双馈式_直驱式风力发电机的对比
直驱和双馈的比较

“直驱VS双馈”风机技术流派大比对随着国家新能源发展线路的明确,风电行业的发展正在被越来越多的人所关注和期待。
在风电技术的选择方面,随着国内风机大型化趋势的升级,业内对于直驱与双馈技术孰优孰劣的讨论也更加激烈。
今天我们就从发展历史、运维情况、发展趋势等方面来比对一下这两种技术的特点。
发展历史现在市场上有一种误解,即直驱技术是一种新兴的技术,而双馈技术是传统的技术。
其实,从诞生时间看,双馈和直驱两种技术几乎是同时出现的,甚至直驱技术的出现要比双馈技术更早些。
但是发展至今,双馈技术因其运行稳定的特性占据了大片的市场份额。
双馈、直驱两种技术路线的本质区别在于双馈型是带“齿轮箱”的,而直驱型是不带“齿轮箱”的。
现在全世界风电机组中,85%以上是带齿轮箱的机型。
尤其在技术、稳定性及可靠性要求更高的海上机组中,无一例外的全部采用了技术成熟且可靠性好的带齿轮箱技术方案,包括2兆瓦、2.3兆瓦、3兆瓦、3.6兆瓦、5兆瓦等各级别机型,厂商包括Vestas,Siemens,Repower,华锐风电等全球所有主要海上风电机组生产厂商。
目前为止,除金风科技的一台1.5兆瓦机组外,全世界范围内还没有更多的直驱机组下海。
从目前国内的情况来看,双馈变桨变速型风机的装机容量最大。
代表厂家包括vestas,GE,GAMESA,华锐,东汽,国电联合动力、明阳、上海电气,北重等;直驱式变桨变速型风机也有一定装机容量,代表厂家包括如金风,湘电,上海万德等;此外还有一种失速型定桨定速风机,多数为小功率机型,目前在大功率机型上基本淘汰。
从市场份额来看,多数业内人士认为,带齿轮箱的风电技术将在今后相当长的时间内继续占据市场主流地位。
而直驱技术的市场表现如何,还有待观察。
部件差异在发电机、变频器、齿轮箱等风机主要部件中,双馈和直驱机型都存在一定的差异。
从发电机看:目前双馈机组采用双馈式异步发电机,而直驱机组多采用低速多极发电机,发电机的励磁方式分为永磁和电励磁两类。
直驱型与双馈型比较

国内风力发电机主要包括永磁直驱风机和双馈风机两种。
两者的最大区别在于不同的传动、发电结构。
以下通过分析风机的主要结构特性来比较两者的优劣势:
相较于双馈式电机,永磁直驱风机更能适应低风速,且能耗较少、后续维护成本低。
此外,永磁直驱风机的应用对于我国具有更加重要的意义,我国低风速的三类风区占到全部风能资源的50%左右,更适合使用永磁直驱式风电机组。
综合来看,永磁直驱风机将是我国风力发电机未来发展趋势。
我国企业拥有直驱风机的自主知识产权,结合《关于风电建设管理有关要求的通知》中风机国产化率要求及我国风机应用领域逐步扩展至低风速区域的要求,我们预计,我国永磁直驱风机占全国新增风机的比例不断提高。
预计至2014年,我国永磁直驱风机产量将达到4,000台,占2014年新增风机总量53%,其中1.5兆瓦永磁直驱风机和2.5兆瓦永磁直驱风机各占50%。
双馈式、直驱式风力发电机的对比

双馈式、直驱式风力发电机的对比
范磊
【期刊名称】《科技与企业》
【年(卷),期】2012(000)010
【摘要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。
本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。
【总页数】1页(P136-136)
【作者】范磊
【作者单位】哈电发电设备国家工程研究中心有限公司黑龙江哈尔滨
【正文语种】中文
【相关文献】
1.分频风电系统用于直驱式风机和双馈式风机对比 [J], 孙博力;高桂革;曾宪文;;;
2.双馈式与直驱式风电机组低电压穿越特性对比分析 [J], 陈飞虎;邓英;田德
3.分频风电系统用于直驱式风机和双馈式风机对比 [J], 孙博力;高桂革;曾宪文
4.机械气动式桨距调节机构与智能控制系统在分布式并网直驱永磁风力发电机组中的应用 [J], 刘萍;李凌锐;赵恺;李安兵;杨茂荣;乌云高娃
5.永磁直驱式风力发电机整机装配动力特性研究分析 [J], 王世建;何启源;段志强;王明坤;周俊鹏
因版权原因,仅展示原文概要,查看原文内容请购买。
双馈式-直驱式风力发电机的对比

双馈式\直驱式风力发电机的对比【摘要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。
本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。
【关键词】齿轮箱;永磁电机;变速箱前言本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。
1、双馈式异步发电机双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。
目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。
目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。
在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。
这种形式的性价比和效率均较高,逆变器功率较小。
调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。
双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC 变频器向发电机的转子供电,提供交流励磁。
但存在滑环和变速箱的问题,对电网的冲击较大。
由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。
双馈、直驱、半驱风力发电机工作原理

双馈、直驱、半驱风力发电机工作原理双馈风力发电机、直驱风力发电机和半驱风力发电机是目前常见的风力发电机类型。
它们分别采用不同的工作原理,以实现风能的高效转化为电能。
双馈风力发电机是一种常用的风力发电机类型。
它由风轮、发电机和变频器组成。
风轮通过叶片将风能转化为机械能,驱动发电机旋转。
发电机是双馈结构,即具有两个馈线圈:一个是固定转子上的主馈线圈,另一个是转子上的副馈线圈。
主馈线圈与电网相连,副馈线圈通过变频器与电网相连。
当风力发电机转速变化时,电网电压和频率不变,主馈线圈的电流也保持不变。
副馈线圈的电流则通过变频器调节,以使发电机输出的电流和电网电压保持同步,实现电能的高效输送和稳定输出。
直驱风力发电机则是将风轮直接连接到发电机上,取消了传统的传动装置。
风轮通过叶片将风能转化为机械能,直接驱动发电机旋转。
直驱风力发电机通常采用永磁同步发电机作为发电机,它具有结构简单、高效率等优点。
此外,直驱风力发电机还可以在变速范围内实现高效的风能转化,适应不同风速下的发电需求。
半驱风力发电机是双馈风力发电机和直驱风力发电机的结合。
它采用了一种带有齿轮箱的直驱发电机,以实现风能的高效转化。
风轮通过叶片将风能转化为机械能,经过齿轮箱的变速作用后,驱动发电机旋转。
半驱风力发电机既兼具了直驱风力发电机的高效率特点,又克服了直驱风力发电机在变速范围内的限制。
通过合理设计齿轮箱的传动比,可以使发电机在不同风速下都能实现高效的发电。
总结起来,双馈风力发电机、直驱风力发电机和半驱风力发电机都是通过将风能转化为机械能,再将机械能转化为电能的方式实现风力发电。
它们分别采用了不同的工作原理,以实现风能的高效转化和稳定输出。
在不同的应用场景中,可以根据具体需求选择合适的风力发电机类型,以实现风能的最大利用和经济效益的最大化。
关于双馈型与直驱型风力发电机特点的比对(第2版)

关于双馈型与直驱型风力发电设备特点的比对双馈风力发电机与直驱风力发电机的主要区别是有无齿轮箱的使用。
在直驱式风力发电系统中,风机叶轮直接驱动多级同步发电机的转子发电,免去齿轮箱这一传统部件。
双馈风力发电机组,定子有两套极数不同的绕组,功率绕组直接与电网相连,控制绕组通过双向变流器接电网,采用无刷的磁阻或者笼型转子,无需电刷和集电环。
双馈机组有齿轮箱,但是变流器是部分功率逆变;直驱机组无齿轮箱,是全功率逆变的。
直驱电机也分励磁和永磁,永磁理论上效率略高,但技术没有非常成熟。
关注效率方面,在低风速区域,直驱风力发电设备具有优势,此优势取决于所用电机的设计、制造水准。
需要明确指出,此优势不明显,尤其综合整机年发电量,双馈与直驱机型相差不大,如果相差两个百分点已经属于上等水平。
(一)从实际应用角度,比对两种类型风机的特性●可靠性1)双馈异步风力发电机组采用的双馈异步恒频技术为国际先进成熟的技术,变流器容量小,采用空冷冷却方式;直驱发电机组采用全功率变流器,在低电压穿越等情况下IGBT模块的可靠性较低,同时全功率变流器通常需采用水冷冷却方式,在实际运行中的很多工况下,水冷系统容易出现故障,易导致变流器IGBT模块烧毁。
2)联合动力公司风机机型采用准三分之一变频,变流器容量小,成本低,双馈机型发电机可控参数多,能对发电机电压、频率、转速、无功功率和有功功率等参数方便可控,系统的稳定性高。
3)中国的风机制造厂商针对直驱机型采用永磁同步发电机,永磁同步发电机存在过退磁现象(大容量的磁铁和铁心粘合的工艺较难实现;永磁材料会有不可逆退磁、高温退磁等现象;永磁的功率因数也不易调节),在风机使用寿命期内,存在因退磁影响发电机效率的可能,所以直驱风机尤其不适用于在温度较高的地区。
4)在装配质量层面上,风场现场的作业操作越少越好。
直驱机型发电机在户外单独分体吊装,会降低吊装作业速度,在恶劣气候环境下,严重降低装配质量。
●造价:由于直驱机型采用永磁同步发电机,永磁材料为稀有金属,致使电机成本高;而双馈机型变流器容量小,容量仅为机组总容量的30%左右,使得变流器成本降低。
最新双馈型风机与直驱型风机的比较分析

双馈型风机与直驱型风机的比较分析双馈型风机与直驱型风机的比较分析学号:姓名:学院(系): 自动化学院专业: 电气工程及其自动化2013 年 1 月双馈型风机与直驱型风机的比较分析1、引言1.1风力发电的背景风力发电是电力可持续发展的最佳战略选择。
清洁、高效成为能源生产和消费的主流,世界各国都在加快能源发展多样化的步伐。
从 20 世纪 90 年代开始,世界能源电力市场发展最为迅速的已经不再是石油、煤和天然气,而是太阳能发电、风力发电等可再生能源。
世界各地都在通过立法或不同的优惠政策积极激励、扶持发展风电技术,而中国是风能资源较丰富的国家,更需要开发利用风电技术。
技术创新使风电技术日益成熟。
目前,在发达国家风电的年装机容量以 35.7% 高速度增长。
一个重要原因是各国积极以科学的发展观,采取技术创新,使风电技术日益成熟。
目前单机容量 500kW、600kW、750kW 的风电机组已达到批量商业化生产的水平,并成为当前世界风力发电的主力机型,兆瓦级的机组也已经开发出来,并投入生产试运行。
同时,在风电机组叶片设计和制造过程中广泛采用了新技术和新材料,风电控制系统和保护系统广泛应用电子技术和计算机技术,有效地提高风力发电总体设计能力和水平,而且新材料和新技术对于增强风电设备的保护功能和控制功能也有重大作用。
风力发电将能迅速缓解我国能源急需和电力短缺的局面,近两年中国出现大面积的缺电,风能发电对于缓解缺电具有非同寻常的意义。
风电的诸多优势中,一个重要特点是风电上马快,不像火电、水电的建设需要按年来计算,风电在有风场数据的前提下其建设只需要以周、月来计算,即风场是可以在短时间内完成的。
世界风电正在以 33%甚至在部分国家以 60%以上的增速发展,我国完全有可能以迅速发展风电的模式来解决我国燃眉之急的电力短缺。
1.2世界风电技术的发展进入二十一世纪之后,随着现代电力电子技术的不断发展,新材料的涌现以及工艺的不断完善,世界风力发电技术又向前迈进了一大步,主要表现如下:(1)风力发电单机容量继续稳步上升。
直驱风机与双馈风机的主要区别参考文档

向 转 子 输 入 功 率 输入直流电
风机在同步状态运行时
三、发电结构的区别
发电机定子绕组输出50Hz交流电
向 电 网 输 出 功 率 输入反相序10Hz交流电
风机在超同步状态运行时
三、发电结构的区别
不同频率、幅值的电流整流成直流电
逆变为与电网相位幅值频率一样的交流电
四、变频器的区别
• 变频器一般使用交直交这种形式,两边 各有一个PWM变流器,和电网连接的一般称 为网侧变流器,和发电机连接的一般称为 机侧变流器,中间使用直流环节将两边连 接起来。变流器可以实现整流和逆变这两 种基本的功能。中间回路使用电容建立直 流环节
时,即将三相电源中任意两相绕组接线互换,旋转磁场就会改变方向。
ωt=0 º时
ωt=60º时
ωt=120º时
ωt=180º时
三、发电结构的区别
发电机定子绕组输出50Hz交流电
向 转 子 输 入 功 率 输入同相序20Hz交流电
风机在亚同步状态运行时
三、发电结构的区别
发电机定子绕组输出50Hz交流电
一、传动结构的区别
风电机组常用齿轮箱结构:一级行星加两级平行轴、两级行星加一级平行轴
一级行星二级平行轴
二级行星一级平行轴
一、传动结构的区别
齿轮箱不仅仅指发电机增速箱 偏航电机、变桨电机的减速器 都是齿轮箱
二级行星轮齿轮箱.avi
二、发电机的区别
双馈异步发电机: 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变流器与电网连 接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节, 机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于 采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电 压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使 其能满足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能源环境
双馈式、直驱式风力发电机的对比
哈电发电设备国家工程研究中心有限公司(黑龙江哈尔滨) 范磊
【摘 要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。
本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。
【关键词】齿轮箱;永磁电机;变速箱
前言
本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。
1、双馈式异步发电机
双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。
目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。
目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。
在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。
这种形式的性价比和效率均较高,逆变器功率较小。
调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。
双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC变频器向发电机的转子供电,提供交流励磁。
但存在滑环和变速箱的问题,对电网的冲击较大。
由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。
在变速恒频风力发电机中,跨越同步速是变速恒频双馈风力发电机励磁控制关键技术之一。
这要求转子交流励磁电源不仅要有良好的变频输入、输出特性,而且要有能量双向流动的能力。
现有的技术是采用IGBT器件(绝缘栅双极晶体管)构成的PWM(脉宽调制)整流—PWM逆变型式的AC-DC-AC变频器作为其励磁电源,向发电机的转子绕组提供励磁电流,对定子实现定向矢量控制。
控制电流由滑环导入,实现亚同步、同步和超同步运行方式之间的转换,采用这种技术的双馈式异步发电机其转速控制范围可达到同步转速的60%。
为了获得较好的输出电压电流波形,输出频率一般不超过输入频率的1/3。
其容量一般不超过发电机额定功率的30%,通常只需配置一台1/4功率的变频器。
有刷双馈发电机存在滑环和变速箱的问题,运行可靠性差,需要经常维护,其维护保养费用远高于无齿轮箱变速永磁同步风力发电机,并且这种结构不适合运行在环境比较恶劣的风力发电系统中。
近年来国内外风力发电机组故障率最高的部件当数齿轮箱,而齿轮箱的故障绝大多数是由于轴承的故障造成。
齿轮箱的效率可通过功率损失计算或在试验中实测得到。
功率损失主要包括齿轮啮合、轴承摩擦、润滑油飞溅和搅拌损失、风阻损失、其它机件阻尼等。
齿轮的效率在不同工况下是不一致的。
风力发电齿轮箱的专业标准要求齿轮箱的机械效率应大于97%,是指在标准条件下应达到的指标。
2、直驱式永磁同步发电机
所谓“同步”发电机,就是指发电机转子磁场的转速(原动机产生)与定子磁场的转速(电力系统频率决定)相等。
这种无齿轮箱变浆距变速的风力发电机组,其风轮轴直接与发电机联接。
永磁同步发电机不需要励磁绕组和直流励磁电源,取消了容易出故障的转子上的集电环和电刷装置,成为无刷电机,不存在励磁绕组的铜损耗,比同容量的电励磁式的发电机效率高,结构简单,运行可靠。
这种风力发电机要求全功率变流器,在与电网合闸前,为避免电流冲击和转轴受到突然的扭矩,需要满足一定的并联条件,端电压、频率与电网必须相同。
要求发电机具有高质量地将风能转化为频率、电压恒定的交流电,高效率地实现机电能量转换。
永磁直驱式风力发电机其特点是电机转速低,极数多,结构简单,无变速箱,可靠、长寿命,低噪声,大功率,无滑环,安装和维护费用低。
但不足之处是体积大,有失磁之忧,且转子的制造难度比较大。
同时这种风力发电机制造成本较高,是双馈变速恒频机的1.3倍。
德国埃纳康(Enercon GmbH)公司在1993年研制成功了直驱式风力发电机,1997年将产品推向了市场,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,已开发了容量为330kw、800kw、900kw、2000kw和2300kw的多种机型。
2000年,瑞典ABB 公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Windformer,该机高约70米、风扇直径约90米。
2003年,日本三菱重工完成MWT-S2000型风力发电机的研制工作,这种直驱式风力发电机组采用的是永磁同步电机。
2004年德国西门子公司通过收购世界著名的丹麦Bonus Energy(柏纳斯)公司也开发了直驱式风力发电机。
目前,还有荷兰Wi ndbrokers公司,荷兰Emerg ya Wi nd Technologies NV(EWT)、德国Innovative 公司,德国Vensys公司、德国Avavtis公司、瑞典的ABB等公司,韩国Unison公司和国内的新疆金风科技股份有限公司、湖南湘电风能有限公司、东风汽轮机厂、上海万德风力发电股份有限公司、广西银河艾万迪斯风力发电有限公司、常州新誉风力发电设备有限公司、哈尔滨电站设备集团公司、中国运载火箭技术研究院、江西麦德风能股份有限公司等都在研制直驱式风力发电机。
新疆金凤科技股份公司已在2006年与德国Vensys公司合作研制出1.5兆瓦直驱式风力发电机。
2007年湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,并在2007年11月成功完成了2兆瓦直驱式永磁风力发电整机机组试车;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合研制的2.5兆瓦直驱变桨风力发电也将于2008年下半年完成样机。
永磁材料钕铁硼的最高工作温度较低。
一般为80℃左右,在经过特殊处理的磁铁,其最高工作温度也只能是240℃。
如果永磁同步发电机通风系统出现问题,过高的温度会造成永磁材料磁性能降低,甚至不可逆去磁。
尽管永磁电机已经过了几十年的研究,但其设计至今还没有一套系统的公式和经验曲线作为依据。
变速恒频风力发电系统中的直驱永磁风力发电机的外形尺寸大、工作转速低,通常是一种扁平状的结构。
3、结论与展望
风电发展以来,直驱与双馈两种机型就一直是竞争关系。
随着风电行业的继续发展,直驱与双馈两种机型的性能的优缺点会不断的显露出来,性能和成本会成为最主要的考核指标。