对数与对数函数专题

合集下载

高考数学专题《对数与对数函数》习题含答案解析

高考数学专题《对数与对数函数》习题含答案解析

专题3.6 对数与对数函数1.(2021·安徽高三其他模拟(理))函数()ln ||f x x x =+的图象大致是()A .B .C .D .【答案】D 【解析】确定函数的奇偶性,排除两个选项,再由0x >时的单调性排除一个选项,得正确选项.【详解】易知()ln ||f x x x =+是非奇非偶函数,所以排除选项A ,C ;当x >0时,()f x 单调递増、所以排除选项B.故选:D .2.(2021·江西南昌市·高三三模(文))若函数()3log ,12,1x x x f x x ≥⎧=⎨<⎩.则()0f f ⎡⎤=⎣⎦( )A .0B .1C .2D .3【答案】A 【解析】利用函数()f x 的解析式由内到外逐层计算可得()0f f ⎡⎤⎣⎦的值.练基础()3log ,12,1x x x f x x ≥⎧=⎨<⎩,则()0021f ==,因此,()()301log 10f f f ===⎡⎤⎣⎦.故选:A.3.(2021·浙江高三其他模拟)已知a 为正实数,则“1a >”是“32212log log a a ->”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】利用充分、必要条件的定义,即可推出“1a >”与“32212log log a a ->”的充分、必要关系.【详解】因为32212log log a a ->等价于3222log log a a >,由a 为正实数且1a >,故有32a a >,所以3222log log a a >成立;由a 为正实数,3222log log a a >且函数2log y x =是增函数,有32a a >,故()210aa ->,所以1a >成立.故选:C .4.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D 【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .5.(2021·江苏南通市·高三三模)已知1331311log 5,,log 26a b c ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a>>D .c a b>>【答案】D 【解析】由于1331log g 66lo c ==,再借助函数3log y x =的单调性与中间值1比较即可.【详解】1331log g 66lo c ==,因为函数3log y x =在()0,∞上单调递增,所以333131log 31log 5log 6log 6a c =<=<<=,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10312112b <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,所以c a b >>故选:D6.(2021·辽宁高三月考)某果农借助一平台出售水果,为了适当地给鲜杏保留空气呼吸,还会在装杏用的泡沫箱用牙签戳上几个小洞,同时还要在鲜杏中间放上冰袋,来保持泡沫箱内部的温度稳定,这样可以有效延长水果的保鲜时间.若水果失去的新鲜度h 与其采摘后时间t (小时)满足的函数关系式为t h m a =⋅.若采摘后20小时,这种杏子失去的新鲜度为10%,采摘后40小时,这种杏子失去的新鲜度为20%.在这种条件下,杏子约在多长时间后会失去一半的新鲜度( )(已知lg 20.3≈,结果取整数)A .42小时B .53小时C .56小时D .67小时【答案】D 【解析】利用指数的运算得出1202a =,再利用对数的运算即可求解.【详解】由题意可得200010m a =⋅,①400020m a =⋅,②②÷①可得202a =,解得1202a =,所以0050t m a =⋅,③ ③÷①可得205t a -=,所以202025t -=,即20lg 2lg 51lg 20.720t -==-=,解得67t ≈(小时).故选:D7.【多选题】(2021·辽宁高三月考)已知2log 3a =,34b =,22log 31c =+,则下列结论正确的是( )A .a c <B .2ab =C .1abc a =+D .22bc b =+【答案】BCD 【解析】先判断1a >,即可判断A ; 利用222log 3b a==判断B ;利用B 的结论判断C ;利用C 的结论判断D.【详解】因为2log 31a =>,所以22log 3112c a a c a =+=+<⇒<,即A 不正确;因为33222log 42log 2log 3b a====,所以2ab =,即B 正确;由2ab =可知,21abc c a ==+,C 正确;由1abc a =+可知,2ab c ab b =+,则22bc b =+,即D 正确.故选:BCD.8.【多选题】(2021·山东日照市·高三一模)已知113log 0x x +=,222log 0xx +=,则( )A .2101x x <<<B .1201x x <<<C .2112lg lg 0x x x x -<D .2112lg lg 0x x x x ->【答案】BC 【解析】根据对数函数的性质可判断AB 正误,由不等式的基本性质可判断CD 正误.【详解】由131log 0x x =->可得101x <<,同理可得201x <<,因为(0,1)x ∈时,恒有23log log x x<所以122231log log 0x x x x -=-<,即12x x <,故A 错误B 正确;因为1201x x <<<,所以12lg lg 0x x <<,即210lg lg x x <-<-,由不等式性质可得1221lg lg x x x x -<-,即2112lg lg 0x x x x -<,故C 正确D 错误.故选:BC9.(2021·浙江高三期末)已知2log 3a =,则4a =________.【答案】9【解析】把2log 3a =代入4a 可得答案.【详解】因为2log 3a =,所以222log 3log 34429a ===.故答案为:9.10.(2021·河南高三月考(理))若41log 32a =,则39a a +=___________;【答案】6【解析】首先利用换底公式表示3log 2a =,再代入39a a +求值.【详解】由条件得331log 4log 22a ==,所以3333log 2log 2log 2log 4393933246a a +=+=+=+=.故答案为:61.(2021·浙江高三专题练习)如图,直线x t =与函数()3log f x x =和()3log 1g x x =-的图象分别交于点A ,B ,若函数()y f x =的图象上存在一点C ,使得ABC V 为等边三角形,则t 的值为( )ABCD.3+【答案】C 【解析】由题意得()3,log A t t ,()3,log 1B t t -,1AB =,根据等边三角形的性质求得C点的横坐标x t =-,结合A ,B两点的纵坐标和中点坐标公式列方程t =,解方程即可求得t 的值.【详解】由題意()3,log A t t ,()3,log 1B t t -,1AB =.设()3,log C x x ,因为ABC V 是等边三角形,所以点C 到直线AB所以t x -=,x t =-根据中点坐标公式可得练提升33333log log 11log log log 22t t t t ⎛+-==-= ⎝,所以t -=,解得t =故选:C2.(2021·安徽高三其他模拟(文))已知函数()()14,12ln 1,1xx f x x x ⎧⎛⎫-≤-⎪ ⎪=⎨⎝⎭⎪+>-⎩,若()0f f x <⎡⎤⎣⎦,则x 的取值范围为( )A .()2,0-B .21,1e ⎛⎫-∞- ⎪⎝⎭C .212,1e ⎛⎫-- ⎪⎝⎭D .()212,11,0e ⎛⎫--⋃-⎪⎝⎭【答案】D 【解析】先由()0f f x <⎡⎤⎣⎦可得出()20f x -<<,然后再分1x ≤-、1x >-两种情况解不等式()20f x -<<,即可得解.【详解】若()1f x ≤-,则()()1402f x f f x ⎛⎫=-<⎡⎤ ⎪⎣⎦⎝⎭,解得()2f x >-,此时,()21f x -<≤-;若()1f x >-,则()()ln 10f f x f x =+<⎡⎤⎡⎤⎣⎦⎣⎦,可得()011f x <+<,解得()10f x -<<.综上,()20f x -<<.若1x ≤-,由()20f x -<<可得12402x ⎛⎫-<-< ⎪⎝⎭,可得1242x⎛⎫<< ⎪⎝⎭,解得21x -<<-,此时21x -<<-;若1x >-,由()20f x -<<可得()2ln 10x -<+<,可得2111x e <+<,解得2110x e -<<,此时,2110x e -<<.综上,满足()0f f x <⎡⎤⎣⎦的x 的取值范围为()212,11,0e ⎛⎫--⋃- ⎪⎝⎭.故选:D.3.(2021·全国高三三模)已知函数()xxf x e e-=+,若()()4561log ,log 6,log 45a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系正确的是( )A .b a c >>B .a b c >>C .c b a >>D .c a b>>【答案】B 【解析】先判断函数的奇偶性,再利用导数判断函数的单调性,最后根据对数函数的性质,结合基本不等式、比较法进行判断即可.【详解】因为()()xx f x ee f x --=+=,所以()f x 为偶函数,()21x xxxe x ee f e --=='-,当0x >时,()0f x '>,函数单调递增,当0x <时,()0f x '<,函数单调递减,()()()()444561log log 5log 5,log 6,log 45a f f f b f c f ⎛⎫==-=== ⎪⎝⎭,因为lg4lg6+>故2222lg4lg6lg 24lg25lg4lg6(lg5)242+⎛⎫⎛⎫⋅<=<= ⎪ ⎪⎝⎭⎝⎭245lg5lg6lg 5lg4lg6log 5log 60lg4lg5lg4lg5-⋅-=-=>⋅所以456log 5log 61log 40>>>>,则.a b c >>故选:B.4.【多选题】(2021·辽宁高三月考)若1a b >>,则( )A .log 3log 3a b <B .33a b <C .11log ()log 21ab ab a b+≥-D .11+11a b <+【答案】ACD 【解析】由已知,A 选项,借助对数换底公式及对数函数单调性可判断;B 选项,利用幂函数单调性可判断;C 选项,利用对数函数单调性可判断;D 选项,利用反比例函数单调性可判断.【详解】对于A 选项:3log y x =在(0,+∞)上单调递增,1a b >>,则333311log log 0log log a b a b>>⇒<,即log 3log 3a b <,A 正确;对于B 选项:函数y =x 3在R 上递增,则33a b >,B 错误;对于C 选项:1a b >>,则ab >1,a +b >2,11log ()log log ()1ab ab ab a ba b a b ab++==+-log 21ab >-,有11log (log 21ab ab a b+≥-成立,即C 正确;对于D 选项:1112a b a b >>⇒+>+>,而函数1y x =在(0,+∞)上递减,则有11+11a b <+,即D 正确.故选:ACD5.【多选题】(2021·全国高三专题练习(理))已知0a b >>,且4ab =,则( )A .21a b ->B .22log log 1a b ->C .228a b +>D .22log log 1a b ⋅<【答案】ACD 【解析】利用不等式的性质和基本不等式的应用,结合指数函数与对数函数的单调性,对选项逐一分析判断.【详解】因为0a b >>,且4ab =,对A ,0a b ->,所以0221a b ->=,故A 正确;对B ,取83,32a b ==,所以2222216log log log log log 219a ab b -==<=,故B 错误;对C,22a b ≥+,当且仅当a b =取等号,又因为4a b +≥=,当且仅当a b =取等号,所以228a b ≥≥=+,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故C 正确;对D ,当10>>>a b ,22log 0,log 0a b ><,所以22log log 1a b ⋅<;当1a b >>,22log 0,log 0a b >>,所以()()2222222log log log log log 144a b ab a b +⋅≤==,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故D 正确.故选:ACD.6.【多选题】(2021·湖南高三二模)若正实数a ,b 满足a b >且ln ln 0a b ⋅>,下列不等式恒成立的是( )A .log 2log 2a b >B .ln ln a a b b ⋅>⋅C .122ab a b ++>D .log 0a b >【答案】CD 【解析】由已知不等式,求出,a b 之间的关系,结合选项一一判断即可.【详解】由ln ln 0a b ⋅>有01b a <<< 或1a b >> ,对于选项A ,当01b a <<<或1a b >>都有log 2log 2a b < ,选项A 错误;对于选项B ,比如当11,24a b == 时,有211111111ln ln 2ln ln 44424222⎛⎫==⨯= ⎪⎝⎭故ln ln a a b b ⋅>⋅不成立,选项B 错误;对于C ,因为()()1110ab a b a b +--=-->,所以1ab a b +>+ ,则122ab a b ++> ,选项C 正确;对于选项D ,因为ln ln 0a b ⋅>,所以ln log 0ln a bb a=>,选项D 正确,故选:CD .7.【多选题】(2021·山东临沂市·高三二模)若5log 2a =,1ln 22b =,1ln 55c =,则( )A .a b >B .b c>C .c a>D .2a b>【答案】AB 【解析】对四个选项一一验证:对于A :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于B :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于C :利用不等式的传递性比较大小;对于D :利用换底公式,化为同底结构,利用函数的单调性比较大小;【详解】对于A :522221111ln o 21l g 2,log 522log log a b e e ====⨯=,又25e >,且2log y x =为增函数,所以222l l g 5og o e <,所以22251l og 1l og e <,即a b >.故A 正确;对于B:1ln 22b ==,1ln 55c ==因为101052232,525,ln y x =====为增函数,所以b c >;故B 正确;对于C :因为a b >,b c >,所以a c >,故C 错误;对于D :因为1ln 22b =,所以212ln 2log b e ==,而521log 2,log 5a ==又5e <,所以22log log 5e <,所以2211log log 5e >,所以2b a >,故D 错误.故选:AB.8.(2021·浙江高三专题练习)已知函数()f x 满足()(1)f x f x =-+,当(0,1)x ∈时,函数()3x f x =,则13(log 19)f =__________.【答案】2719-【解析】由()(1)f x f x =-+得函数的周期为2,然后利用周期和()(1)f x f x =-+对13(log 19)f 化简可得13(log 19)f 33927(log 1)(log 1919f f =-+=-,从而可求得结果【详解】解:由题意,函数()f x 满足()(1)f x f x =-+,化简可得()(2)f x f x =+,所以函数()f x 是以2为周期的周期函数,又由(0,1)x ∈时,函数()3x f x =,且()(1)f x f x =-+,则133339(log 19)(log 19)(log 192)(log 19f f f f =-=-+=327log 193392727(log 1)(log 3191919f f =-+=-=-=-.故答案为:2719-.9.(2021·千阳县中学高三其他模拟(文))已知函数()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩,则不等式()1f x >的解集为___________.【答案】11,3⎛⎫- ⎪⎝⎭【解析】根据分段函数的定义,分段讨论即可求解.【详解】解:()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩ ,()10131x x f x +≤⎧∴>⇔⎨>⎩或130log 1x x >⎧⎪⎨>⎪⎩,解得10-<≤x 或103x <<,即113x -<<,∴不等式()1f x >的解集为11,3⎛⎫- ⎪⎝⎭.故答案为:11,3⎛⎫- ⎪⎝⎭.10.(2021·浙江丽水市·高三期末)已知()()()1log 1log 01a a a a a ++<<<,则a 的取值范围是__________.【答案】⎫⎪⎪⎭【解析】通过作差将()()()1log 1log 01a a a a a ++<<<转化为(1)log (1)log 0++-<a a a a ,利用换底公式计算可得[][](1)lg(1)lg lg(1)lg log (1)log lg lg(1)++-+++-=+a a a a a a a a a a ,分别判断每个因式的正负,最终转化为211()124+->a 成立,结合二次函数图像,即可求得a 的取值范围.【详解】∵(1)lg(1)lg log (1)log lg lg(1)a a a aa a a a +++-=-+22lg (1)lg lg (1)a aalg a +-=+[][]lg(1)lg lg(1)lg lg lg(1)a a a a a a +-++=+而当01a <<时,lg 0a <,g(0)l 1a +>,1lg(1)lg lglg10a a a a++-=>=211lg(1)lg lg (1)lg (24a a a a a ⎡⎤++=+=+-⎢⎥⎣⎦,所以()()()1log 1log 01a a a a a ++<<<即为211lg ()024⎡⎤+->⎢⎥⎣⎦a ,由于lg u 单调递增,所以211(124+->a .211()24u a =+-的图象如图,当1u =时,0a =,1a <<时,12u <<,lg 0u >,可得()()log 1log 10a a a a a +-+<.故答案为:⎫⎪⎪⎭1.(2020·全国高考真题(文))设3log 42a =,则4a-=( )练真题A .116B .19C .18D .16【答案】B 【解析】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=,故选:B.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.3.(2020·天津高考真题)设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a<<D .c a b<<【答案】D 【解析】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.4.(2019年高考全国Ⅲ卷理)设是定义域为R 的偶函数,且在单调递减,则A .(log 3)>()>()B .(log 3)>()>()C .()>()>(log 3)D .()>()>(log 3)【答案】C【解析】是定义域为的偶函数,.,又在(0,+∞)上单调递减,∴,即.故选C .5.(2020·全国高考真题(理))若2233x y x y ---<-,则( )()f x ()0,+∞f 14f 322-f 232-f 14f 232-f 322-f 322-f 232-f 14f 232-f 322-f 14()f x R 331(log (log 4)4f f ∴=223303322333log 4log 31,1222,log 422---->==>>∴>> ()f x 23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<【答案】A 【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23t t f t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.6.(2019·天津高考真题(文))已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( )A.c <b <a B.a <b <c C.b <c <a D.c <a <b【答案】A 【解析】c =0.30.2<0.30=1;log 27>log 24=2;1<log 38<log 39=2.故c <b <a .故选A.。

对数及对数函数-高中数学专题

对数及对数函数-高中数学专题

对数及对数及对数函数知识精要一、定义二、性质0,0,1,1,0,0>>≠≠>>N M b a b a(1)x N a =log N a x=⇔(2)01log =a (3)1log =a a (4)N aNa =log(5)N M N M a a a log log )(log +=⋅ (6)N M NMa a alog log log -= (7)M x M a xa log log ⋅=(8)a M M b b a log /log log = (9)b xyb a ya x log log =(10)1log log =⋅a b b a 对数函数一. 复习:反函数的概念;通过实例和反函数的概念导出对数函数的概念通过关于细胞分裂的具体实例,直接了解对数函数模型所刻画的数量关系,使学生科学的发展源于实际生活,感受到指数函数与对数函数的密切关系:它们是从不同角度、不同需求看待同一个客观事实,前者根据细胞分裂次数,获得分裂后的细胞数;后者根据分裂后的细胞数,获得分裂的次数.前者用指数函数2xy =表示,后者用对数函数2log y x =.(1)引入:在我们学习研究指数函数时,曾经讨论过细胞分裂问题.某种细胞分裂时,得到的细胞的个数y 是分裂次数x 的函数,这个函数可用指数函数2xy =表示.现在来研究相反的问题,如果要求这种细胞经过多少次分裂,可以得到1万个、10万个、……细胞,那么分裂次数x 就是要得到的细胞个数y 的函数.根据对数的定义,这个函数可以写成对数的形式,就是2log x y =. 如果用x 表示自变量,y 表示函数,这个函数就是2log y x = 由反函数的概念,可知函数2log y x =与指数函数2xy =互为反函数.(2)定义:一般地,函数log a y x =(0,a >且1a ≠)就是指数函数xy a =(0,a >且1a ≠)的反函数.因为xy a =的值域是()0,+∞,所以,函数log a y x =的定义域是()0,+∞.二. 通过对数函数和指数函数的关系利用互为反函数的两函数的关系探求对数函数的图像和性质提问绘制图像的方法:(1)利用反函数的关系;(2)描点绘图 图像a ()1a > ()01a <<性质1. 对数函数log a y x =的图像都在Y轴的右方. 性质2. 对数函数log a y x =的图像都经过点(1,0)性质3. 当1x >时,0y >; 当1x >时,0y <; 当01x <<时,0y <. 当01x <<时,0y >. 性质4.对数函数在()0,+∞上是增函数. 对数函数在()0,+∞上是减函数.三. 掌握对数函数的图像和性质———巩固与应用对数函数的性质解决简单问题热身训练例1.函数12+=-x ay (0>a ,且1≠a )的图象必经过点( )(A)(0,1) (B)(1,1) (C) (2, 0) (D) (2,2) D例2.已知3log 1)(x x f += ,2log 2)(x x g = ,试比较)()(x g x f 和的大小。

专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题10对数与对数函数对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ;③自然对数:以e 为底,记为ln N ;(3)对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >);③对数换底公式:log log log c a c bb a=;④log ()log log a a a MN M N =+;⑤log log log aa a MM N N=-;⑥log log (m na a nb b m m=,)n R ∈;⑦log a b a b =和log b a a b =;⑧1log log a b b a=;2.对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数.对数函数的图象过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y <,当1x ≥时,y≥当01x <<时,0y >,当1x ≥时,0y≤【方法技巧与总结】1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)a 增大a 增大【题型归纳目录】题型一:对数运算及对数方程、对数不等式题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域))题型四:对数函数中的恒成立问题题型五:对数函数的综合问题【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++;(2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值;(3)若185a =,18log 9b =,用a ,b ,表示36log 45.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值.(2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c +=;(2)若60a =3,60b =5,求12(1)12a b b ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则()A .a +b =100B .b -a =eC .28ln 2ab <D .ln 6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=()A .2B .4C .6D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是()A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是()A .0a b +<B .1ab <-C .01b a <<D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为()A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则()A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是()A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2 ⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为()A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()Ab a<<B.b a<<Ca b<<D.a b <例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是()A .0B .1C .2D .a例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是()A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是()A .1116a ≤<B .1116a <<C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是()A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围.例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +.(1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =.(1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0, +的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为()A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是().A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则()A .sin sin a b>B .11a b>C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则()A .a c<B .b a<C .c a<D .a b<例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则ab的取值可以是()A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2xf x x x -=+-的零点,则020e ln x x -+=_______.【过关测试】一、单选题1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)()A .1393.1610s ⨯B .1391.5810s ⨯C .1401.5810s⨯D .1403.1610s⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为()A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则()A .111x y z+=B .111y z x+=C .112x y z +=D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ()A .是奇函数,且在()0,1上单调递增B .是奇函数,且在()0,1上单调递减C .是偶函数,且在()0,1上单调递增D .是偶函数,且在()0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =,()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为()A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是()A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()A b a<<B .b a<<C a b<<D .a b <二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是()A .11a b+的最小值是4B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是()A .2ab bc ac+=B .ab bc ac+=C .4949b b a c⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是()A .()(lg f x x =B .()2f x x ax=+C .()21xaf x e =--D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为()ABCD三、填空题13.(2022·天津·二模)已知()42log 41log x y +=+,则2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论:①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--;④函数()y f x =在()(),1k k k +∈Z 上单调递减.其中所有正确结论的序号为______.四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ](m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1ax f x x -=-在其定义域上是奇函数,a 为常数.(1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M .(1)当t e =时,求切线l 的方程;(2)O 为坐标原点,记AMO 的面积为S ,求面积S 以t 为自变量的函数解析式,写出其定义域,并求单调增区间.。

第06讲 对数与对数函数(原卷版)备战2023年高考数学一轮复习精讲精练

第06讲 对数与对数函数(原卷版)备战2023年高考数学一轮复习精讲精练

第06讲对数与对数函数 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:对数的运算;高频考点二:换底公式高频考点三:对数函数的概念;高频考点四:对数函数的定义域高频考点五:对数函数的值域①求对数函数在区间上的值域;②求对数型复合函数的值域③根据对数函数的值域求参数值或范围高频考点六:对数函数的图象①判断对数(型)函数的图象②根据对数(型)函数的图象判断参数③对数(型)函数图象过定点问题高频考点七:对数函数的单调性①对数函数(型)函数的单调性②由对数函数(型)函数的单调性求参数③由对数函数(型)函数的单调性解不等式④对数(指数)综合比较大小高频考点八:对数函数的最值①求对数(型)函数的最值②根据对数(型)函数的最值求参数③对数(型)函数的最值与不等式综合应用第四部分:高考真题感悟第五部分:第06讲对数与对数函数(精练)1、对数的概念(1)对数:一般地,如果x a N =(0,1)a a >≠且,那么数 x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.(2)牢记两个重要对数:常用对数,以10为底的对数lg N ;自然对数,以无理数e=2.71828…为底数的对数ln N .(3)对数式与指数式的互化:log x a a N x N =⇔=. 2、对数的性质、运算性质与换底公式(1)对数的性质根据对数的概念,知对数log (0,1)a N a a >≠且具有以下性质:①负数和零没有对数,即0N >;②1的对数等于0,即log 10a =;③底数的对数等于1,即log 1a a =;④对数恒等式log (0)a N a N N =>.(2)对数的运算性质如果0,1,0,0a a M N >≠>>且,那么:①log ()log log a a a M N =M +N ⋅;②log log log a a a M =M N N-; ③log log ()n a a M =n M n ∈R .(3)对数的换底公式对数的换底公式:log log (0,1;0,1;0)log c a c b b a a c c b a=>≠>≠>且且. 换底公式将底数不同的对数转化为底数相同的对数,进而进行化简、计算或证明.换底公式应用时究竟换成什么为底,由已知条件来确定,一般换成以10为底的常用对数或以e 为底的自然对数.换底公式的变形及推广:①log log 01,0()且m n a a n b b a a b m =>≠>; ②(1log 01;01log )且且a b b a a b b a=>≠>≠;③log log log log a b c a b c d d ⋅⋅=(其中a ,b ,c 均大于0且不等于1,0d >).3、对数函数及其性质(1)对数函数的定义形如log x a y =(0a >,且1a ≠)的函数叫做对数函数,其中x 是自变量,函数的定义域是(0,)+∞.(2)对数函数的图象与性质定义域:(0,)+∞一、判断题1.(2022·江西·贵溪市实验中学高二期末)已知x y >,则不等式ln ln x y >成立 ( )2.(2021·江西·贵溪市实验中学高二阶段练习)32log 8log 99⨯=( )3.(2021·江西·贵溪市实验中学高三阶段练习)21log 3436+=.( )4.(2021·江西·贵溪市实验中学高二阶段练习)若lg 2,lg3,a b ==则12log 5=12a a b -+ ( ) 二、单选题1.(2022·北京·一模)下列函数中,定义域与值域均为R 的是( )A .ln y x =B .x y e =C .3y x =D .1y x = 2.(2022·海南·模拟预测)已知20.70.7log 3,log 0.3,0.7a b c ===,则a ,b ,c 的大小关系为( )A .b c a >>B .b a c >>C .a b c >>D .a c b >>3.(2022·湖南师大附中高一阶段练习)不等式()2log 311x +<成立的一个充分不必要条件是( )A .1133x -<< B .0x < C .113x -<< D .103x << 4.(2022·陕西西安·高一期末)函数()ln x f x x=的图像大致为( ) A . B .C .D .5.(2022·吉林·农安县教师进修学校高一期末)函数()1ln 34y x x =-+的定义域是( ) A .3,4⎛⎫-∞ ⎪⎝⎭ B .30,4⎛⎫ ⎪⎝⎭ C .()3,00,4⎛⎫-∞⋃ ⎪⎝⎭ D .3,4⎛⎫+∞ ⎪⎝⎭高频考点一:对数的运算1.(2022·甘肃平凉·二模(文))27log 7log 8⋅=______.2.(2022·北京师大附中高一期末)13331()log 5log 1527+-=______________. 3.(2022·浙江·杭州市富阳区第二中学高一阶段练习)计算7log 237log 27lg 25lg 47log 1++++=______.4.(2022·湖南·高一课时练习)计算:(1)()23log 279⨯;(2)101log 1000;(3)7775log 30log 12log 2--.高频考点二:换底公式1.(2022·贵州遵义·高三开学考试(理))已知lg 2,lg3a b ==,则4log 75=( )A .22a b a -+B .22b a a -+C .222b a a -+D .222a b a-+ 2.(2022·安徽·安庆市教育教学研究室高一期末)已知lg 2a =,lg3b =,用a ,b 表示36log 5,则36log 5=( )A .221a b a +-B .12a a b -+C .22a a b -+D .122a a b-+ 3.(2022·山东济南·二模)已知ln 2a =,ln3b =,那么3log 2用含a 、b 的代数式表示为( ) A .-a b B .a b C .b a D .a b +4.(2022·湖南·高一课时练习)计算:53611log log 6log 325⋅⋅=________.高频考点三:对数函数的概念1.(2021·河南·洛宁县第一高级中学高一阶段练习)已知函数()f x 满足①定义域为()0,∞+;②值域为R ;③()()22f x f x =.写出一个满足上述条件的函数:()f x =___________. 2.(2021·江苏·高一专题练习)对数函数f (x )的图象过点(3,-2),则f=________.3.(2021·江苏南通·高三期中)写出满足条件“函数()y f x =在()0,∞+上单调递增,且()()()f xy f x f y =+”的一个函数()f x =___________.4.(2021·全国·高一专题练习)若函数f (x )=(a 2+a -5)log ax 是对数函数,则a =________.高频考点四:对数函数的定义域1.(2022·甘肃·甘南藏族自治州合作第一中学高一期末)函数f (x )的定义域为( )A .(2,+∞)B .(0,2)C .(-∞,2)D .(0, 12)2.(2022·四川·模拟预测(文))函数y =___________.3.(2022·四川宜宾·高一期末)函数y =________.4.(2022·上海市控江中学高一期末)函数()2lg 1y x kx =++定义域为R ,则实数k 的取值范围为______.5.(2022·上海浦东新·高一期末)函数1ln 2x y x-=-的定义域为_____________.高频考点五:对数函数的值域①求对数函数在区间上的值域1.(2022·全国·高三专题练习)函数()222log log f x x x =+在1,24⎛⎫ ⎪⎝⎭上的值域为_______________________. 2.(2022·全国·池州市第一中学高一开学考试)已知函数()2122log log f x x x =+.(1)求()f x 在区间[]1,8上的值域;3.(2022·全国·高一课时练习)求函数2log ,[8,)y x x =∈+∞的值域.②求对数型复合函数的值域1.(2022·贵州·毕节市第一中学高一阶段练习)函数y =2+log 2(x 2+3)(x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞)2.(2022·青海·大通回族土族自治县教学研究室高一期末)函数()212log 8y x =+的值域是________.3.(2022·河南焦作·高一期末)已知函数()()()log 2log 4a a f x x x =++-(a >0且a ≠1)的图象过点()1,2.(1)求a 的值及()f x 的定义域;(2)求()f x 在[]0,3上的最小值.4.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;③根据对数函数的值域求参数值或范围1.(2022·河南信阳·高一期末)已知函数()23log y x m =+的值域为[2,)+∞,则实数m 的值为( )A .2B .3C .9D .272.(2022·陕西咸阳·高一期末)函数()log 1a f x x =+在[1,3]上的值域为[1,3],则实数a 的值是___________.3.(2022·全国·高一阶段练习)函数()()2lg 234f x mx x =-+的值域为R ,则实数m 的取值范围为______.4.(2022·河南·林州一中高一开学考试)若函数()2log 5242a y a x ax =--+⎡⎤⎣⎦有最小值,则a 的取值范围为______.5.(2022·山西省长治市第二中学校高一期末)已知函数212()log (23)f x x ax =-+ .(1)当1a =-时,求函数()f x 的值域;(2)若函数()f x 的值域为R ,求实数a 取值范围.高频考点六:对数函数的图象①判断对数(型)函数的图象1.(2022·广东汕尾·高一期末)当1a >时,在同一平面直角坐标系中,1xy a ⎛⎫= ⎪⎝⎭与()log a y x =-的图象是()A .B .C .D .2.(2022·广东·华南师大附中高一阶段练习)函数3x y -=与()3log y x =-的图象可能是( ) A . B .C .D .3.(2022·浙江·高三专题练习)已知lg lg 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()x f x a =与()1log bg x x =的图象可能是( )A .B .C .D .②根据对数(型)函数的图象判断参数1.(2022·新疆巴音郭楞·高一期末)如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b2.(2022·全国·高三专题练习(文))已知2(0,1)()log ,[1,2)aax x f x x x ⎧∈=⎨∈⎩,,若()2a f x =有两解,则a 的取值范围是( ) A .10,2⎛⎫ ⎪⎝⎭ B .10,2⎛⎤ ⎥⎝⎦ C .(1,2] D .(1,2)3.(2022·湖南师大附中高一期末)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<<B .101b a -<<<C .101b a -<<<D .1101a b --<<<4.(2022·黑龙江·双鸭山一中高一期末)已知310()log 0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()0f x a -=有四个根1234,,,x x x x 且1234x x x x <<<,则1234x x x x +++的取值范围是______.③对数(型)函数图象过定点问题1.(2022·黑龙江·双鸭山一中高一开学考试)函数()log (1)3,(0,1)a f x x a a =-++>≠且的图象一定过定点__________.2.(2022·湖北·江夏一中高一阶段练习)函数y =log a (2x -3)+8的图象恒过定点A ,且点A 在幂函数f (x )的图象上,则f (3)=________.3.(2022·四川南充·高一期末)函数log (1)2(0,1)a y x a a =-+>≠的图象恒过一定点是___________.高频考点七:对数函数的单调性①对数函数(型)函数的单调性1.(2022·北京房山·高一期末)下列函数中,既是奇函数又在区间(0,)+∞上单调递增的是( ) A .21y x =-+ B .2log y x = C .3y x = D.y =2.(2022·全国·高一课时练习)函数12()log f x x =的单调递增区间是( )A .10,2⎛⎤ ⎥⎝⎦B .(]0,1C .()0,∞+D .[)1,+∞ 3.(2022·北京·高三专题练习)函数()()212log 6f x x x =-++的单调递增区间是( )A .1,32⎛⎫ ⎪⎝⎭B .12,2⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭4.(2022·河北张家口·高一期末)函数()()22log 65f x x x =-+-的单调递减区间是( )A .(],3-∞B .(]1,3C .[)3,+∞D .[)3,55.(2022·河南新乡·高一期末)函数()217log 2223y x x =--的单调递增区间为( )A .()11,+∞B .(),11-∞C .()23,+∞D .(),1-∞-6.(2022·山西·怀仁市第一中学校高一期末)()()23log 28f x x x =--的单调递增区间为( )A .(),1-∞B .(),4-∞C .()2,-+∞D .()4,+∞②由对数函数(型)函数的单调性求参数1.(2022·陕西西安·高一期末)已知()log log 1a a b b <-,则a 的取值范围是( ) A .1a >B .01a <<C .a b >D .0a b <<2.(2022·黑龙江·双鸭山一中高一期末)已知函数()2()lg 1f x x ax =-+-在[2,3]上单调递减,则实数a 的取值范围是( ) A .[4,)+∞B .[6,)+∞C .10,43⎛⎤⎥⎝⎦D .10,43⎡⎤⎢⎥⎣⎦3.(2022·内蒙古赤峰·高一期末)已知函数()()314,1log ,1aa x a x f x x x ⎧-+<=⎨≥⎩在R 上是减函数,则实数a 的取值范围是( ) A .()0,1B .10,3⎛⎫⎪⎝⎭C .11,73⎡⎫⎪⎢⎣⎭D .1,17⎡⎤⎢⎥⎣⎦4.(2022·湖南岳阳·高一期末)已知函数()2ln 3y x ax a =-+在[2,)+∞上单调递增,则实数a 的取值范围为( ) A .()4,-+∞B .(]0,4C .[)4,+∞D .(]4,4-5.(2022·福建泉州·高一期末)若函数()ln(2)=-f x ax 在(1,)+∞单调递增,则实数a 的取值范围为( ) A .(0,)+∞B .(2,)+∞C .(0,2]D .[2,)+∞6.(2022·重庆·高一期末)已知关于x 的函数2log (2)y ax =-在[]0,1上是单调递减的函数,则a 的取值范围为( )A .()0-,∞ B .()0,+∞ C .(]0,2D .()02,7.(2022·河南南阳·高一期末)若函数()()217log 45f x x x =-++在区间()32,2m m -+上单调递增,则实数m的取值范围为( ) A .3,14⎡⎤⎢⎥⎣⎦B .43,32⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,23⎛⎫ ⎪⎝⎭③由对数函数(型)函数的单调性解不等式1.(2022·河南濮阳·高三开学考试(文))不等式()()2ln 1ln 35x x +>+的解集为( )A .()4,+∞B .()1,4-C .()5,14,3⎛⎫--⋃+∞ ⎪⎝⎭D .()(),14,-∞-⋃+∞2.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)3.(2022·北京房山·高一期末)设函数21,2()2log (1),2xx f x x x ⎧⎛⎫<⎪ ⎪=⎨⎝⎭⎪-≥⎩,若()1f x >,则x 的取值范围是( )A .(0,3)B .(,0)(3,)-∞⋃+∞C .(,1)(2,)-∞-⋃+∞D .(1,2)-4.(2022·四川绵阳·一模(理))设函数()211,,21log ,,2x f x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩则满足()()21f x f x -<的x 的取值范围是( )A .13,24⎛⎤⎥⎝⎦B .3,14⎡⎫⎪⎢⎣⎭C .3,4⎛⎤-∞ ⎥⎝⎦D .1,12⎛⎫⎪⎝⎭5.(2022·江西赣州·一模(文))设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩则满足()2f x ≤的x 取值范围是A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)④对数(指数)综合比较大小1.(2022·广东中山·高一期末)设2log 3a =,3log 4b =,5log 8c =,则( ) A .b a c << B .a b c << C .c b a <<D .b c a <<2.(2022·江西·南昌十五中高二阶段练习(理))设292log 3,log 5,15==a b c ,则( ) A .2a b <B .2log 180+>a cC .24+>a b cD .21316+<a a 3.(2022·福建·厦门双十中学高二阶段练习)设2ln1.01a =,ln1.02b =,0.02c =,则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<4.(2022·江西·九江一中高二阶段练习(理))已知 1.12a =,0.64b =,ln 7c =,则a ,b ,c 的大小关系为( ) A .a b c <<B .b c a <<C .c a b <<D .c b a <<5.(2022·江苏·南京市第一中学高三开学考试)已知0.2log 0.02a =,3log 30b =,ln 6c =,则( ) A .c b a <<B .b a c <<C .c a b <<D .a c b <<高频考点八:对数函数的最值①求对数(型)函数的最值1.(2021·江苏·沭阳县修远中学高一阶段练习)已知函数()21f x ax =-在区间[]0,2上的最大值为7,则()log a g x x =在区间[]1,4上的最大值为( )A .0B .1C .2D .42.(2021·天津市实验中学滨海学校高三期中(理))已知函数()420.5()log 46f x x x =-+,则( )A .()f x 有最小值,且最小值为-2B .()f x 有最小值,且最小值为-1C .()f x 有最大值,且最大值为-2D .()f x 有最大值,且最大值为-13.(2022·上海金山·高一期末)函数()12log 2y x =+,[]2,6x ∈的最大值为______. 4.(2021·山东·嘉祥县第一中学高三阶段练习)函数()()224log log 44xf x x =⋅的最小值为___________. 5.(2021·全国·高一课时练习)函数()23()log 9f x x =-的最大值是_______.②根据对数(型)函数的最值求参数1.(2022·河南平顶山·高一期末)已知函数()21log ,a f x x x a ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的最大值与最小值的差为2,则=a ( ) A .4B .3C .2D2.(2022·贵州·六盘水市第一中学模拟预测)若函数()2log 1a y x ax =-+有最小值,则a 的取值范围是( )A .12a <<B .02,1a a <<≠C .01a <<D .2a ≥3.(2022·贵州毕节·高一期末)已知函数()22,4,log ,4,x a x f x x x ⎧-<=⎨≥⎩若()f x 存在最小值,则实数a 的取值范围是( ) A .(,4]-∞ B .[2,)-+∞ C .(,2)-∞-D .(,2]-∞-4.(2022·全国·高三专题练习)若函数2()log (1)a f x x ax =-+(01)a a >≠且没有最小值,则a 的取值范围是____________.5.(2022·甘肃省会宁县第一中学高一期末)已知函数()log a f x x =(0a >且1a ≠),()f x 在1,23⎡⎤⎢⎥⎣⎦上的最大值为1. (1)求a 的值;(2)当函数()f x 在定义域内是增函数时,令()1122g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,判断函数()g x 的奇偶性,并证明,并求出()g x 的值域.6.(2022·河南信阳·高一期末)已知函数()log (4)a f x ax =-(0a >,且1a ≠). (1)求函数()f x 的定义域;(2)是否存在实数a ,使函数()f x 在区间31,2⎡⎤⎢⎥⎣⎦上单调递减,并且最大值为1?若存在,求出a 的值;若不存在,请说明理由.7.(2022·天津河北·高一期末)已知函数()()log 1a f x x =-(0a >,且1a ≠) (1)求()2f 的值及函数()f x 的定义域;(2)若函数()f x 在[]2,9上的最大值与最小值之差为3,求实数a 的值.③对数(型)函数的最值与不等式综合应用1.(2022·湖北·武汉中学高一阶段练习)已知函数()1lg 43x x f x m ⎛⎫=-- ⎪⎝⎭,若对任意的[]1,1x ∈-使得()1f x ≤成立,则实数m 的取值范围为 A .19,3⎡⎫-+∞⎪⎢⎣⎭B .11,4⎛⎫-∞ ⎪⎝⎭-C .1911,34⎡⎤--⎢⎥⎣⎦D .1911,34⎡⎫--⎪⎢⎣⎭2.(2022·吉林·长春市第二中学高一期末)已知函数()4412log 2log 2y x x ⎛⎫=-+ ⎪⎝⎭.(1)当[1,16]x ∈时,求该函数的值域;(2)若()4441log 2log log 2x x m x ⎛⎫++< ⎪⎝⎭,对于[4,16]x ∈恒成立,求实数m 的取值范围.3.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠. (1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.4.(2022·江苏·无锡市第一中学高一期末)设函数3()log (933)x xf x k =-⋅-,其中k 为常数.(1)当2k =时,求()f x 的定义域;(2)若对任意[1,)x ∈+∞,关于x 的不等式(x)x f ≥恒成立,求实数k 的取值范围.1.(2021·湖南·高考真题)函数3()log (1)f x x =+的定义域为( ) A .(,1)-∞-B .(1,)-+∞C .[1,)-+∞D .(0,)+∞2.(2021·天津·高考真题)若2510a b ==,则11a b+=( )A .1-B .lg 7C .1D .7log 103.(2021·天津·高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<4.(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a <<B .b a c <<C .a c b <<D .a b c <<5.(2021·全国·高考真题(文))青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )( 1.259≈) A .1.5B .1.2C .0.8D .0.6一、单选题1.(2021·江苏·高一专题练习)已知136a =,b log =21.2c =,则a b c ,,的大小关系是( ) A .b c a >> B .a c b >> C .a b c >>D .b a c >>2.(2021·江苏·高一专题练习)1182112416--⎛⎫⎛⎫⨯+= ⎪ ⎪ ⎪⎝⎭⎝⎭( ) A B C .D .3.(2021·江苏·高一专题练习)已知3log 2a =,那么33log 82log 6-用a 表示是( ) A .52a -B .2a -C .23(1)a a -+D .231a a --4.(2021·浙江·高一期中)已知(31)4,1()log ,1a a x a x f x x x -+≤⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .11,73⎡⎫⎪⎢⎣⎭B .1,17⎡⎫⎪⎢⎣⎭C .()0,1D .10,3⎛⎫ ⎪⎝⎭5.(2021·新疆·石河子第二中学高一阶段练习)已知()212()log f x x ax a =-+的值域为R ,且()f x 在(3,1)--上是增函数,则实数a 的取值范围是( ) A .20a ≤≤ B .102a -≤≤或4a ≥C .20a -≤≤或4a ≥D .04a ≤≤6.(2021·陕西·武功县教育局教育教学研究室高一期中)函数()()1lg 4211x x f x +=-+的最小值是( ).A .10B .1C .11D .lg117.(2021·重庆市第七中学校高一阶段练习)函数21()log 1xf x x的图象大致为( )A .B .C .D .8.(2021·江苏·高一专题练习)设函数()f x 的定义域为D ,若函数()f x 满足条件:存在[]a b D ⊆,,使()f x 在[]a b ,上的值域为22a b ⎡⎤⎢⎥⎣⎦,,则称()f x 为“倍缩函数”.若函数()()2log 2x f x t =+(其中0t ≥)为“倍缩函数”,则t 的取值范围是( ) A .104⎛⎫ ⎪⎝⎭,B .()01,C .102⎛⎤⎥⎝⎦,D .14⎛⎫+∞ ⎪⎝⎭, 二、填空题9.(2021·河南·漯河实验高中高一阶段练习)()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________. 10.(2021·江苏·高一专题练习)已知()()2log 3(0a f x x ax a =-+>且1)a ≠,对任意12,(,]2a x x ∈-∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,则a 的取值范围是__________. 11.(2021·江苏·高一专题练习)已知函数()221log 2f x ax x ⎛⎫=-+ ⎪⎝⎭在31,2⎡⎤⎢⎥⎣⎦上恒正,则实数a 的取值范围是__________.12.(2021·江苏省太湖高级中学高一阶段练习)对于函数()f x ,若在定义域内存在实数0x 满足()()00f x f x -=-,则称函数()f x 为“K 函数”.设()()22log 21,23,2x mx x f x x ⎧-+≥⎪=⎨-<⎪⎩为其定义域上的“K 函数”,则实数m 的取值范围是___________. 三、解答题13.(2021·江苏·高一专题练习)计算求值 (1)()362189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++;(3)已知623a b ==,求11a b-的值.14.(2021·河北省博野中学高三阶段练习)已知函数()()212log f x x mx m =--. (1)若1m =,求函数()f x 的定义域.(2)若函数()f x 的值域为R ,求实数m 的取值范围.(3)若函数()f x 在区间(1-∞,上是增函数,求实数m 的取值范围.15.(2021·江苏·高一专题练习)已知函数22()log (21),()log (21)()x xf xg x f x =+=--(1)求()g x 的定义域并判断()g x 的奇偶性; (2)求函数()g x 的值域;(3)若关于x 的方程(),[0,1]f x x m x =+∈有实根,求实数m 的取值范围16.(2021·江苏·高一专题练习)已知函数22()log (1)21=+-f x x . (1)判断函数()f x 的奇偶性,并证明;(2)对任意的()0x ∈-∞,,不等式12(21)log (2)++>-x x f m 恒成立,求实数m 的取值范围.。

高考数学一轮复习考点知识专题讲解9---对数与对数函数

高考数学一轮复习考点知识专题讲解9---对数与对数函数

高考数学一轮复习考点知识专题讲解对数与对数函数考点要求1.理解对数的概念及运算性质,能用换底公式将一般对数转化成自然对数或常用对数.2.通过实例,了解对数函数的概念,会画对数函数的图象,理解对数函数的单调性与特殊点.3.了解指数函数y =a x 与对数函数y =log a x (a >0,且a ≠1)互为反函数.知识梳理 1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 以10为底的对数叫做常用对数,记作lg N . 以e 为底的对数叫做自然对数,记作ln N . 2.对数的性质与运算性质(1)对数的性质:log a 1=0,log a a =1,log a N a =N (a >0,且a ≠1,N >0). (2)对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: ①log a (MN )=log a M +log a N ; ②log a MN=log a M -log a N ; ③log a M n =n log a M (n ∈R ).(3)换底公式:log a b =log c blog c a(a >0,且a ≠1,b >0,c >0,且c ≠1). 3.对数函数的图象与性质y =log a x a >1 0<a <1图象定义域 (0,+∞)值域R性质过定点(1,0),即x =1时,y =0当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0 在(0,+∞)上是增函数 在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 常用结论1.log a b ·log b a =1,log nm b a =nmlog a b . 2.如图给出4个对数函数的图象则b >a >1>d >c >0,即在第一象限,不同的对数函数图象从左到右底数逐渐增大. 3.对数函数y =log a x (a >0且a ≠1)的图象恒过点(1,0),(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .(×)(2)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.(×) (3)函数y =log a 1+x1-x 与函数y =ln(1+x )-ln(1-x )是同一个函数.(×)(4)函数y =log 2x 与y =121log x的图象重合.(√) 教材改编题1.函数y =log a (x -2)+2(a >0且a ≠1)的图象恒过定点. 答案(3,2) 解析∵log a 1=0, 令x -2=1,∴x =3, ∴y =log a 1+2=2,∴原函数的图象恒过定点(3,2). 2.计算:(log 29)·(log 34)=. 答案4解析(log 29)·(log 34)=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4. 3.若函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =. 答案12或2解析当a >1时,log a 4-log a 2=log a 2=1, ∴a =2;当0<a <1时,log a 2-log a 4=-log a 2=1, ∴a =12,综上有a =12或2.题型一 对数式的运算例1(1)设2a =5b =m ,且1a +1b=2,则m 等于()A.10B .10C .20D .100 答案A解析2a =5b =m , ∴log 2m =a ,log 5m =b ,∴1a +1b =1log 2m +1log 5m =log m 2+log m 5 =log m 10=2, ∴m 2=10,∴m =10(舍m =-10). (2)计算:log 535+212log 2-log 5150-log 514=. 答案2解析原式=log 535-log 5150-log 514+12log (2)2=log 535150×14+12log 2=log 5125-1=log 553-1=3-1=2. 教师备选计算:(1-log 63)2+log 62·log 618log 64=.答案1解析原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.思维升华 解决对数运算问题的常用方法 (1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.跟踪训练1(1)已知a >b >1,若log a b +log b a =52,a b =b a ,则a +b =.答案6解析设log b a =t ,则t >1,因为t +1t =52,所以t =2,则a =b 2.又a b =b a , 所以b 2b=2b b ,即2b =b 2,又a>b>1,解得b=2,a=4.所以a+b=6.(2)计算:lg25+lg50+lg2·lg500+(lg2)2=.答案4解析原式=2lg5+lg(5×10)+lg2·lg(5×102)+(lg2)2=2lg5+lg5+1+lg2·(lg5+2)+(lg2)2=3lg5+1+lg2·lg5+2lg2+(lg2)2=3lg5+2lg2+1+lg2(lg5+lg2)=3lg5+2lg2+1+lg2=3(lg5+lg2)+1=4.题型二对数函数的图象及应用例2(1)已知函数f(x)=log a(2x+b-1)(a>0,且a≠1)的图象如图所示,则a,b满足的关系是()A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<1答案A解析由函数图象可知,f(x)为增函数,故a>1.函数图象与y轴的交点坐标为(0,log a b),由函数图象可知-1<log a b<0,解得1a<b<1.综上有0<1a<b<1.(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为.答案⎝⎛⎦⎥⎤0,22解析若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 和函数y =log a x 在⎝⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a12≤2,解得0<a ≤22. 教师备选已知x 1,x 2分别是函数f (x )=e x +x -2,g (x )=ln x +x -2的零点,则1e x +ln x 2的值为() A .e 2+ln2B .e +ln2 C .2D .4 答案C解析根据题意,已知x 1,x 2分别是函数f (x )=e x +x -2,g (x )=ln x +x -2的零点,函数f (x )=e x +x -2的零点为函数y =e x 的图象与y =2-x 的图象的交点的横坐标, 则两个函数图象的交点为(x 1,1e x ),函数g (x )=ln x +x -2的零点为函数y =ln x 的图象与y =2-x 的图象的交点的横坐标,则两个函数图象的交点为(x2,ln x2),又由函数y=e x与函数y=ln x互为反函数,其图象关于直线y=x对称,而直线y=2-x也关于直线y=x对称,则点(x1,1e x)和(x2,ln x2)也关于直线y=x对称,则有x1=ln x2,则有1e x+ln x2=1e x+x1=2.思维升华对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.跟踪训练2(1)已知函数f(x)=log a x+b的图象如图所示,那么函数g(x)=a x+b的图象可能为()答案D解析结合已知函数的图象可知,f (1)=b <-1,a >1,则g (x )单调递增,且g (0)=b +1<0,故D 符合题意.(2)(2022·西安调研)设x 1,x 2,x 3均为实数,且1e x -=ln x 1,2e x -=ln(x 2+1),3e x -=lg x 3,则()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 3<x 1D .x 2<x 1<x 3 答案D解析画出函数y =⎝ ⎛⎭⎪⎫1e x,y =ln x ,y =ln(x +1),y =lg x 的图象,如图所示.数形结合,知x 2<x 1<x 3.题型三 对数函数的性质及应用 命题点1比较指数式、对数式大小 例3(1)设a =log 3e ,b =e 1.5,c =131log 4,则() A .b <a <c B .c <a <b C .c <b <a D .a <c <b 答案D 解析c =131log 4=log 34>log 3e =a . 又c =log 34<log 39=2,b =e 1.5>2,∴a <c <b .(2)(2022·昆明一中月考)设a =log 63,b =log 126,c =log 2412,则() A .b <c <a B .a <c <b C .a <b <c D .c <b <a 答案C解析因为a ,b ,c 都是正数, 所以1a=log 36=1+log 32,1b =log 612=1+log 62,1c=log 1224=1+log 122,因为log 32=lg2lg3, log 62=lg2lg6,log 122=lg2lg12,且lg3<lg6<lg12,所以log 32>log 62>log 122, 即1a >1b >1c,所以a <b <c .命题点2解对数方程不等式例4若log a (a +1)<log a (2a )<0(a >0,a ≠1),则实数a 的取值范围是. 答案⎝ ⎛⎭⎪⎫14,1解析依题意log a (a +1)<log a (2a )<log a 1, ∴⎩⎨⎧a >1,a +1<2a <1或⎩⎨⎧0<a <1,a +1>2a >1,解得14<a <1.命题点3对数性质的应用 例5已知函数f (x )=ln 2x +12x -1,下列说法正确的是________.(填序号) ①f (x )为奇函数; ②f (x )为偶函数;③f (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递减;④f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递增.答案①③解析f (x )=ln 2x +12x -1,令2x +12x -1>0,解得x >12或x <-12,∴f (x )的定义域为⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞, 又f (-x )=ln-2x +1-2x -1=ln2x -12x +1=ln ⎝⎛⎭⎪⎫2x +12x -1-1=-ln2x +12x -1=-f (x ),∴f (x )为奇函数,故①正确,②错误; 又f (x )=ln2x +12x -1=ln ⎝⎛⎭⎪⎫1+22x -1, 令t =1+22x -1,t >0且t ≠1,∴y =ln t , 又t =1+22x -1在⎝ ⎛⎭⎪⎫12,+∞上单调递减, 且y =ln t 为增函数,∴f (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递减,故③正确;又f (x )为奇函数,∴f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,故④不正确.教师备选1.(2022·安徽十校联盟联考)已知a =log 23,b =2log 53,c =13log 2,则a ,b ,c 的大小关系为() A .a >c >b B .a >b >c C .b >a >c D .c >b >a 答案B解析∵a =log 23>1,b =2log 53=log 59>1,c =13log 2<0,∴a b =log 23log 59=lg3lg2×lg5lg9=lg3lg2×lg52lg3=lg52lg2=lg5lg4=log 45>1,∴a >b ,∴a >b >c .2.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为() A .[1,2) B .[1,2]C .[1,+∞) D.[2,+∞) 答案A解析令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数f (x )在(-∞,1]上单调递减, 则有⎩⎨⎧g (1)>0,a ≥1,即⎩⎨⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).思维升华 求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三个问题:一是定义域;二是底数与1的大小关系;三是复合函数的构成.跟踪训练3(1)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是() A .a <b <c B .b <a <c C .c <b <a D .a <c <b 答案C解析根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0,即log 2c <log 2b <log 2a <0, 可得c <b <a <1.(2)若函数f (x )=⎩⎨⎧log a x ,x ≥2,-log a x -4,0<x <2存在最大值,则实数a 的取值范围是.答案⎝⎛⎦⎥⎤0,22解析当a >1时,函数f (x )=log a x 在[2,+∞)上单调递增,无最值,不满足题意, 故0<a <1.当x ≥2时,函数f (x )=log a x 在[2,+∞)上单调递减,f (x )≤f (2)=log a 2; 当0<x <2时,f (x )=-log a x -4在(0,2)上单调递增,f (x )<f (2)=-log a 2-4, 则log a 2≥-log a 2-4,即log a 2≥-2=log a a -2, 即1a 2≥2,0<a ≤22, 故实数a 的取值范围是⎝⎛⎦⎥⎤0,22.课时精练1.(2022·重庆巴蜀中学月考)设a =12,b =log 75,c =log 87,则()A .a >b >cB .a >c >bC .c >b >aD .c >a >b 答案D解析a =12=log 77>b =log 75,c =log 87>log 88=12=a , 所以c >a >b .2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数且f (2)=1,则f (x )等于() A .log 2x B.12x C .12log x D .2x -2答案A解析函数y=a x(a>0,且a≠1)的反函数是f(x)=log a x,又f(2)=1,即log a2=1,所以a=2.故f(x)=log2x.3.函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()①a>1;②0<c<1;③0<a<1;④c>1.A.①②B.①④C.②③D.③④答案C解析由图象可知函数为减函数,∴0<a<1,令y=0得log a(x+c)=0,x+c=1,x=1-c,由图象知0<1-c<1,∴0<c<1.4.(2022·银川模拟)我们知道:人们对声音有不同的感觉,这与它的强度有关系.一般地,声音的强度用(W/m2)表示,但在实际测量时,声音的强度水平常用L1=10lg II0 (单位:分贝,L1≥0,其中I0=1×10-12是人们平均能听到的最小强度,是听觉的开端).某新建的小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,则声音强度I的取值范围是()A .(-∞,10-7)B .[10-12,10-5)C .[10-12,10-7)D .(-∞,10-5) 答案C解析由题意可得,0≤10·lg II 0<50, 即0≤lg I -lg(1×10-12)<5, 所以-12≤lg I <-7, 解得10-12≤I <10-7,所以声音强度I 的取值范围是[10-12,10-7). 5.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,12log (-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是()A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 答案C解析由题意得⎩⎪⎨⎪⎧ a >0,log 2a >12log a或⎩⎪⎨⎪⎧a <0,12log (-a )>log 2(-a ),解得a >1或-1<a <0.6.(2022·汉中模拟)已知log 23=a ,3b =7,则log 2156等于()A.ab+3a+abB.3a+ba+abC.ab+3a+bD.b+3a+ab答案A解析由3b=7,可得log37=b,所以log2156=log3(7×23)log3(3×7)=log37+log323log33+log37=b+3×1a1+b=ab+3a+ab.7.(2022·海口模拟)log327+lg25+lg4+7log27+13(8)-的值等于.答案7 2解析原式=log3323+lg52+lg22+2+133(2)⨯-=32+2lg5+2lg2+2+(-2)=32+2(lg5+lg2)+2+(-2)=32+2+2+(-2)=7 2 .8.已知函数y=log a(x-3)-1的图象恒过定点P,则点P的坐标是.答案(4,-1)解析令x -3=1,则x =4, ∴y =log a 1-1=-1, 故点P 的坐标为(4,-1).9.设f (x )=log 2(a x -b x ),且f (1)=1,f (2)=log 212. (1)求a ,b 的值;(2)当x ∈[1,2]时,求f (x )的最大值. 解(1)因为f (x )=log 2(a x-b x), 且f (1)=1,f (2)=log 212, 所以⎩⎨⎧log 2(a -b )=1,log 2(a 2-b 2)=log 212,即⎩⎨⎧a -b =2,a 2-b 2=12,解得a =4,b =2.(2)由(1)得f (x )=log 2(4x -2x ), 令t =4x -2x ,则t =4x -2x =⎝ ⎛⎭⎪⎫2x -122-14,因为1≤x ≤2,所以2≤2x ≤4, 所以94≤⎝ ⎛⎭⎪⎫2x -122≤494,即2≤t ≤12,因为y =log 2t 在[2,12]上单调递增, 所以y max =log 212=2+log 23, 即函数f (x )的最大值为2+log 23.10.(2022·枣庄模拟)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)判断f (x )的奇偶性并予以证明;(2)当a >1时,求使f (x )>0的x 的解集. 解(1)f (x )是奇函数,证明如下: 因为f (x )=log a (x +1)-log a (1-x ), 所以⎩⎨⎧x +1>0,1-x >0,解得-1<x <1,f (x )的定义域为(-1,1).f (-x )=log a (-x +1)-log a (1+x ) =-[log a (1+x )-log a (-x +1)]=-f (x ), 故f (x )是奇函数.(2)因为当a >1时,y =log a (x +1)是增函数,y =log a (1-x )是减函数,所以当a >1时,f (x )在定义域(-1,1)内是增函数,f (x )>0即log a (x +1)-log a (1-x )>0, log a x +11-x >0,x +11-x >1,2x 1-x >0,2x (1-x )>0,解得0<x <1, 故使f (x )>0的x 的解集为(0,1).11.设a =log 0.20.3,b =log 20.3,则() A .a +b <ab <0B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b 答案B解析∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0. ∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +b ab<1,∴ab <a +b <0.12.若实数x ,y ,z 互不相等,且满足2x =3y =log 4z ,则() A .z >x >y B .z >y >x C .x >y ,x >z D .z >x ,z >y 答案D解析设2x =3y =log 4z =k >0, 则x =log 2k ,y =log 3k ,z =4k , 根据指数、对数函数图象易得4k >log 2k , 4k >log 3k ,即z >x ,z >y .13.函数f (x )=log 2x ·2x )的最小值为. 答案-14解析依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log 2x +122-14≥-14,当log2x=-12,即x=22时等号成立,所以函数f(x)的最小值为-14.14.已知函数f(x)=|log2x|,实数a,b满足0<a<b,且f(a)=f(b),则a+b的取值范围是________.答案(2,+∞)解析∵f(x)=|log2x|,∴f(x)的图象如图所示,又f(a)=f(b)且0<a<b,∴0<a<1,b>1且ab=1,∴a+b≥2ab=2,当且仅当a=b时取等号.又0<a<b,故a+b>2.15.(2022·贵阳模拟)若3a+log3a=9b+2log9b,则()A.a>2b B.a<2bC.a>b2D.a<b2答案B解析f(x)=3x+log3x,易知f(x)在(0,+∞)上单调递增,∵3a+log3a=32b+log3b,∴f(2b)=32b+log3(2b)>32b+log3ba=f(a),=3a+log3∴2b>a.16.已知函数f(x)=log2(2x+k)(k∈R).(1)当k=-4时,解不等式f(x)>2;(2)若函数f(x)的图象过点P(0,1),且关于x的方程f(x)=x-2m有实根,求实数m的取值范围.解(1)当k=-4时,f(x)=log2(2x-4).由f(x)>2,(2x-4)>2,得log2得2x-4>4,得2x>8,解得x>3.故不等式f(x)>2的解集是(3,+∞).(2)因为函数f(x)=log2(2x+k)(k∈R)的图象过点P(0,1),所以f(0)=1,即log(1+k)=1,2解得k=1.所以f(x)=log2(2x+1).因为关于x的方程f(x)=x-2m有实根,(2x+1)=x-2m有实根.即log2所以方程-2m=log2(2x+1)-x有实根.令g(x)=log2(2x+1)-x,则g (x )=log 2(2x+1)-x=log 2(2x +1)-log 22x=log 22x+12x =log 2⎝ ⎛⎭⎪⎫1+12x .因为1+12x >1,log 2⎝ ⎛⎭⎪⎫1+12x >0,所以g (x )的值域为(0,+∞). 所以-2m >0,解得m <0.所以实数m 的取值范围是(-∞,0).。

对数与对数函数-高考数学复习课件

对数与对数函数-高考数学复习课件
> 1,
故有ቊ
解得1< a ≤3.
6 − 2≥0,
(2)(2024·河南郑州模拟)设函数 f ( x )=ln| x +3|+ln| x -3|,则
f ( x )( A
)
A. 是偶函数,且在(-∞,-3)上单调递减
B. 是奇函数,且在(-3,3)上单调递减
C. 是奇函数,且在(3,+∞)上单调递增
因为0< a < b ,所以ln a <0,ln b >0,
所以0< a <1, b >1,
所以-ln a =ln b , 所以ln a +ln b =ln( ab )=0,
1
所以 ab =1,则 b = ,

2
所以 a +2 b = a + .

2
令 g ( x )= x + (0< x <1),
a >1
0< a <1
图象
定义域
(0,+∞)

值域
性质
R
过定点 (1,0)
,即 x = 1
时, y = 0

a >1
0< a <1
当 x >1时, y >0 ;
当0< x <1时, y <0

性质
在(0,+∞)上是 增


当 x >1时, y <0 ;
当0< x <1时, y >0




在(0,+∞)上是 减
内容索引
必备知识
自主梳理
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 对数与对数运算
1. 对数的概念
如果 ax = N ( a >0,且 a ≠1),那么数 x 叫做以 a 为底 N 的对数,记作

基本初等函数之对数与对数函数,附练习题

基本初等函数之对数与对数函数,附练习题

对数与对数函数(讲义)知识点睛一、对数与对数的运算1.对数(1)如果x a N =(a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.常用对数:10log lg N N =;自然对数:e log ln N N =.(2)当a >0,且a ≠1时,x a N =⇔log a x N =.(3)负数和零没有对数;log 10a =,log 1a a =.2.对数的运算性质(1)如果a >0,且a ≠1,M >0,N >0,那么①log ()log log a a a M N M N ⋅=+;②log log log aa a MM N N=-;③log log ()n a a M n M n =∈R .(2)换底公式:log log log c a c bb a=(a >0,且a ≠1;c >0,且c ≠1;b >0).(3)log (010)a b a b a a b =>≠>,;.二、对数函数及其性质1.定义:一般地,函数log (0,1)a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数log (0,1)a y x a a =>≠且的图象和性质:0<a <1a >1图象定义域(0,+∞)值域R性质①过定点(1,0),即x =1时,y =0②在(0,+∞)上是减函数②在(0,+∞)上是增函数3.对数函数底数变化与图象分布规律1log a y x =;②log b y x =;③log c y x =;④log d y x =,则有0<b <a <1<d <c ,即:x ∈(1,+∞)时,log log log log a b c d x x x x <<<;x ∈(0,1)时,log log log log a b c d x x x x >>>.4.反函数对数函数与指数函数互为反函数,互为反函数的两个函数的图象关于直线y x =对称.精讲精练1.把下列指数式化为对数式,对数式化为指数式.(1)32=8_______________;(2)415625-=_______________;(3)13127=3-_______________;(4)lg 0.0013=-_____________;(5)0.3log 2=a _____________;(6)ln x =_____________.2.求下列各式的值.(1)43log (927)⨯(2)1lg lg 4lg 52++(3)661log 12log 2-(4)22333399(log 2)(log )log log 422++⋅(5)2345log 3log 4log 5log 2⋅⋅⋅(6)48525(log 5log 5)(log 2log 2)++3.已知234log [log (log )]0x =,则x 的值为_________.4.已知3485log 4log 8log log 25m ⋅⋅=,那么m 的值为()A .9B .18C .12D .275.已知4823log 3x y ==,,则x +2y 的值为()A .3B .8C .4D .log 486.已知log 3a m =,log 2a n =,那么a 2m +3n =()A .17B .72C .108D .317.已知lg lg 2lg(2)x y x y +=-,则xy的值为_________.8.设lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则2(lg )ab的值等于()A .2B .12C .4D .149.已知函数()lg f x x =.若()1f ab =,则22()()f a f b +=_____.10.下列函数表达式中是对数函数的是()A .0.01log (0)y x x =>B .22log y x =C .2log (2)(2)y x x =+>-D .2ln(1)y x =+11.若点(a ,b )在lg y x =图象上,且a ≠1,则下列点也在此图象上的是()A .1()b a ,B .(10a ,1-b )C .10(1)b a+,D .(a 2,2b )12.若函数log ()a y x b =+(a >0,a ≠1)的图象过两点(-1,0)和(0,1),则()A .a =2,b =2B .2a b ==C .a =2,b =1D .a b ==13.直接写出下列函数的定义域:311log (2)_______________2345log (3)_______________16_______________ln(1)x y x y y y y x y x -=-====-=+=+();();();();();().14.已知()f x 的定义域为[0,1],则函数12[log (3)]y f x =-的定义域是_____________.15.函数212log (613)y x x =++的值域为()A .RB .[8,+∞)C .(-∞,-2]D .[-3,+∞)16.函数log a y x =在区间[2,π]上最大值比最小值大1,则a =__________.17.下列判断不正确的是()A .22log 3.4log 4.3<B .0.20.3log 0.4log 0.4<C .67log 7log 6>D .30.3log log 4π<18.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点()A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度19.函数21log (01)1a x y a a x +=>≠-,的图象过定点P ,则点P 的坐标为()A .(1,0)B .(-2,0)C .(2,0)D .(-1,0)20.已知函数()log (1)a f x x =+,()log (1)a g x x =-(a >0,且a ≠1).(1)求函数()()f x g x +的定义域;(2)判断函数()()f x g x +的奇偶性,并说明理由.21.设a ,b ∈R 且a ≠2,定义在区间(-b ,b )上的函数1()lg12axf x x+=+满足:()()0f x f x +-=.(1)求实数a 的值;(2)求b 的取值范围.22.已知关于x 的方程212log 210x a x ⋅--=有实数根,求a 的取值范围.23.已知函数2log [(21)]a y x a x a =--+的定义域为R ,求实数a 的取值范围.回顾与思考________________________________________________________________________________________________________________________________________________________________________【参考答案】1.(1)2log 83=;(2)51log 4625=-;(3)2711log 33=-;(4)3100.001-=;(5)0.32a =;(6)e x =2.(1)11;(2)1;(3)12;(4)4;(5)1;(6)543.644.A 5.A 6.B 7.48.A 9.210.A 11.D 12.A13.(1)(2)+∞,;(2)(0)+∞,;(3)2(1]3,;(4)(0;(5)(12)(23)⋃,,;(6)(10)(02]-⋃,,14.5[22,15.C16.2π或2π17.D18.C 19.B20.(1)(-1,1);(2)偶函数,证明()()()()f x g x f x g x -+-=+21.(1)2a =-;(2)102b ≤<22.02a ≤<23.33(11)(1122,-⋃+对数与对数函数(随堂测试)1.函数22()log (2)f x x x a =-+的值域为[0,+∞),则正实数a 等于()A .1B .2C .3D .42.求函数2log (4)(01)a y x x a a =->≠,且的单调递减区间.【参考答案】1.B2.当01a <<时,f (x )的单调递减区间为(0,2];当1a >时,f (x )的单调递减区间为[2,4)对数与对数函数(作业)1.求下列各式的值.(1)lg +(2)553log 10log 0.125+(3)22(lg 2)(lg 5)lg 4lg 5++⋅(4)22lg 5lg83+(5)20321log log ()52-+-(6)231lg 25lg 2lg log 9log 22+-⨯2.下列对数运算中,一定正确的是()A .lg()lg lg M N M N +=⋅B .ln ln n M n M =C .lg()lg lg M N M N⋅=+D .lg log lg a b b a=3.已知3log 2a =,那么33log 22log 6-用a 表示是()A .5a -2B .-a -2C .3a -(1+a )2D .3-a 2-14.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是()A .log log log a c c b b a ⋅=B .log log log a c c b a b ⋅=C .log ()log log a a a bc b c =⋅D .log ()log log a a a b c b c+=+5.已知x ,y 为正实数,则下列式子中正确的是()A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=⋅C .lg lg lg lg 222x y x y⋅=+D .lg()lg lg 222x y x y⋅=⋅6.设方程22(lg )lg 30x x --=的两实根是a ,b ,则log log a b b a +等于()A .1B .-2C .-4D .103-7.在(2)log (5)a y a -=-中,实数a 的取值范围是()A .5a >或2a <B .23a <<或35a <<C .25a <<D .34a <<8.函数()ln1xf x x =+-的定义域为()A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)9.已知函数12()2log f x x =的值域为[-1,1],则函数()f x 的定义域为()A .22B .[11]-,C .1[2]2,D .2(])2-∞⋃∞,+10.已知3log 6a =,5log 10b =,7log 14c =,则()A .c b a >>B .b c a >>C .a c b >>D .a b c>>11.已知2log 3.45a =,4log 3.65b =,3log 0.31()5c =,则()A .a b c >>B .b a c >>C .a c b >>D .c a b>>12.函数12log 2y x =+的单调增区间为()A .()-∞∞,+B .(2)-∞-,C .(2)-∞+,D .(2)(2)-∞-⋃∞,,+13.若函数log (01)a y x a =<<在区间[a ,2a ]上的最大值是最小值的3倍,则a的值为()A .22B .24C .12D .1414.函数log (2)5a y x =-+过定点()A .(1,0)B .(3,1)C .(3,5)D .(1,5)15.当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象大致是()A .B .C .D .16.设函数()(01)x x f x ka a a a -=->≠,在()-∞+∞,上既是奇函数又是增函数,则()log ()a g x x k =+的图象是()A .B .C .D .17.已知函数e 1(1)()ln (1)x x f x x x ⎧-=⎨>⎩≤,则(ln 2)f 的值为_________.18.函数12log (1)()2(1)x x x f x x ⎧⎪=⎨⎪<⎩≥的值域是_________________.19.已知13log 2a =,0.62b =,4log 3c =,则a ,b ,c 的大小关系为_____________.20.给出下列命题:12log 2log a a x x =;2函数2log (1)y x =+是对数函数;3函数1ln1xy x+=-与ln(1)ln(1)y x x =+--的定义域相同;4若log log a a m n <,则m n <.其中正确的命题是_________.21.已知函数()f x 在[0)+∞,上是增函数,()(||)g x f x =-,若(lg )(1)g x g >,求x 的取值范围.22.设函数212log (0)()log ()(0)xx f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,求实数a 的取值范围.23.已知函数3()2log f x x =+(1≤x ≤9),求函数22[()]()y f x f x =+的最大值.【参考答案】24.(1)1;(2)3;(3)1;(4)2;(5)4;(6)12-25.D26.B27.B28.D29.D30.B31.B32.A33.D34.C35.B36.B37.C38.A39.C40.141.(2)-∞,42.a <c <b43.③44.11010x <<45.1a >或10a -<<46.22阅读材料反函数趣谈在指数函数2x y =中,x 为自变量,y 为因变量.如果把y 当成自变量,x 当成因变量,同学们思考一下,x 是不是y 的函数?在指数函数2x y =中,过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一个交点.另一方面,根据指数与对数的关系,由指数式2x y =可得到对数式2log x y =.这样,对于任意一个(0)y ∈+∞,,通过式子2log x y =,在R 中都有唯一确定的x 和它对应.此时,可以把y 作为自变量,x 作为y 的函数,这时我们就说2log x y =((0))y ∈+∞,是函数2x y =()x ∈R 的反函数.注意到,在函数2log x y =中,y 是自变量,x 是函数,但是习惯上,我们通常用x 表示自变量,y 表示函数,因此我们对调函数2log x y =中的字母,把它写成2log y x =,这样,对数函数2log y x =((0))x ∈+∞,是指数函数2x y =()x ∈R 的反函数.由前面的讨论可知,指数函数2x y =()x ∈R 与对数函数2log y x =((0))x ∈+∞,是互为反函数的.类似地,我们可以得到对数函数log (01)a y x a a =>≠,且和指数函数x y a =(01)a a >≠,且互为反函数.在上面的讨论过程中我们发现,过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一个交点,这就保证了对于任意一个(0)y ∈+∞,,都有唯一确定的2log x y =和它对应,进而才能得到反函数.这就启发我们,不是任意的函数都存在反函数的,只有一一对应的函数才存在反函数.一一对应的函数是指值域中的每一个元素y 只有定义域中的唯一的一个元素x 和它相对应,即定义域中的元素x 和值域中的元素y ,通过对应法则y=f (x )存在着一一对应关系.清楚了反函数存在的条件后,我们接下来讨论反函数的性质.通过画出指数函数2x y =与对数函数2log y x =的图象后,我们发现它们是关于直线y=x 对称的,也就是互为反函数的两个函数的图象是关于直线y=x 对称的.这与我们前面的分析也是一致的,原函数与反函数是定义域、值域互换,对应法则互逆.研究反函数的性质离不开函数的单调性和奇偶性,下面的结论同学们可以自己尝试证明.一个函数与它的反函数在相应区间上单调性是一致的,也就是说如果原函数在某个区间上是单调递增(减)的,那么它的反函数在相应区间上也是单调递增(减)的.关于奇偶性,如果一个奇函数存在反函数,那么它的反函数也是奇函数;一般情况下偶函数是不存在反函数的,例外情况是f (x )=C (C 为常数).学习了反函数这种重要的工具,它可以帮助我们解决很多问题.当原函数的性质不容易研究时,我们可以考虑研究它的反函数.比如当直接求原函数的值域比较困难时,可以通过求其反函数的定义域来确定原函数的值域,来看一道具体的例题.【例】已知函数10110x xy =+,求它的值域.解析:先计算它的反函数,由10110x x y =+得到(110)10x x y +=,解得101x y y =-,反函数即为lg 1y x y =-,反函数的定义域为原函数的值域,也就是01y y >-,原函数的值域即为(01),.练习题1.下列函数中,有反函数的是()A .22y x x=+B .||y x =C .2lg y x =D .11y x =-2.函数21x y =-的反函数为_____________.3.已知函数1212x x y -=+,求它的值域.【参考答案】1.D2.2log (1)y x =+3.(-1,1)。

人教a版高中数学:对数与对数函数知识点及例题专练

人教a版高中数学:对数与对数函数知识点及例题专练

一.对数的运算指对互化:⇔=N a x ____________对数恒等式:1.___________________2.___________________3._______________4.______________对数的运算性质:1.___________________2.___________________3._______________换底公式:1.___________________2.___________________特殊对数:⑴通常以10为底的对数叫做常用对数,并把10log N 记为_________;⑵通常以e 为底的对数叫做自然对数,并把e log N 记为_________.1.求下列各式的值.(1)355log +212log -1505log -145log ;(2)log 2125×log 318×log 519.2.若()6430log log log x =⎡⎤⎣⎦,则12x -=3.(1)lg12-lg 58+lg12.5-log 89·log 278;(2)log 535+212log -log 5150-log 514;(3)4lg 2lg 5lg 22+-(4)(多选)以下运算中正确的有()A.lg5+lg2=1 B.5⋅−52=0C.2log 23−30= 2D.log 89⋅log 2716=89(5)(多选)下列等式成立的是()A.lg2+lg5−lg8lg50−lg40=1B.lg4+lg5−12lg0.5+lg8=2C.lg14−2lg 73+lg7−lg18=0 D.(lg2)2+lg2lg5+lg5=24.已知log 189=a,18b =5,用a、b 表示log 36455.已知实数x、y、z 满足3x =4y =6z>1,(1)求证:2x +1y =2z;(2)试比较3x、4y、6z 的大小二.对数函数的定义一般地,函数叫做对数函数,其中是自变量,函数定义域是.6.函数()()31f x lg x =+的定义域是7.函数(21)log x y -=的定义域是三.对数函数的性质1a >01a <<图象性质(1)定义域:(2)值域:(3)过点,即时(4)在上是函数(4)在上是函数(5)y<0⇔y=0⇔y>0⇔(6)y<0⇔y=0⇔y>0⇔8.较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6;⑵3log π,2log 0.8;⑶0.91.1, 1.1log 0.9,0.7log 0.8;⑷5log 3,6log 3,7log 39.比较大小⑴8.1log 37.2log 3;⑵5log 67log 610.已知125ln ,log 2,x y z eπ-===,则().A x y z <<.B z x y <<.C z y x <<.D y z x<<11.设2554log 4,(log 3),log 5,a b c ===则().A a c b <<.B b c a <<.C a b c <<.D b a c<<12.函数log (1)2a y x =++的图像必过定点______________.13.函数log (2)21a y x x =++-的图像过定点______________14.解不等式2)1(log 3≥--x x 15.解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 16.()2211log log 1a a x x -->+,则a 的取值范围为________________17.解关于x 的不等式:2(log 21x )2+9(log 21x )+9≤018.图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为()A 、103,51,34,2B 、51,103,342C 、2,34,103,51D 、51,103,2,3419.若函数()(01)x f x a a a -=>≠且是定义域为R 的增函数,则函数()log (1)a f x x =+的图像大致是()20.(多选)已知函数=lg 2−414()A.的最小值为1B.∃∈,1+=2C.l 92>23D.o90.1−12)>o30.18−12)21.设1a >,函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为12,则a =________________22.若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a =________________23.函数2log (3)y x =-的定义域为________________24.函数()()2log 31xf x =+的值域为________________四.对数型函数25.已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求()f x 的单调区间;⑶求函数()f x 的值域.26.已知[]3()2log (1,9)f x x x =+∈,求函数[]22()()()g x f x f x =+的最大值与最小值.27.已知函数()()2lg 21f x ax x =++(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域(2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域28.已知()x f y =是二次函数,且()80=f 及()()121+-=-+x x f x f ⑴求()x f 的解析式⑵求函数()x f y 3log =的递减区间及值域29.已知:函数2()f x x x k =-+,且(2)22log 2,(log ),(0,1)f f a k a a ==>≠.⑴求,k a 的值;⑵当x 为何值时,函数(log )a f x 有最小值?求出该最小值.30.(多选)已知函数op =lg(1−p ,则A.op 的定义域为(−∞,1) B.op 的值域为C.o −1)+o −4)=1D.=o 2)的单调递增区间为(0,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数与对数函数专题1.对数的概念如果a x=N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质 (1)对数的性质:①a log aN=N ; ②log a a b=b (a >0,且a ≠1).(2)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R); ④log a m M n=n mlog a M (m ,n ∈R ,且m ≠0).(3)换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1).3.对数函数及其性质(1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.1.换底公式的两个重要结论(1)log a b =1log b a ;(2)log a m b n=n m log a b .其中a >0,且a ≠1,b >0,且b ≠1,m ,n ∈R.2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a,-1,函数图象只在第一、四象限. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( )(3)函数y =ln 1+x1-x 与y =ln(1+x )-ln(1-x )的定义域相同.( )(4)当x >1时,若log a x >log b x ,则a <b .( )【教材衍化】2.(必修1P73T3改编)已知a =132-,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b3.(必修1P74A7改编)函数y =log 23(2x -1)的定义域是________.4.计算log 29×log 34+2log 510+log 50.25=( ) A.0 B.2 C.4 D.65.(2019·上海静安区检测)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <16.(2018·全国Ⅰ卷)已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________. 【考点聚焦】 考点一 对数的运算【例1】 (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________. (2)计算:(1-log 63)2+log 62·log 618log 64=________.【规律方法】 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.ab =N ⇔b =logaN(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化. 【训练1】 (1)若lg 2,lg(2x+1),lg(2x+5)成等差数列,则x 的值等于( ) A.1B.0或18C.18D.log 23(2)(2019·成都七中检测)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b =________.考点二 对数函数的图象及应用【例2】 (1)(2019·潍坊一模)若函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )(2)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( )A.(0,1)B.(1,2)C.(1,2]D.⎝ ⎛⎭⎪⎫0,12【规律方法】 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.【训练2】 (1)(2018·湛江模拟)已知函数f (x )=log a (2x+b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( )A.0<a -1<b <1 B.0<b <a -1<1 C.0<b -1<a <1 D.0<a -1<b -1<1(2)(2019·日照一中调研)已知函数f(x)=⎩⎪⎨⎪⎧2x ,x<1,log2x ,x≥1,若方程f(x)-a =0恰有一个实根,则实数a 的取值范围是________.考点三 对数函数的性质及应用 多维探究角度1 对数函数的性质【例3-1】 已知函数f (x )=ln x +ln(2-x ),则( )A.f (x )在(0,2)上单调递增B.f (x )在(0,2)上单调递减C.y =f (x )的图象关于直线x =1对称D.y =f (x )的图象关于点(1,0)对称角度2 比较大小或解简单的不等式【例3-2】 (1)(一题多解)(2018·天津卷)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b (2)若log a (a 2+1)<log a 2a <0,则a 的取值范围是( )A.(0,1)B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫12,1 D.(0,1)∪(1,+∞)角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.【规律方法】 1.确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行. 2.如果需将函数解析式变形,一定要保证其等价性,否则结论错误.3.在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件. 【训练3】 (1)若a >b >0,0<c <1,则( )A.log a c <log b cB.log c a <log c bC.a c<b cD.c a>c b(2)若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.【反思与感悟】1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0.2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. 【易错防范】1.在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性取决于底数a 与1的大小关系,当底数a 与1的大小关系不确定时,要分0<a <1与a >1两种情况讨论.2.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.82.(2018·天津卷)已知a =log 3 72,b =⎝ ⎛⎭⎪⎫1413,c =log 13 15,则a ,b ,c 的大小关系为( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b3.在同一直角坐标系中,函数f (x )=2-ax ,g (x )=log a (x +2)(a >0,且a ≠1)的图象大致为( )4.(2019·宁波二模)已知f (x )=lg(10+x )+lg(10-x ),则( )A.f (x )是奇函数,且在(0,10)上是增函数B.f (x )是偶函数,且在(0,10)上是增函数C.f (x )是奇函数,且在(0,10)上是减函数D.f (x )是偶函数,且在(0,10)上是减函数5.(2019·临汾三模)已知函数f (x )=|ln x |,若f (m )=f (n )(m >n >0),则2m +1+2n +1=( ) A.12 B.1 C.2 D.4二、填空题6.lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.7.(2019·昆明诊断)设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________.8.(2019·潍坊调研)已知函数f (x )=⎩⎪⎨⎪⎧-log 2(3-x ),x <2,2x -2-1,x ≥2,若f (2-a )=1,则f (a )=________.三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.10.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.【能力提升题组】(建议用时:20分钟)11.(2019·天津和平区二模)已知a >0且a ≠1,函数f (x )=log a (x +x 2+b )在区间 (-∞,+∞)上既是奇函数又是增函数,则函数g (x )=log a ||x |-b |的图象是( )12.设x ,y ,z 为正数,且2x=3y=5z,则( )A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z13.(2019·衡水中学检测)已知函数f (x )=lg(mx 2+2mx +1),若f (x )的值域为R ,则实数m 的取值范围是________.14.已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x +1x -1>ln m(x -1)(7-x )恒成立,求实数m 的取值范围.答 案1.判断下列结论正误(在括号内打“√”或“×”) (1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( )(3)函数y =ln 1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( )(4)当x>1时,若log a x>log b x,则a<b.( )【答案】(1)×(2)×(3)√(4)×【解析】(1)log2x2=2log2|x|,故(1)错.(2)形如y=log a x(a>0,且a≠1)为对数函数,故(2)错.(4)当x>1时,log a x>log b x,但a与b的大小不确定,故(4)错. 【教材衍化】2.(必修1P73T3改编)已知a=132-,b=log213,c=log1213,则( )A.a>b>cB.a>c>bC.c>b>aD.c>a>b【答案】 D【解析】∵0<a<1,b<0,c=log1213=log23>1.∴c>a>b.3.(必修1P74A7改编)函数y=log23(2x-1)的定义域是________.【答案】⎝⎛⎦⎥⎤12,1【解析】由log23(2x-1)≥0,得0<2x-1≤1.∴12<x≤1.∴函数y=log23(2x-1)的定义域是⎝⎛⎦⎥⎤12,1.【真题体验】4.(2019·杭州检测)计算log29×log34+2log510+log50.25=( )A.0B.2C.4D.6【答案】 D【解析】原式=2log23×(2log32)+log5(102×0.25)=4+log525=4+2=6.5.(2019·上海静安区检测)已知函数y=log a(x+c)(a,c为常数,其中a>0,且a≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1【答案】 D【解析】 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1.6.(2018·全国Ⅰ卷)已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________. 【答案】 -7【解析】 由f (3)=1得log 2(32+a )=1,所以9+a =2,解得a =-7. 【考点聚焦】 考点一 对数的运算【例1】 (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________. (2)计算:(1-log 63)2+log 62·log 618log 64=________.【答案】 (1)-20 (2)1【解析】 (1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log 63+(log 63)2+log 6 63·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.【规律方法】 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.ab =N ⇔b =logaN(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化. 【训练1】 (1)若lg 2,lg(2x+1),lg(2x+5)成等差数列,则x 的值等于( ) A.1B.0或18C.18D.log 23(2)(2019·成都七中检测)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b =________.【答案】 (1)D (2)4 2【解析】 (1)由题意知lg 2+lg(2x +5)=2lg(2x+1), ∴2(2x +5)=(2x +1)2,(2x )2-9=0,2x=3,x =log 23. (2)设log b a =t ,则t >1,因为t +1t =52,所以t =2,则a =b 2. 又a b =b a ,所以b 2b =bb 2,即2b =b 2,又a >b >1,解得b =2,a =4. 考点二 对数函数的图象及应用【例2】 (1)(2019·潍坊一模)若函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )(2)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A.(0,1) B.(1,2)C.(1,2]D.⎝ ⎛⎭⎪⎫0,12 【答案】 (1)D (2)C【解析】 (1)由f (x )在R 上是减函数,知0<a <1.又y =log a (|x |-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).∴当x >1时,y =log a (x -1)的图象由y =log a x 向右平移一个单位得到.因此选项D 正确. (2)由题意,易知a >1.在同一坐标系内作出y =(x -1)2,x ∈(1,2)及y =log a x 的图象.若y =log a x 过点(2,1),得log a 2=1,所以a =2.根据题意,函数y =log a x ,x ∈(1,2)的图象恒在y =(x -1)2,x ∈(1,2)的上方. 结合图象,a 的取值范围是(1,2].【规律方法】 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.【训练2】 (1)(2018·湛江模拟)已知函数f (x )=log a (2x+b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( )A.0<a -1<b <1 B.0<b <a -1<1 C.0<b -1<a <1 D.0<a -1<b -1<1(2)(2019·日照一中调研)已知函数f(x)=⎩⎪⎨⎪⎧2x ,x<1,log2x ,x≥1,若方程f(x)-a =0恰有一个实根,则实数a 的取值范围是________.【答案】 (1)A (2){0}∪[2,+∞)【解析】 (1)由函数图象可知,f (x )在R 上单调递增,又y =2x+b -1在R 上单调递增,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0, 即log a a -1<log a b <log a 1,所以,a -1<b <1. 综上有0<a -1<b <1.(2)作出函数y =f (x )的图象(如图所示).方程f (x )-a =0恰有一个实根,等价于函数y =f (x )的图象与直线y =a 恰有一个公共点, 故a =0或a ≥2,即a 的取值范围是{0}∪[2,+∞). 考点三 对数函数的性质及应用 多维探究角度1 对数函数的性质【例3-1】 已知函数f (x )=ln x +ln(2-x ),则( )A.f (x )在(0,2)上单调递增B.f (x )在(0,2)上单调递减C.y =f (x )的图象关于直线x =1对称D.y =f (x )的图象关于点(1,0)对称 【答案】 C【解析】 由题意知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x -1)2+1],由复合函数的单调性知,函数f (x )在(0,1)上单调递增,在(1,2)上单调递减,所以排除A ,B ;又f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,D 错误.角度2 比较大小或解简单的不等式【例3-2】 (1)(一题多解)(2018·天津卷)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( ) A.a >b >c B.b >a >c C.c >b >aD.c >a >b(2)若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1)B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫12,1D.(0,1)∪(1,+∞)【答案】 (1)D (2)C【解析】 (1)法一 因为a =log 2e>1,b =ln 2∈(0,1),c =log 1213=log 23>log 2e =a >1,所以c >a >b .法二 log 1213=log 23,如图,在同一坐标系中作出函数y =log 2x ,y =ln x 的图象,由图知c >a >b .(2)由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,∴a >12.综上,a ∈⎝ ⎛⎭⎪⎫12,1. 角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.【答案】见解析【解析】(1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,∵a >0, ∴函数t (x )为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎪⎨⎪⎧3-2a >0,log a(3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 【规律方法】 1.确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行. 2.如果需将函数解析式变形,一定要保证其等价性,否则结论错误.3.在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件. 【训练3】 (1)若a >b >0,0<c <1,则( ) A.log a c <log b c B.log c a <log c b C.a c<b cD.c a>c b(2)若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.【答案】 (1)B (2)(0,+∞)【解析】 (1)由y =x c 与y =c x的单调性知,C ,D 不正确; ∵y =log c x 是减函数,得log c a <log c b ,B 正确; log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.又a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负, ∴log a c 与log b c 的大小不能确定.(2)令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝ ⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝ ⎛⎭⎪⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞). 【反思与感悟】1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0.2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. 【易错防范】1.在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性取决于底数a 与1的大小关系,当底数a 与1的大小关系不确定时,要分0<a <1与a >1两种情况讨论.2.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.【分层训练】【基础巩固题组】(建议用时:40分钟)1.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.8【答案】 A【解析】 因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24.2.(2018·天津卷)已知a =log 3 72,b =⎝ ⎛⎭⎪⎫1413,c =log 13 15,则a ,b ,c 的大小关系为( ) A.a >b >c B.b >a >c C.c >b >aD.c >a >b【答案】 D【解析】 log 13 15=log 3-15-1=log 35,因为函数y =log 3x 在(0,+∞)上为增函数,所以log 35>log 3 72>log 33=1,因为函数y =⎝ ⎛⎭⎪⎫14x 在(-∞,+∞)上为减函数,所以⎝ ⎛⎭⎪⎫1413<⎝ ⎛⎭⎪⎫140=1,故c >a >b .3.(2019·张家界三模)在同一直角坐标系中,函数f (x )=2-ax ,g (x )=log a (x +2)(a >0,且a ≠1)的图象大致为( )【答案】 A【解析】 由题意,知函数f (x )=2-ax (a >0,且a ≠1)为单调递减函数,当0<a <1时,函数f (x )=2-ax 的零点x =2a>2,且函数g (x )=log a (x +2)在(-2,+∞)上为单调递减函数,C ,D 均不满足;当a >1时,函数f (x )=2-ax 的零点x =2a <2,且x =2a>0,又g (x )=log a (x +2)在(-2,+∞)上是增函数,排除B ,综上只有A 满足.4.(2019·宁波二模)已知f (x )=lg(10+x )+lg(10-x ),则( ) A.f (x )是奇函数,且在(0,10)上是增函数 B.f (x )是偶函数,且在(0,10)上是增函数 C.f (x )是奇函数,且在(0,10)上是减函数 D.f (x )是偶函数,且在(0,10)上是减函数【解析】 由⎩⎪⎨⎪⎧10+x >0,10-x >0,得x ∈(-10,10),且f (x )=lg(100-x 2). ∴f (x )是偶函数,又t =100-x 2在(0,10)上单调递减,y =lg t 在(0,+∞)上单调递增,故函数f (x )在(0,10)上单调递减.5.(2019·临汾三模)已知函数f (x )=|ln x |,若f (m )=f (n )(m >n >0),则2m +1+2n +1=( ) A.12 B.1C.2D.4【答案】 C【解析】 由f (m )=f (n ),m >n >0,可知m >1>n >0, ∴ln m =-ln n ,则mn =1. 所以2m +1+2n +1=2(m +n )+4mn +m +n +1=2(m +n +2)m +n +2=2. 二、填空题6.lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________. 【答案】 -1【解析】 lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 52+lg 22-2=lg ⎝ ⎛⎭⎪⎫52×4-2=1-2=-1.7.(2019·昆明诊断)设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________.【答案】 (-1,0)【解析】 由f (x )是奇函数可得a =-1, ∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x<1,∴-1<x <0.8.(2019·潍坊调研)已知函数f (x )=⎩⎪⎨⎪⎧-log 2(3-x ),x <2,2x -2-1,x ≥2,若f (2-a )=1,则f (a )=________.【答案】 -2【解析】 当2-a <2,即a >0时,f (2-a )=-log 2(1+a )=1. 解得a =-12,不合题意.当2-a ≥2,即a ≤0时,f (2-a )=2-a-1=1,即2-a=2,解得a =-1,所以f (a )=f (-1)=-log 24=-2. 三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 【答案】见解析【解析】(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈[0,1]时,f (x )是增函数;当x ∈⎝ ⎛⎦⎥⎤1,32时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2. 【答案】见解析【解析】(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x )=log 12(-x ),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x>0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5). 【能力提升题组】(建议用时:20分钟)11.(2019·天津和平区二模)已知a >0且a ≠1,函数f (x )=log a (x +x 2+b )在区间 (-∞,+∞)上既是奇函数又是增函数,则函数g (x )=log a ||x |-b |的图象是( )【答案】 A【解析】 ∵函数f (x )=log a (x +x 2+b )在区间(-∞,+∞)上是奇函数,∴f (0)=0,∴b =1,又函数f (x )=log a (x +x 2+b )在区间(-∞,+∞)上是增函数,所以a >1.所以g (x )=log a ||x |-1|,当x >1时,g (x )=log a (x -1)为增函数,排除B ,D ;当0<x <1时,g (x )=log a (1-x )为减函数,排除C ;故选A.12.设x ,y ,z 为正数,且2x=3y=5z,则( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2xD.3y <2x <5z【答案】 D【解析】 令t =2x=3y=5z , ∵x ,y ,z 为正数,∴t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg tlg 5.∴2x -3y =2lg t lg 2-3lg t lg 3=lg t (2lg 3-3lg 2)lg 2×lg 3=lg t (lg 9-lg 8)lg 2×lg 3>0,∴2x >3y .又∵2x -5z =2lg t lg 2-5lg t lg 5=lg t (2lg 5-5lg 2)lg 2×lg 5=lg t (lg 25-lg 32)lg 2×lg 5<0,∴2x <5z ,∴3y <2x <5z .13.(2019·衡水中学检测)已知函数f (x )=lg(mx 2+2mx +1),若f (x )的值域为R ,则实数m 的取值范围是________.【答案】 [1,+∞)【解析】 令g (x )=mx 2+2mx +1值域为A ,∵函数f (x )=lg(mx 2+2mx +1)的值域为R ,∴(0,+∞)⊆A ,当m =0时,g (x )=1,f (x )的值域不是R ,不满足条件;当m ≠0时,⎩⎪⎨⎪⎧m >0,4m 2-4m ≥0,解得m ≥1.14.已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x +1x -1>ln m(x -1)(7-x )恒成立,求实数m 的取值范围. 【答案】见解析 【解析】(1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时, f (-x )=ln -x +1-x -1=ln x -1x +1=ln ⎝ ⎛⎭⎪⎫x +1x -1-1=-lnx +1x -1=-f (x ). ∴f (x )=lnx +1x -1是奇函数. (2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln m(x -1)(7-x )恒成立, ∴x +1x -1>m(x -1)(7-x )>0,∵x∈[2,6],∴0<m<(x+1)(7-x)在x∈[2,6]上恒成立.令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],由二次函数的性质可知,x∈[2,3]时函数g(x)单调递增,x∈[3,6]时函数g(x)单调递减,即x∈[2,6]时,g(x)min=g(6)=7,∴0<m<7.故实数m的取值范围为(0,7).21。

相关文档
最新文档