基于遗传算法的PID整定
基于遗传算法的PID参数整定与优化

福建电脑2014年第2期课题来源:徐州工程学院“江苏省大学生创新创业训练计划项目(创新类)”,编号XCX13095,名称基于遗传算法的PID 参数整定。
0.引言PID 控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于过程控制和运动控制中,尤其适用于可建立精确数学模型的确定性控制系统中。
在PID 控制中,控制效果的好坏完全取决与PID 参数的整定与优化。
目前,PID 参数整定与优化方法有很多,如Z-N 法、继电型自整定法、最优设计法及梯度法、单纯形法。
前几种整定方法带有经验性并且不是最优解,梯度法和单纯形法极易陷入局部最优点。
因此可采用遗传算法进行参数寻优,该方法是一种不需要任何初始信息并可以寻求全局最优解的高效优化组合方法。
1.遗传算法遗传算法,是由美国的J.H.Holland 提出的一种模仿生物进化过程的最优化方法。
是以自然选择与遗传理论为基础,将生物进化过程中适者生存与群体内部染色体的随机信息交换机制相结合的全局搜索算法。
近年来,人们把它应用于学习、优化、自适应等问题中。
在优化问题中,遗传算法过程简述如下。
首先在解空间中取一群点(基因群),作为遗传开始的第一代。
每个点(基因)用一个二进制的数字串表示,其优劣程度用一个适应度函数来衡量。
适应度函数值小,表明那个点(基因)好,容易在遗传中生存下去。
在向下一代遗传演变中,前一代中的每个数字串根据由其适应度函数值决定的概率被复制到配对池中。
好的数字串以高的概率被复制下来,劣的数字串被淘汰掉。
然后将配对池中的数字串任意配对,并对每一对数字串进行交叉操作,产生新的子孙(数字串)。
最后对新的数字串的某一位进行变异。
这样就产生了新的一代。
按照同样的方法,经过数代的遗传演变后,在最后一代中得到全局最优解或近似最优解。
同常规优化算法相比,遗传算法有以下特点:1)遗传算法是对参数的编码进行操作,而非对参数本身。
遗传算法首先基于一个有限的字母表,把最优化问题的自然参数集编码为有限长度的字符串。
基于归一化遗传算法的PID控制器自适应整定

基于归一化遗传算法的PID控制器自适应整定2019.19科学技术创新基于归一化遗传算法的PID 控制器自适应整定刘文瑞3赵磊1,2,3颜子荔3(1、天津市先进机电系统设计与智能控制重点实验室,天津3003842、机电工程国家级实验教学示范中心(天津理工大学),天津3003843、天津理工大学机械工程学院,天津300384)PID 控制器在自动化生产和交直流伺服系统控制中是最普遍采用的控制策略。
PID 控制器主要参数是比例系数、积分系数和微分系数,它们通过线性组合构成控制量,对被控对象进行控制,故称为PID 控制器[1]。
PID 是最早应用到工业生产的控制策略之一,由于其算法简单、鲁棒性好和可靠性高等明显优势,得到广泛应用。
该类控制器对于已知精确数学模型系统的控制效果最佳[2]。
然而,在实际控制系统中,尤其是复杂的伺服控制系统,由于系统具有一定的非线性、时变性和不确定性,难以获得精确的数学模型,故应用的传统常规的PID 控制难以满足控制要求,主要问题在于PID 控制器最优参数的整定结果不理想,易出现控制器动态响应性能欠佳和稳态误差大的问题,导致适应性很差。
目前,PID 控制器参数优化的方法有很多,如间接寻优法、梯度法、爬山法等,而在热工系统中单纯形法、专家整定法应用较广。
上述几种方法对于控制模型精确的线性系统取得很好的控制效果,但对于非线性、时变系统的控制较差[3]。
单纯形法对初值优劣性敏感度高,易陷入局部最优解,造成优化失败;专家整定法需要太多的经验作数据支撑,不同的目标函数对应不同的数据参数,而整理庞大的专家数据库是一项繁重而又耗时的工程。
因此,寻求一种自适应PID 控制器参数的整定方法实现在线自适应参数的优化工作,具有重要的理论研究意义和工程应用价值。
1归一化遗传算法归一化遗传算法(NormalizedGenetic Algorithm )是在传统的一般GA 的基础上,对编码方式和控制算子进行改进、优化衍生的一种遗传算法。
用遗传算法实现PID参数整定

控制理论与应用Control Theory and Applications《自动化技术与应用》2004年第23卷第7期用遗传算法实现PID 参数整定万佑红1,李新华2(1.南京邮电学院电子工程系,江苏 南京 210003; 2.安徽大学电子工程系,安徽 合肥 230001)摘要:PI D 参数整定一直是控制领域中的重要研究问题。
本文在M AT LAB 平台上将遗传算法应用于PI D 参数的自动整定,算法实例仿真取得了良好的效果,为PI D 参数整定方法提供了一种新的尝试。
关键词:PI D 参数;遗传算法中图分类号:TP27312 文献标识码:A 文章编号:100327241(2004)0720007202PID Tu nin g Bas e d O n Ge netic Alg orit h m sWAN You -hong 1,LI Xin -hua 2(1.E lectronics Department of Nanjing University of P osting T echnology ,Nanjing 210003,China ;2.E lectronics Department of AnHui University ,Hefei 230001,China )Abstract :A new method to s olve the tuning of PI D paramrters is proposed in this paper.I t is showed that g ood control effect can be obtained by usingG enetic Alg orithms (G A ).K ey w ords :PI D paramrters ;G A1 引言PI D 控制无需知道被控对象的数学模型,算法简单,鲁棒性好且可靠性高,因此成为一种获得广泛应用的控制策略。
基于遗传算法的PID控制器参数优化

基于遗传算法的PID控制器参数优化基于遗传算法的PID控制器参数优化是一种智能化调节方法,通过遗传算法的优化过程,可以自动得到最佳的PID参数组合,并实现对控制系统的自动调节。
以下将详细介绍基于遗传算法的PID控制器参数优化的原理、步骤和应用情况。
一、基于遗传算法的PID控制器参数优化原理遗传算法是一种模拟自然选择和遗传的数学模型,通过模拟生物进化的过程,利用优胜劣汰的原则逐步优化求解问题。
在PID控制器参数优化中,可以将PID参数看作个体(染色体),通过遗传算法的选择、交叉和变异等操作,不断优化个体的适应度,最终得到最佳的PID参数组合。
二、基于遗传算法的PID控制器参数优化步骤(1)初始化种群:随机生成一组PID参数作为初始种群,设置种群大小和迭代次数。
(2)适应度函数定义:根据所需控制效果,定义适应度函数来评估每个个体的优劣程度。
(3)选择操作:根据适应度函数的值选择优秀的个体,采用轮盘赌等选择策略,将优秀的个体复制并加入下一代种群中。
(4)交叉操作:从选择的个体中,选取两个个体进行交叉操作,通过交叉操作生成新的个体,并加入下一代种群中。
(5)变异操作:对下一代种群中的一些个体进行变异操作,改变其染色体的一些位,以保持种群的多样性。
(6)重复上述步骤:迭代执行选择、交叉和变异操作,直到达到预定的迭代次数或找到满意的PID参数组合。
(7)输出最佳解:最终输出具有最佳适应度的PID参数组合,作为优化后的参数。
三、基于遗传算法的PID控制器参数优化应用情况(1)机械控制系统:如电机驱动、自动化装配线等,通过优化PID 参数可以提高系统的控制精度和动态性能。
(2)能源系统:如电力系统、风力发电等,通过优化PID参数可以实现能源的高效利用和稳定运行。
(3)化工过程控制:如温度控制、压力控制等,通过优化PID参数可以提高产品质量和生产效率。
(4)交通管理系统:如城市交通信号控制、车辆行驶控制等,通过优化PID参数可以实现交通流畅和事故减少。
基于遗传算法的PID整定

PID控制是工业过程控制中应用最广的策略之一,因此PID控制器参数的优化成为人们关注的问题,它直接影响控制效果的好坏,并和系统的安全、经济运行有着密不可分的关系。
目前PID参数的优化方法有很多,如间接寻优法、梯度法、爬山法等,而在热工系统中单纯形法专家整定法则应用较广。
虽然这些方法都具有良好的寻优特性,但存在着一些弊端,单纯形法对初值比较敏感,容易陷入局部最优化解,造成寻优失败。
专家整定法则需要太多的经验,不同的目标函数对应不同的经验,而整理知识库则是一项长时间的工程。
因此我们选取了遗传算法来进行参数寻优,该方法是一种不需要任何初始信息并可以寻求全局最优解的、高效的优化组合方法。
采用遗传算法进行PID三个系数的整定,具有以下优点:(1)与单纯形法相比,遗传算法同样具有良好的寻优特性,且克服了单纯形法参数初值的敏感性。
在初始条件选择不当的情况下,遗传算法在不需要给出调节器初始参数的情况下,仍能寻找到合适的参数,使控制目标满足要求。
同时单纯形法难以解决多值函数问题以及在多参数寻优(串级系统)中,容易造成寻优失败或时间过长,而遗传算法的特性决定了它能很好地客服以上问题。
(2)与专家整定相比,它具有操作方便、速度快的优点,不需要复杂的规则,只通过字串进行简单地复制、交叉、变异,便可达到寻优。
避免了专家整定法中前期大量的知识库整理工作及大量的仿真实验。
(3)遗传算法是从许多点开始并行操作,在解空间进行高效启发式搜索,克服了从单点出发的弊端及搜索的盲目性,从而使寻优速度更快,避免了过早陷入局部最优解。
(4)遗传算法不仅适用于单目标寻优,而且也适用于多目标寻优,根据不同的控制系统,针对一个或多个目标,遗传算法均能在规定的范围内寻找到合适参数。
遗传算法作为一种全局优化算法,得到越来越广泛的应用。
近年来,遗传算法在控制上的应用日益增多。
二、基于遗传算法的PID整定原理1、参数的确定及表示首先确定参数范围,该范围一般是由用户给定,然后由精度的要求,对其进行编码。
基于遗传算法的pid参数整定 (2)

反馈是一个非常有用的概念。
反馈控制的使用常常带来革命性的结品控制器采用的是引入微分增益的实际PID 控制算法,其传递函数形式果,极大地改善了控制性能。
PID 控制是到目前为止实际使用中最主要的反馈控制形式。
PID 控制是比例积分微分控制的简称。
积分、比例和微分反馈分别基于过去(I )、现在(P )和将来(D )的控制偏差。
在生产过程自动控制的发展历程中,PID 控制是历史最久、生命力最强的基本控制方式。
PID 控制器的传统整定方法,如Ziegler-Nichols (Z-N )法、响应曲线法、临界比例法、继电型自整定法、单纯形法等,或是依赖于对象模型,或是易于陷入局部极小,均存在一定的应用局限性,且难以实现高性能的整定效果,常常超调较大、调整时间较长、误差指标过大等。
近年来,遗传算法作为一种新兴的优化和自学习算法在控制工程中逐渐受到重简单来说,PID 控制器各校正环节的作用是:视,它是一种基于生物进化论的并行搜索算法,搜索空间大,通过设计合1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,适的算法参数和策略能够避免陷入局部最小。
由于其独到的解决问题的能控制器立即产生控制作用,以减小偏差;力,其应用已渗透到控制领域诸多方面(系统辨识和模型降阶、最优控2)积分环节:主要用于消除静差。
积分作用的强弱取决于积分时间制、线性和非线性控制、滑模控制、鲁棒控制、模糊逻辑控制、神经网络控制和自适应控制等)。
3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系1 PID控制器原理统的动作速度,减少调节时间。
PID 控制是一种负反馈控制。
其反馈控制原理图如图1所示。
2 基于遗传算法的PID参数整定遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化概率搜索算法。
随着火电机组单机容量和参数的不断提高,系统变得日趋复杂,热工过程越来越表现出非线性、慢时变、大迟滞、强耦合性和不确定性,这对热工过程自动控制系统则提出了更高的要求,传统的PID 控制已经无法满足这种要求,必须采用先进的控制策略进行优化控制。
基于遗传算法的PID控制器参数优化

基于遗传算法的PID控制器参数优化遗传算法是一种模拟生物进化过程的智能算法,适用于解决优化问题。
在PID控制器设计中,参数的选择对控制系统的性能和稳定性有很大影响。
使用遗传算法对PID控制器参数进行优化,能够自动找到最优参数组合,提高系统的控制性能。
PID控制器由比例(P)、积分(I)、微分(D)三个部分组成,其输出是通过对误差的线性组合得到的。
参数的选择直接影响控制器的稳定性、动态响应和抗干扰能力。
传统的方法通常是通过试错法进行参数整定,这种方法的缺点是效率低、调试过程繁琐且容易出错。
遗传算法是一种模拟自然界进化过程的智能优化算法,其中每个个体代表一组可能的参数,通过适应度函数来衡量个体的适应度,并选择适应度较高的个体进行遗传和变异操作,最终找到适应度最优的个体。
将遗传算法应用于PID控制器参数优化的步骤如下:1.确定优化目标:通过设置适应度函数来度量控制系统的性能指标,如超调量、调整时间和稳定性。
2.初始化种群:随机生成一组初始参数作为初始种群,并利用适应度函数来评估每个个体的适应度。
3.选择操作:根据适应度选择一部分适应度较高的个体作为父代,通过选择操作进行选择。
4.交叉操作:将选中的父代进行交叉操作,生成新的子代个体。
5.变异操作:对子代进行变异操作,引入新的个体差异。
6.评估适应度:利用适应度函数评估新生成的子代个体的适应度。
7.判断终止条件:判断是否满足终止条件,如达到最大迭代次数或找到满足条件的解。
8.更新种群:根据选择、交叉和变异操作的结果,更新种群。
9.重复步骤3-8,直到满足终止条件。
10.输出最优解:输出适应度最好的个体参数作为PID控制器的优化参数。
使用遗传算法进行PID控制器参数优化有如下优点:1.自动化:遗传算法能够自动寻找最优参数组合,减少了人工试错的过程。
2.全局:遗传算法具有全局的能力,能够参数空间的各个角落,找到更好的解决方案。
3.鲁棒性:遗传算法能够处理多变量、多模态和不连续的问题,具有较好的鲁棒性。
基于改进遗传算法的PID参数整定策略

第32卷第2期2005年北京化工大学学报JOURNAL OF BEI J IN G UN IV ERSIT Y OF CHEMICAL TECHNOLO GYVol.32,No.22005基于改进遗传算法的PID 参数整定策略宋洪法1 靳其兵1 赵 梅2(1.北京化工大学信息科学与技术学院,北京 100029;2.苏州科技学院电子系,江苏苏州 215011)摘 要:针对简单遗传算法(SG A )收敛速度慢、易于早熟等缺点,在前人研究成果的基础上,提出动态调整搜索空间策略,对遗传算法进行多步渐进搜索。
并采用改进的自适应交叉算子和自适应变异算子,结合兼顾性能指标和响应过程平衡的适配函数,以多种改进方式相结合的遗传算法对PID 参数进行迭代寻优整定。
仿真结果表明:当被控对象存在较大纯滞后、时间常数特性时,采用本方法优化PID 控制器参数可获得比较满意的调节效果。
关键词:遗传算法;自适应交叉;早熟;PID 参数整定中图分类号:TP273收稿日期:2004205206基金项目:中国石化总公司资助项目(X503014);中国石油天然气集团公司资助项目(03E7042)第一作者:男,1981年生,硕士生E 2mail :songhongfa @ 目前PID 参数整定方法主要有两种,一种是经验整定法,另一种是智能整定方法[1]。
前者算法简单,容易实现,但缺乏灵活性;后者具有很强的自适应能力,但算法比较复杂,无法满足现场的快速响应要求。
因此,既要有自适应能力又要求算法相对简单的PID 自整定技术成为控制界学者研究的努力方向。
简单遗传算法(SG A )已被证明不能收敛到全局最优解[2]。
文献[326]对自适应交叉和变异概率作了一定分析;文献[7]给出了遗传算法适配函数的一般构造原则以及遗传算法的自适应机制。
本文在综合考虑上述研究成果的同时,分析发现:遗传算法的初值给定范围与其搜索效率有很大的关系,即搜索初值越接近最优值,搜索范围越小,遗传算法的搜索效率就越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
end end end tempE(Size,:)=Bests; E=tempE;
% ********** 变异算子 ************ pm=0.001-[1:1:Size]*(0.001)/Size; %变异算子,从大到小 for i=1:Size
for j=1:2*CodeL temp=rand; if pm>temp %变异条件 if tempE(i,j)==0 tempE(i,j)=1; else tempE(i,j)=0; end end
G=100;
Size=30; %种群大小
%迭代次数
CodeL=10; %种群个体长度(二进制编码)
MinX=zeros(1,3);
MaxX(1)=20*ones(1); % kp in [0 20]
MaxX(2)=1.0*ones(1); % kd,ki in [0 1]
MaxX(3)=1.0*ones(1);
%适应函数值
% *********** 选择算子 ************ fi_sum=sum(fi); fi_size=(O2/fi_sum)*Size; fi_s=floor(fi_size); %取较大的适应值,确定其位置 kk=1; for i=1:Size
for j=1:fi_s(i) %选择,复制 tempE(kk,:)=E(D2(j),:); kk=kk+1;
function [KK,Bsj]=pid_ga(KK,Bsj) global rin yout timef ts=0.001; sys=tf(400,[1,50,0]); % 被控对象为二阶传递函数 dsys=c2d(sys,ts,'z'); %做 Z 变换 [num,den]=tfdata(dsys,'v');
[O,D]=sort(Bsji); %最优代价值排序 Bestj(k)=O(1) %取最小值 BJ=Bestj(k);
Ji=Bsji+1e-10;
fi=1./Ji;
[O2,D2]=sort(fi); %适应函数值排序
Bestfi=O2(Size); %取最大值
Bests=E(D2(Size),:);
m1=m(1:CodeL); for i=1:CodeL
y1=y1+m1(i)*2^(i-1); %计算输出量 end K(s,1)=(MaxX(1)-MinX(1))*y1/1024+MinX(1); %解码,计算 Kp 的取值
m2=m(CodeL+1:2*CodeL); for i=1:CodeL
rin=1.0; % 输入信号为阶跃信号 u_1=0.0;u_2=0.0; y_1=0.0;y_2=0.0; x=[0 0 0]; B=0;err_1=0;tu=1;s=0;P=100;
for k=1:P
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
复制
交叉
变异
参数
编码
种群 1
计算适配置
满足要求,即达到 最大迭代次数
遗传操作
种群 2
解码
寻优结束
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
基于遗传算法的 PID 整定 流程图
种群 1> 种群 2
% 基于遗传算法的 PID 整定
% 被控对象为二阶函数:
%
%
% 采样时间为 1ms,输入信号为阶跃信号
G(s) = ---------
% 采用二进制编码方式,种群个体(kp,ki,kd)长度为 10