小会有变化,根据负荷分布情况,出100獗荷情况逐时空调负荷:(见表2) 蓄冰的模式可采用全部(全量)蓄冰模式或部分(分量)蓄冰模式。本工程采用部分蓄冰模式。 根据采暖通风专业提供的建筑物设计日100%负荷如下:最大小时冷负 荷:11428KW( 3250RT 设计日冷负荷:151705KWH( 43144RTH 最大小时基载冷负荷:2286KW( 650RT 扣除基载冷负荷后的最大小时冷负荷:9142.33KW (2600RT 扣除设计日基载冷负荷后冷负荷:96852.4KWH (27544RTH (二)系统流程简述 本设计蓄冰设备选用冰球式蓄冰设备,系统选用串联单循环回路方式,在循环回路中,乙二醇制冷主机置于蓄冰装置上游。系统中设有板式热交换器3台,每台换热量为用3961KW( 1126RT,用以把冰蓄冷系统的乙二醇回路与通往空调负荷的水回路隔离开,保证乙二醇仅在蓄冰循环中流动,而不流经各空调负荷回路,可减少乙二醇用量并避免乙二醇在空调负荷回路中的泄漏。乙二醇回路中设有4个电动调节阀CV1,CV2,CV8CV9根据冷负荷变化,通过电动调节阀 CV1,CV2调节进入蓄冰装置的乙二醇流量,保证进入板式热交换器的乙二醇侧温度恒定并满足冷负荷需求。电动调节阀CV8.CV9调节进入板式热交换器的乙二醇流量,保证进入板式热交换器的水侧温度恒定并满足冷负荷需求。同时,空调冷

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

冰雪世界会议中心冰蓄冷空调设计

冰雪世界会议中心冰蓄冷空调设计 工程概况 冰雪世界会议中心位于北京市潮白河畔,为滑雪馆的配套设施,其主体建筑在滑雪馆的雪道正下方,总建筑面积为26700平方米。主要由客房及群房两部分组成,客房面积为13679平方米;群房的功能有会议、餐厅、厨房、多功能厅、体检中心、设备用房等,面积为13021平方米。地下二层,地上十层,建筑高度为43.35米。图1为该会议中心的正立面图。原滑雪馆已于2005年已建成,多种原因使得该滑雪馆制冷机未设置备用机组,此次会议中心制冷系统的设计需要考虑到为滑雪馆制冷系统提供备用的可能。 设计基本数据 电价政策及电价结构 冰蓄冷空调系统对电网移峰的意义在此不再赘述,影响冰蓄冷项目经济性的一个重要原因,是当地的电价政策及电价结构。项目所在地北京市顺义区的峰谷电时段及相应商业用电 电价如表1:

从表1可看出,尖峰电价与低谷电价的比为4:1,高峰电价与低谷电价的比为3.83:1,这对该建筑采用冰蓄冷空调系统提供了很好的电价基础。 设计日逐时冷负荷 经逐时冷负荷计算,设计日总冷负荷为36423kW,最大小时冷负荷(峰值)为3400kW,作为宾馆,其夜间也有一部分冷负荷。设计日的冷负荷曲线见图2。 对照表1和图2,可以看出,该建筑在电价的尖峰和高峰时段逐时冷负荷较大,在平电及低谷电时段有较低的连续的负荷,其负荷特点决定了该系统设置基载主机更为合理。 冰蓄冷系统设计 概述 冰蓄冷系统的设计应综合考虑多方面的因素,如建筑的规模、使用性质、设计日的冷负荷曲线以及所能采用的蓄冷装置的特性等等。建筑有可能提供的使用空间对蓄冷装置的选择有很大的限制。就本建筑而言,采用导热塑料(聚乙烯)蓄冰盘管,该盘管一般做成整体式的 蓄冰桶,为内融冰方式。 蓄冷系统的确定及主要设备 该建筑采用部分蓄冷的方式,在电网的尖峰及高峰时段,蓄冷设备提供部分空调负荷。双工况主机位于蓄冰设备的上游,为串联方式。同时考虑到连续空调负荷的比例设置基载主机一台。从系统运行的安全性及经济性的角度出发,设置了板式换热器,由乙二醇换取冷冻水(供回水温度为7℃/12℃)向空调系统供冷。蓄冷系统流程见图3。表2是蓄冷系统的主要 设备。

相关文档
最新文档