2008年高考数学(理)真题(Word版)——全国1卷(试题+答案解析)
2008年高考数学(江苏卷)(含加试题)(word版+答案,中学数学信息网整理)全解析

2008年普通高等学校招生全国统一考试(江苏卷)数 学参考公式: 样本数据1x ,2x , ,n x 的标准差s =其中x 为样本平均数柱体体积公式V Sh = 其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分. 1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= ▲ .【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒= 【答案】102.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ .【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 【答案】1123.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += ▲ .【解析】本小题考查复数的除法运算.∵()21112i i i i ++==- ,∴a =0,b =1,因此1a b += 锥体体积公式 13V Sh =其中S S 为底面积,h 为高 球的表面积、体积公式24S R π=,343V R π=【答案】14.若集合2{|(1)37,}A x x x x R =-<+∈,则A Z 中有 ▲ 个元素【解析】本小题考查集合的运算和解一元二次不等式.由2(1)37x x -<+得2560x x --<,(1,6)A =-∴,因此}{0,1,2,3,4,5A Z = ,共有6个元素.【答案】65.已知向量a 和b 的夹角为0120,||1,||3a b == ,则|5|a b -= ▲ . 【解析】本小题考查向量的线性运算.()2222552510a b a ba ab b -=-=-+=22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,5a b -= 7【答案】76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域 E 表示单位圆及其内部,因此.214416P ππ⨯==⨯【答案】16π7.某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲ 【解析】由流程图1122334455S G F G F G F G F G F =++++4.50.125.50.206.50.407.50.28.50.08=⨯+⨯+⨯+⨯+⨯ 6.42=【答案】6.428.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 ▲ 【解析】本小题考查导数的几何意义、切线的求法.'1y x = ,令112x =得2x =,故切点(2,ln2),代入直线方程,得,所以b =ln2-1.【答案】ln2-19.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF 的方程: ( ▲ )011=⎪⎪⎭⎫⎝⎛-+y a p x 。
2010年高考数学(理)真题(Word版)——全国1卷(试题+答案解析)

2010年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学(必修+选修II)第I 卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i(2)记cos(80)k -︒=,那么tan100︒=C.(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) (B) 7 (C) 6(D)(5)35(1(1+-的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种 (7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A3 B 3 C 23D 3 (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P到x 轴的距离为(A)2 (B)2(C) (D)(10)已知函数()|lg |f x x =,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A))+∞ (B))+∞ (C)(3,)+∞ (D)[3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A) 4- (B)3- (C) 4-+ (D)3-+(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)(C) (D) 第Ⅱ卷二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13)1x ≤的解集是 . (14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 . (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,cot cot a b a A b B +=+且BF 2FD =,则C 的离心率为 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知ABC 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .(18)(本小题满分12分) 投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望.(19)(本小题满分12分)如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(20)(本小题满分12分)已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB =,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分) 已知数列{}n a 中,1111,n na a c a +==-.[来源:学*科*网] (Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围.答案解析一、选择题(1)A=i.(2)B∵cos(-80°)=cos80°=k,∴sin80°==.∴tan100°=-tan80°=-=-.(3)B线性约束条件对应的平面区域如图所示,由z=x-2y得y=-,当直线y =-在y轴上的截距最小时,z取得最大值,由图知,当直线通过点A时,在y轴上的截距最小,由,解得A(1,-1).所以z max=1-2×(-1)=3.(4)A数列{a n}为等比数列,由a1a2a3=5得=5,由a7a8a9=10得=10,所以=50,即(a2a8)3=50,即=50,所以=5(a n>0).所以a4a5a6==5.(5)C(1+2)3(1-)5的展开式中x的项为(-)3+(2)2=2x,所以x的系数为2.(6)A分两类:①选A类选修课2门,B类选修课1门,有·=12(种);②选A类选修课1门,B类选修课2门,有·=3×6=18(种),所以不同的选法共有12+18=30(种).(7)D不妨设正方体的棱长为1,如图建立空间直角坐标系,则D(0,0,0),B(1,1,0),B1(1,1,1).平面ACD1的法向量为=(1,1,1),又=(0,0,1),∴cos〈,〉===.∴BB1与平面ACD1所成角的余弦值为=.(8)C∵log32=<ln2,要比较log32=与5-=,只需比较log23与=log22,只需比较3与2,∵2>22=4>3,∴log32>5-.∴c<a<b.(9) B在△PF1F2中,|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos60°=(|PF1|-|PF2|)2+|PF1|·|PF2|,即(2)2=22+|PF1|·|PF2|,解得|PF1|·|PF2|=4.设P到x轴的距离为h,由S△F1PF2=|PF1|·|PF2|·sin60°=|F1F2|·h,解得h=(10)C函数f(x)=lg|x|的图象如图所示.由图知0<a<1,b>1.∵f(a)=|lga|=-lga=lg=f(b)=|lgb|=lgb,∴b=.∴a+2b=a+.令g(a)=a+(0<a<1),g(a)在(0,1)上为减函数,∴g(a)=a+>g(1)=1+2=3.(11)D如图,设∠APO=θ,·=||2·cos2θ=||2·(1-2sin2θ)=(|OP|2-1)(1-2·)=|OP|2+-3≥2-3,当且仅当|OP|2=,即|OP|=时,“=”成立.(12)B不妨取AB⊥CD,过CD作平面PCD,使AB⊥平面PCD,交AB于P.设点P到CD的距离为h,则有V四面体ABCD=×2××2×h=h.当直径通过AB与CD的中点时,h max=2=2.故V max=二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13){x|0≤x≤2}解析:∵-x≤1,∴≤x+1.原不等式等价于,解得0≤x≤2.(14)-解析:∵α为第三象限的角,∴π+2kπ<α<+2kπ,k∈Z.∴2π+4kπ<2α<3π+4kπ,k∈Z.又∵cos2α=-,∴2α为第二象限角.∴sin2α==.∴tan2α==-.∴tan(+2α)===-.(15)(1,)解析:y=x2-|x|+a=.当其图象如图所示时满足题意.由图知,解得1<a<.(16)解析:如图,设椭圆的标准方程为+=1(a>b>0)不妨设B为上顶点,F为右焦点,设D(x,y).由=2,得(c,-b)=2(x-c,y),即,解得,D(,-).由D在椭圆上得:=1,∴=,∴e==.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)解:由a+b=acotA+bcotB及正弦定理得sinA+sinB=cosA+cosB,sinA-cosA=cosB-sinB,从而sinAcos-cosAsin=cosBsin-sinBcos,sin(A-)=sin(-B).又0<A+B<π,故A-=-B,A+B=.所以C=.(18)解:(1)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B·C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B·C)=P(A)+P(B·C)=P(A)+P(B)·P(C)=0.25+0.5×0.3=0.40.(2)X~B(4,0.4),其分布列为P(X=0)=(1-0.4)4=0.129 6,P(X=1)=×0.4×(1-0.4)3=0.345 6,P(X=2)=×0.42×(1-0.4)2=0.345 6,P(X=3)=×0.43×(1-0.4)=0.153 6,P(X=4)=0.44=0.025 6.期望E(X)=4×0.4=1.6.(19)解法一:(1)连结BD,取DC的中点G,连结BG,由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD. 又SD⊥平面ABCD,故BC⊥SD,所以BC⊥平面BDS,BC⊥DE.作BK⊥EC,K为垂足.因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE.DE与平面SBC内的两条相交直线BK、BC都垂直,DE⊥平面SBC,DE⊥EC,DE⊥SB.SB==,DE==,EB==,SE=SB-EB=,所以SE=2EB.(2)由SA==,AB=1,SE=2EB,AB⊥SA,知AE==1,又AD=1,故△ADE为等腰三角形.取ED中点F,连结AF,则AF⊥DE,AF==.连结FG,则FG∥EC,FG⊥DE.所以∠AFG是二面角A—DE—C的平面角.连结AG,AG=,FG==,cos∠AFG==-.所以二面角A-DE-C的大小为120°.解法二:以D为坐标原点,射线DA为x轴正半轴,建立如图所示的直角坐标系Dxyz.设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2).(1) =(0,2,-2),=(-1,1,0).设平面SBC的法向量为n=(a,b,c),由n⊥,n⊥得n·=0,n·=0.故2b-2c=0,-a+b=0.令a=1,则b=1,c=1,n=(1,1,1).又设=λ(λ>0),则E(,,).=(,,),=(0,2,0).设平面CDE的法向量m=(x,y,z),由m⊥,m⊥,得m·=0,m·=0.故++=0,2y=0.令x=2,则m=(2,0,-λ).由平面DEC⊥平面SBC得m⊥n,m·n=0,2-λ=0,λ=2.故SE=2EB.(2)由(1)知E(,,),取DE中点F,则F(,,),=(,-,-),故·=0,由此得FA⊥DE.又=(-,,-),故·=0,由此得EC⊥DE,向量与的夹角等于二面角ADEC的平面角.于是cos〈,〉==-,所以二面角A-DE-C的大小为120°(20)解:(1)f′(x)=+lnx-1=lnx+,xf′(x)=xlnx+1,题设xf′(x)≤x2+ax+1等价于lnx-x≤a,令g(x)=lnx-x,则g′(x)=-1.当0<x<1时,g′(x)>0;当x≥1时,g′(x)≤0,x=1是g(x)的最大值点,g(x)≤g(1)=-1.综上,a的取值范围是[-1,+∞).(2)由(1)知,g(x)≤g(1)=-1,即lnx-x+1≤0.当0<x<1时,f(x)=(x+1)lnx-x+1=xlnx+(lnx-x+1)≤0;当x≥1时,f(x)=lnx+(xlnx-x+1)=lnx+x(lnx+-1)=lnx-x(ln-+1)≥0.所以(x-1)f(x)≥0.(21)解:设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-1(m≠0).(1)证明:将x=my-1代入y2=4x并整理得y2-4my+4=0,从而y1+y2=4m,y1y2=4. ①直线BD的方程为y-y2=·(x-x2),即y-y2=·(x-).令y=0,得x==1.所以点F(1,0)在直线BD上.(2)由①知,x1+x2=(my1-1)+(my2-1)=4m2-2,x1x2=(my1-1)(my2-1)=1.因为=(x1-1,y1),=(x2-1,y2),·=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+4=8-4m2,故8-4m2=,解得m=±.所以l的方程为3x+4y+3=0,3x-4y+3=0.又由①知y2-y1=±=±,故直线BD的斜率=±,因而直线BD的方程为3x+y-3=0,3x-y-3=0.因为KF为∠BKD的平分线,故可设圆心M(t,0)(-1<t<1),M(t,0)到l及BD的距离分别为,.由=得t=或t=9(舍去),故圆M的半径r==.所以圆M的方程为(x-)2+y2=.(22)解:(1)a n+1-2=--2=,==+2,即b n+1=4b n+2.b n+1+=4(b n+),又a1=1,故b1==-1.所以{b n+}是首项为-,公比为4的等比数列,b n+=(-)×4n-1,b n=--.(2)a1=1,a2=c-1,由a2>a1得c>2.用数学归纳法证明:当c>2时,a n<a n+1.(ⅰ)当n=1时,a2=c->a1,命题成立;(ⅱ)设当n=k时,a k<a k+1,则当n=k+1时,a k+2=c->c-=a k+1.故由(ⅰ)(ⅱ)知当c>2时,a n<a n+1.当c>2时,令α=,由a n+<a n+1+=c得a n<α;当2<c≤时,a n<α≤3.当c>时,α>3,且1≤a n<α,于是α-a n+1=(α-a n)≤(α-a n),α-a n+1≤(α-1).当n>时,α-a n+1<α-3,a n+1>3. 因此c>不符合要求.所以c的取值范围是(2,].。
2008高考山东数学理科试卷含详细解答(全word版)

2008年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:24πS R =,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:()(1)(012)k k n kn n P k C p p k n -=-=,,,,. 如果事件A B ,互斥,那么()()()P A B P A P B +=+. 如果事件A B ,相互独立,那么()()()P AB P A P B =.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( )A .1B .2C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B. 2.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( ) A .i B .i - C .1± D .i ±解析:本小题主要考查共轭复数的概念、复数的运算。
可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±选D.3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )xxA .B .C .D .解析:本小题主要考查复合函数的图像识别。
ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos 1lncos 0x x ≤⇒≤排除C,选A.4.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为( ) A .3B .2C .1D .1-解:1x +、x a -在数轴上表示点x 到点1-、a 的距离,他们的和()1f x x x a =++-关于1x =对称,因此点1-、a 关于1x =对称,所以3a =(直接去绝对值化成分段函数求解比较麻烦,如取特殊值解也可以) 5.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A.5-B.5C .45-D .45解::3cos()sin sin 62παααα-+=+=14cos 25αα=,714sin()sin()cos .6625ππαααα⎫+=-+=-+=-⎪⎪⎝⎭6.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=7.在某地的奥运火炬传递活动中,有编号为12318,,,,的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( ) A .151B .168C .1306D .1408解:古典概型问题,基本事件总数为31817163C =⨯⨯。
2008高考广东数学理科试卷含详细解答(全word版)

2008年普通高等学校招生全国统一考试(广东卷)(理科)全解析广东佛山南海区南海中学 钱耀周一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( C ) A .(15), B .(13),C.D.【解析】12+=a z ,而20<<a ,即5112<+<a ,51<<∴z2.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( D ) A .16B .24C .36D .48【解析】20624=+=d S ,3=∴d ,故481536=+=d S3.某校共有学生2000名,各年级男、女生人数如表1.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C )A .24B .18C .16D .12 表1【解析】依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是500,即总体中各个年级的人数比例为2:3:3,故在分层抽样中应在三年级抽取的学生人数为168264=⨯4.若变量x y ,满足24025000x y x y x y ⎧+⎪+⎪⎨⎪⎪⎩,,,,≤≤≥≥则32z x y =+的最大值是( C )A .90B .80C .70D .40 【解析】画出可行域,利用角点法易得答案C.5.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( A )【解析】解题时在图2的右边放扇墙(心中有墙),可得答案A.6.已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( D )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝【解析】不难判断命题p 为真命题,命题q 为假命题,从而上述叙述中只有()()p q ⌝∨⌝ 为真命题E F DIA H GBC EF D AB C侧视 图1图2 BEA .BEB . BEC .BED .图37.设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( B ) A .3a >-B .3a <-C .13a >-D .13a <-【解析】'()3ax f x ae =+,若函数在x R ∈上有大于零的极值点,即'()30ax f x ae =+=有正根。
2008年高考数学全国1卷(山西卷)试题分析

2008年高考数学全国1卷(山西卷)试题分析2008年06月09日 07:34试题立意新颖难度有增加今年的数学试题整体充分贯彻了全国高考数学《考试大纲》的基本精神,立足现行高中数学教材,注重基础知识考查,突出能力立意,虽然相比2006年、2007年难度上有所提高,但试题难度仍然适中。
同时,文理数学试题都没有偏题、怪题,而且题目多是立意新颖,“把关点”多,有利于高校选拔人才,应该说是一份好题。
可以说,今年的试题虽然有一定的难度,但预计将有较好的区分度。
重视基础保持稳定有创新总体来讲,试题源于教材,又高于教材,突出考查数学思想方法和数学能力。
其中,题型、题量和2007年完全相同,但是难度上有所提高,学生平均考分可能低去年15分左右。
同时,试题没有大起大落,有利于高校选拔人才,有利于高中数学教学,稳中有新,稳中有进。
在“难大家都难”的情况下,平时灵活运用、不生搬硬套的考生将会“沾点光”。
今年原则重点知识重点查除了集合与简易逻辑、文理科统计涉及内容较少外,其他大部分知识点都有考查。
其中,解析几何比重较大,从这一点来看,这份试题体现出重点知识重点考查的原则。
另外,今年,文理科数学试题各部分知识点中,考查分值的分布情况如下表所示:学科函数三角数列向量立体几何解析几何概率导数其他文科15 20 17 5 22 32 12 17 10理科20 15 17 5 22 32 12 17 10文理差异与去年大致相当今年的数学试题文理科相近、相同的题目比较少。
总体来讲,文理科均有22个题,其中,大题中有两个题相同,小题中仅有6个相同。
相比2006年,差异较大,与2007年大致相当。
试题中,所有考查范围不同的题目,单从难度上来讲,相比前两年,文科比理科容易程度更明显。
另外,文理科试题顺序上也有差异。
简单来说,适合于文、理科考生的易、中、难搭配更趋合理。
试题特点主要集中在7大类大部分题目可在教材中找到原型;入手较容易,但得高分不易;设问有创新;知识交汇的考查题目较多;解题方法呈多样性;注重基本运算能力;对审题要求高-试题源于教材,又高于教材,大部分题目在教材中可以找到原型如文科(3)题、理科(5)题,在教材向量章节的例题中可以找到原型;文理科(13)题,在线性规划这一节当中,到处可见这种题型。
2008高考天津数学理科试卷含详细解答(全word版)

绝密 ★ 启用前2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:·如果时间A ,B 互斥,那么·球的表面积公式P (A+B )=P (A )+P (B )24S R π=.·如果事件A ,B 相互独立,那么其中R 表示球的半径.P (A·B )=P (A )·P (B )一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,()=-+113i i i(A) 1- (B) 1 (C) i - (D) i 解析:()31(1)11111i i i i ii i i +-+-===----,选A . (2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A) 2 (B) 3 (C) 4 (D) 5解析:如图,由图象可知目标函数y x z +=5过点(1,0)A 时z 取得最大值,max 5z =,选D .(3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 解析:()cos 2f x x =-是周期为π的偶函数,选B .(4)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A) βαβα⊥⊥,//,b a (B) βαβα//,,⊥⊥b a (C) βαβα//,,⊥⊂b a (D) βαβα⊥⊂,//,b a 解析:A 、B 、D 直线,a b 可能平行,选C .(5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21(D) 772解析:由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒== 所以2d =,选B .(6)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是(A) 13-<<-a (B) 13-≤≤-a(C) 3-≤a 或1-≥a (D) 3-<a 或1->a 解析:{|15}S x x x =<->或,所以13185a a a <-⎧⇒-<<-⎨+>⎩,选A .(7)设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f1-在其定义域上是减函数且最小值为0(C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f1-在其定义域上是增函数且最小值为0解析:1y =为减函数,由复合函数单调性知()f x 为增函数,所以1()f x -单调递增,排除B 、C ;又1()f x -的值域为()f x 的定义域,所以1()f x -最小值为0.(8)已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x解析:依题意得11010(1)()(1)1x x x x x x x x +<+⎧⎧⎨⎨++-++⎩≥≤⎩≤或所以11111111x x x x x x R x ⎧≥-≤≤⇒≤∈≤≤<-⎧⎪⇒<--⎨⎨⎪⎩⎩或或,选C . (9)已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sin πππf c f b f a ,则(A) c a b << (B) a b c << (C) a c b << (D) c b a <<解析:5(cos)(c 2os )77b f f ππ=-=,5(tan )(t 2an )77c f f ππ=-= 因为2472πππ<<,所以220cos sin 1tan7772πππ<<<<,所以b a c <<,选A . (10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(A) 1344种 (B) 1248种 (C) 1056种 (D) 960种解析:首先确定中间行的数字只能为1,4或2,3,共有12224C A =种排法.然后确定其余4个数字的排法数.用总数46360A =去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有2412A =种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有31248412⨯=种不同的排法,选B .第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
全国1卷高考数学(含答案)

(A) 4(B) 3(C ) 2(D) 12010年普通高等学校招生全国统一考试理科数学(必修+选修H )本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分,第I 卷1至2页,第n 卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生在答题卡上务必用直径 0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码•请认真核准条形码的准考证号、姓名和科目.2•每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3•第I 卷共10小题,每小题3分,共30分•在每小题给出的四个选项中,只有一项 符合题目要求.参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B)y 兰1,(3)若变量x, y 满足约束条件』x + y 兰0 则z=x-2y 的最大值为|x 〜y 〜2 -0.绝密★启用前球的表面积公式如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A B)=P(A) P(B)球的体积公式如果事件A 在一次试验中发生的概率是 P ,那么n 次独立重复试验中恰好发生 k 次的概率P n (k ) =C :P k (1 -P 严、选择题其中R 表示球的半径(1) 复数3 2i -2 -3i(A ) i(B )-i(2) 记 cos( -80 ) = k ,那么 tan 100 二J1 -k 21 -k2 (A )(B ) -kk(C ) 12 -13i(D )12 13i(C ) k (D )k 1 -k 2• 1 -k 2(4)已知各项均为正数的等比数列g }中,a 1a 2a^5,a 7a 8a 9 =10,则a 4a 3a 6 =(A ) 52(B ) 7(C ) 6(D ) 42(5) (1 • 2... x)3(1 -3.x)5的展开式中x 的系数是(A ) -4( B ) -2( C ) 2( D ) 4(6) 某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选 3门,若要求两类课 程中各至少选一门,则不同的选法共有(A ) 30 种 (B ) 35 种 (C ) 42 种 (D ) 48 种 (7) 正方体ABCD — A I B I C I D I 中,BB i 与平面ACD i 所成角的余弦值为2 (C)-3到x 轴的距离为(10)已知函数f (x) =| lg x I 若0 ::: a ::: b,且f (a) = f (b),则a 2b 的取值范围是(A) (2.. 2,::)(B ) 2. 2,-(C ) (3,::)(D) 3,;(11)已知圆0的半径为1,PA 、PB 为该圆的两条切线, A 、B 为两切点,那么PA PB 的最小值为(A ) - 4一2(B ) -3 .2 (C ) -422 (D ) - 3 2 2(12)已知在半径为 2的球面 上有A 、B 、C 、 D 四点,若 AC=CD=2,则四面体 ABCD 的体积的最大值为2屈4.3 |T -813(A ) (B )(C ) 2 3(D )-333绝密★启用前2010年普通高等学校招生全国统一考试理科数学 (必修+选修H)注意事项:(D)(8) 1设 a = log 3 2,b = In 2,c = 5 2,则 (A) ab :: c(B) b :: c :: a(C ) c a b (D)(9) 已知F 1、F 2为双曲线 C :x 2- y 2=1 的左、右焦点,点 P 在C 上,.F 1PF 2 =60,则P<6(B)』2(C) ,31 •答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2008高考重庆数学理科试卷含答案(全word版)

绝密★启用前2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共5页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A ·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (K)=k m P k (1-P)n-k以R 为半径的球的体积V =43πR 3.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的. (1)复数1+22i= (A)1+2i(B)1-2i(C)-1(D)3(2)设m,n 是整数,则“m,n 均为偶数”是“m+n 是偶数”的(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是(A)相离 (B)相交 (C)外切 (D)内切(4)已知函数M ,最小值为m ,则mM的值为(A)14(B)12(C)2(D)2(5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=(A)15(B)14(C)13 (D)12(6)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,,则下列说法一定正确的是(A)f (x )为奇函数 (B )f (x )为偶函数 (C) f (x )+1为奇函数(D )f (x )+1为偶函数(7)若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12P P所成的比λ的值为 (A)-13(B) -15(C)15(D)13(8)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为(A )22x a -224y a =1(B)222215x y a a-=(C)222214x y b b-=(D)222215x y b b-=(9)如解(9)图,体积为V 的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V 1为小球相交部分(图中阴影部分)的体积,V 2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是 (A )V 1=2V (B) V 2=2V (C )V 1> V 2(D )V 1< V 2(10)函数f(x)02x π≤≤) 的值域是(A )[-2] (B)[-1,0] (C )](D )]二、填空题:本大题共6小题,每小题4分,共24分,把答案填写在答题卡相应位置上 (11)设集合U ={1,2,3,4,5},A ={2,4},B={3,4,5},C={3,4},则(A ⋃B)()C ⋂⋃ð= .(12)已知函数f(x)=(当x≠0时) ,点在x=0处连续,则2221limxana n n→∞+=+.(13)已知1249a=(a>0) ,则23log a= .(14)设S n=是等差数列{a n}的前n项和,a12=-8,S9=-9,则S16= .(15)直线l与圆x2+y2+2x-4y+a=0(a<3)相交于两点A,B,弦AB的中点为(0,1),则直线l的方程为 .(16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答).三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)设ABC∆的内角A,B,C的对边分别为a,b,c,且A=60 ,c=3b.求:(Ⅰ)ac的值;(Ⅱ)cot B +cot C的值.(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为12,且各局胜负相互独立.求:(Ⅰ)打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ.(19)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)如题(19)图,在ABC 中,B=90,AC =152,D 、E 两点分别在AB 、AC 上.使 2AD AEDB EC==,DE=3.现将ABC 沿DE 折成直二角角,求: (Ⅰ)异面直线AD 与BC 的距离;(Ⅱ)二面角A-EC-B 的大小(用反三角函数表示).(20)(本小题满分13分.(Ⅰ)小问5分.(Ⅱ)小问8分.)设函数2()(0),f x ax bx c a =++≠曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1)) 处的切线垂直于y 轴.(Ⅰ)用a 分别表示b 和c ;(Ⅱ)当bc 取得最小值时,求函数g (x )=-f (x )e -x的单调区间. (21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(Ⅰ)求点P 的轨迹方程; (Ⅱ)若2·1cos PM PN MPN-∠=,求点P 的坐标.(22)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 设各项均为正数的数列{a n }满足321122,(N*)n a a a a aa n ++==∈.(Ⅰ)若214a =,求a 3,a 4,并猜想a 2cos 的值(不需证明);(Ⅱ)记32(N*),n n n b a a a n b =∈≥若对n ≥2恒成立,求a 2的值及数列{b n }的通项公式.2008年普通高等学校招生全国统一考试(重庆卷)数学试题(理工农医类)答案一、选择题:每小题5分,满分50分.(1)A (2)A (3)B (4)C (5)D(6)C(7)A (8)C (9)D (10)B 二、填空题:每小题4分,满分24分.(11)25,(12)13(13)3 (14)-72 (15)x-y+1=0 (16)216三、解答题:满分76分. (17)(本小题13分) 解:(Ⅰ)由余弦定理得2222cos a b c b A =+-=2221117()2,3329c c c c c +-=故a c = (Ⅱ)解法一:cot cot B C +=cos sin cos sin sin sin B C C BB C +=sin()sin ,sin sin sin sin B C AB C B C+=由正弦定理和(Ⅰ)的结论得227sin 19··1sin sin sin ·3cA aBC A bc c c ====故cot cot 9B C +=解法二:由余弦定理及(Ⅰ)的结论有22222271()cos 2c c c a c b B ac +-+-==故sin B===同理可得22222271cos2c c ca b cCab+-+-===sin C===从而cos coscot cotsin sinB CB CB C+=+==(18)(本小题13分)解:令,,k k kA B C分别表示甲、乙、丙在第k局中获胜.(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为12312333111()().224P AC B P B C A+=+=(Ⅱ)ξ的所有可能值为2,3,4,5,6,且121222111(2)()(),222P P A A P B Bξ==+=+=12312333111(3)()().224P P AC C P B C Cξ==+=+=1234123444111(4)()().228P P AC B B P B C A Aξ==+=+=123451234555111(5)()(),2216P P AC B A A P B C A B Bξ==+=+=123451234555111(6)()(),2216P P AC B A C P B C A B Cξ==+=+=故有分布列从而111114723456248161616Eξ=⨯+⨯+⨯+⨯+⨯=(局).(19)(本小题13分)解法一:(Ⅰ)在答(19)图1中,因AD AEDB CE=,故BE ∥BC .又因B =90°,从而 AD ⊥DE .在第(19)图2中,因A -DE -B 是直二面角,AD ⊥DE ,故AD ⊥底面DBCE ,从而AD ⊥DB .而DB ⊥BC ,故DB 为异面直线AD 与BC 的公垂线. 下求DB 之长.在答(19)图1中,由2AD AE CB BC ==,得2.3DE AD BC AB == 又已知DE =3,从而39.22BC DE ==6.AB ===因1, 2.3DB DB AB =故= (Ⅱ)在第(19)图2中,过D 作DF ⊥CE ,交CE 的延长线于F ,连接AF .由(1)知,AD ⊥底面DBCE ,由三垂线定理知AF ⊥FC ,故∠AFD 为二面角A -BC -B 的平面 角.在底面DBCE 中,∠DEF =∠BCE ,11552,,322DB EC ===因此4sin .5DB BCE EC ==从而在Rt △DFE 中,DE =3,412sin sin 3.55DF DE DEF DE BCE ====在5Rt ,4,tan .3AD AFD AD AFD DF ∆===中因此所求二面角A -EC -B 的大小为arctan 5.3解法二:(Ⅰ)同解法一.(Ⅱ)如答(19)图3.由(Ⅰ)知,以D 点为坐标原点,DB DE DA、、的方向为x 、 y 、z 轴的正方向建立空间直角坐标系,则D (0,0,0),A (0,0,4),9202C ⎛⎫⎪⎝⎭,,,E (0,3,0).302AD AD ⎛⎫ ⎪⎝⎭ =-2,-,,=(0,0,-4).过D 作DF ⊥CE ,交CE 的延长线于F ,连接AF .设00(,,0),F x y 从而00(,,0),DF x y =00(,3,0).EF x y DF CE =-⊥由,有 0030,20.2DF CE x y =+= 即 ①又由003,.322x y CE EF -= 得 ②联立①、②,解得00364836483648,.,,0,,4.252525252525x y F AF ⎛⎫⎛⎫=-=-=-- ⎪ ⎪⎝⎭⎝⎭ 即,得因为36483(2)025252AF CE ⎛⎫⎛⎫=--+-= ⎪ ⎪⎝⎭⎝⎭,故AF CE ⊥,又因DF CE ⊥,所以DFA ∠为所求的二面角A-EC-B 的平面角.因3648,,0,2525DF ⎛⎫=- ⎪⎝⎭有12,4,5DF AD ===所以5tan .3AD AFD DF ==因此所求二面角A-EC-B 的大小为5arctan .3(20)(本小题13分)解:(Ⅰ)因为2(),()2.f x ax bx c f x ax b '=++=+所以又因为曲线()y f x =通过点(0,2a +3), 故(0)23,(0),2 3.f a f c c a =+==+而从而又曲线()y f x =在(-1,f (-1))处的切线垂直于y 轴,故(1)0,f '-= 即-2a +b =0,因此b=2a .(Ⅱ)由(Ⅰ)得2392(23)4(),44bc a a a =+=+-故当34a =-时,bc 取得最小值-94.此时有33,.22b c =-=从而233333(),(),42222f x x x f x x '=--+=--2333()()(),422x x g x f x c x x e --=-=+-所以23()(()()(4).4x xg x f x f x e x e --''=-=--令()0g x '=,解得122, 2.x x =-=当(,2),()0,()(,2)x g x g x x '∈-∞-<∈-∞-时故在上为减函数; 当(2,2)()0,()(2,).x g x g x x '∈->∈+∞时,故在上为减函数 当(2,)()0()(2,)x g x g x x '∈+∞<∈+∞时,,故在上为减函数.由此可见,函数()g x 的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2). (21)(本小题12分)解:(Ⅰ)由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴b =所以椭圆的方程为221.95x y +=(Ⅱ)由2,1cos PM PN MPN=- 得cos 2.PM PN MPN PM PN =- ①因为cos 1,MPN P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形.在△PMN 中,4,MN =由余弦定理有2222cos .MNPM PN PM PN MPN =+- ②将①代入②,得 22242(2).PM PN PM PN =+-- 故点P 在以M 、N为焦点,实轴长为2213x y -=上. 由(Ⅰ)知,点P 的坐标又满足22195x y +=,所以 由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩ 即P 点坐标为(,22222222-、(--,)或(-. (22)(本小题12分)解:(Ⅰ)因2122,2,a a -==故 3423123824232,2.a a a a a a ---==== 由此有0223(2)(2)(2)(2)12342,2,2,2a a a a ----====,故猜想n a 的通项为1(2)*2(N ).n n a n --=∈(Ⅱ)令2log ,2.n S n n n n n x a S x n b ==表示的前项和,则由题设知x 1=1且*123(N );2n n n x x x n ++=+∈ ① 123(2).2n n S x x x n =+++≥≥ ② 因②式对n =2成立,有1213,12x x x ≤+=又得 21.2x ≥ ③ 下用反证法证明:2211..22x x ≤>假设由①得21211312()(2).22n n n n n n x x x x x x ++++++=+++ 因此数列12n n x x ++是首项为22x +,公比为12的等比数列.故 *121111()(N ).222n n n x x x n +--=-∈ ④ 又由①知 211111311()2(),2222n x n n n n n x x x x x x x +++++-=--=-- 因此是112n n x x +-是首项为212x -,公比为-2的等比数列,所以 1*1211()(2)(N ).22n n n x x x n -+-=--∈ ⑤ 由④-⑤得 1*221511(2)()(2)(N ).222n n n S x x n --=+---∈ ⑥ 对n 求和得2*2215111(2)(2)(2)()(N ).2223n n x x x n ---=+---∈ ⑦ 由题设知21231,22k S x +≥>且由反证假设有 21*22221*22221121152)(2)()(N ).22341211151()(2)(2)2(N ).23244k k k k x x k x x x k ++++---≥∈+-≤+--<+∈ (从而 即不等式22k +1<22364112x x +-- 对k ∈N *恒成立.但这是不可能的,矛盾.因此x 2≤12,结合③式知x 2=12,因此a 2=2*2将x 2=12代入⑦式得 S n =2-112n -(n ∈N*), 所以b n =2S n =22-112n -(n ∈N*)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则
, 。 因为2+2=2,且 =2-, 所以2+2=(2-)2, 于是得tan∠AOB=。 又与同向,故∠AOF=∠AOB, 所以 解得 tan∠AOF=,或tan∠AOF=-2(舍去)。 因此 。 所以双曲线的离心率e== (Ⅱ)由a=2b知,双曲线的方程可化为 x2-4y2=4b2 ① 由l1的斜率为,c=b知,直线AB的方程为 y=-2(x-b) ② 将②代入①并化简,得 15x2-32bx+84b2=0 设AB与双曲线的两交点的坐标分别为(x1,y1),(x2,y2),则 x1+x2=,x1·x2= ③ AB被双曲线所截得的线段长 l= ④
≤1,即 + ≥1. 11、答案: B 解析:如图,连结A1B和AB1交于点O′,取OB中点E,连O′E,则O′E
A1O,
∴O′E⊥面ABC.连结AE, ∴∠O′AE即为AB1与面ABC所成的角. ∵AO=BO,又∵A1A=AB, 设A1A=a,则AO′= a. 又AO= ·
a= a, ∴A1O= a. D
∴a=-1. 5、答案: C 解析:∵a2+a4=4=2a3,∴a3=2. 又∵a3+a5=10=2a4,∴a4=5. ∴公差d=a4-a3=3,a1=-4. ∴S10=10×(-4)+ ×3=95. 6、答案: B 解析:由题意y=f(x-1)与y=ln +1互为反函数, ∴f(x-1)=e2(x-1). ∴f(x)=e2x. 7、答案: D 解析:y′= , ∴曲线在(3,2)处的切线斜率为y′|x=3=. ∵·(-a)=-1,∴a=-2. 8、答案: A 解析:y=cos(2x+ )=sin(2x+
AB, ∴MN EF. ∴四边形EMNF为平行四边形,EM NF. ∴∠ANF为异面直线EM、AN所成的角. 又EM= a,AN= a,AF= a, ∴cos∠ANF= = . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过 程或演算步骤. 17.解析:(Ⅰ)由正弦定理得 a= acosB-bcosA=()c = = = 依题设得 解得tanAcotB=4 (II)由(I)得tanA=4tanB,故A、B都是锐角,于是tanB>0 tan(A-B)= =
答案解析
一、选择题 1、答案: C 解析:
∴原函数的定义域为{x|x≥1或x=0}. 2、答案: A 解析:由题意,汽车在匀速行驶前速度加快,而之后速度减小,故曲线切线 斜率先增大后不变,再后减小,选A. 3、答案: A 解析:如图,
=c+
=c+ (b-c) = b+ c,故选A. 4、答案: D 解析: (a+i)2i=(a2-1+2ai)i =-2a+(a2-1)i. ∵(a+i)2i为正实数,∴
B C A
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中 横线上.
13.13.若满足约束条件则的最大值为 . 14.已知抛物线的焦点是坐标原点,则以抛物线与两坐标轴的三个交点 为顶点的三角形面积为 . 15.在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 . 16.等边三角形与正方形有一公共边,二面角的余弦值为,M、N分别 是AC、BC的中点,则EM、AN所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过 程或演算步骤. 17.(本小题满分10分) 设的内角所对的边长分别为a、b、c,且. (Ⅰ)求的值; (Ⅱ)求的最大值.
18.(本小题满分12分) 四棱锥中,底面为矩形,侧面底面,,,. (Ⅰ)证明:; (Ⅱ)设与平面所成的角为,求二面角的大小. C D E A B 19.(本小题满分12分) 已知函数,. (Ⅰ)讨论函数的单调区间; (Ⅱ)设函数在区间内是减函数,求的取值范围.
20.(本小题满分12分) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病 的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下
≤, 且当tanB=时,上式取等号,因此tan(A-B)的最大值为 18.解: (I)作AO⊥BC,垂足为O,连接OD,由题设知,AO⊥底面BCDE,且O 为BC中点,
由知,Rt△OCD∽Rt△CDE, 从而∠ODC=∠CED,于是CE⊥OD, 由三垂线定理知,AD⊥CE (II)由题意,BE⊥BC,所以BE⊥侧面ABC,又BE侧面ABE,所以侧 面ABE⊥侧面ABC。 作CF⊥AB,垂足为F,连接FE,则CF⊥平面ABE 故∠CEF为CE与平面ABE所成的角,∠CEF=45° 由CE=,得CF= 又BC=2,因而∠ABC=60°,所以△ABC为等边三角形 作CG⊥AD,垂足为G,连接GE。 由(I)知,CE⊥AD,又CE∩CG=C, 故AD⊥平面CGE,AD⊥GE,∠CGE是二面角C-AD-E的平面角。 CG= GE=
B C A ∴O′E= a.∴sin∠O′AE= . 12、答案: B 解析:方法一:4种花都种有 =24种;只种其中3种花: · · · =48种;
只种其中2种花: · =12种. ∴共有种法24+48+12=84种. 方法二:A有4种选择,B有3种选择,C可与A相同,则D有3种选择,若C与A不 同,则C有2种选择,D也有2种选择. ∴共有4×3×(3+2×2)=84. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中 横线上. 13.答案: 9 解析:由题意得可行域如图中阴影部分所示,则由图可得目标函数z=2x-y 的最大值为y=2x-z,过点(3,-3)时,此时z=9.
19.解: (Ⅰ)f´(x)=3x2+2ax+1,判别式Δ=4(a2-3) (i)若a>或a<,则在上f´(x)>0,f(x)是增函数; 在 内f´(x)<0,f(x)是减函数; 在上f´(x)>0,f(x)是增函数。 (ii)若<a<,则对所有x∈R都有f´(x)>0,故此时f(x)在R上是增函 数。 (iii)若a=,则f´()=0,且对所有的x≠都有f´(x)>0,故当a=时,f(x) 在R上是增函数。 (Ⅱ)由(Ⅰ)知,只有当a>或a<时,f(x)在内是减函数。 因此 ≤ ① 且 ≥ ② 当|a|>时,由①、②解得a≥2 因此a的取值范围是[2,+∞)。 (20)解: 记A1、A2分别表示依方案甲需化验1次、2次, B1、B2分别表示依方案乙需化验2次、3次, A表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题 意知A2与B2独立。 (Ⅰ) ,,。 P()=P(A1+A2·B2) =P(A1)+P(A2·B2) =P(A1)+P(A2)·P(B2) = = 所以 P(A)=1-P()==0.72 (Ⅱ)ξ的可能取值为2,3. P(B1)=,P(B2)=,P(ξ=2)=P(B1)=,P(ξ=3)=P(B2)= , 所以Eξ=(次)。 (21)解: (Ⅰ)设双曲线方程为(a>0,b>0),右焦点为F(c,0)(c>0),则c2=a2+b2 不妨设l1:bx-ay=0,l2:bx+ay=0
=
. 16. 答案:
解析:取AB中点G,连结GC,过G作GF∥BD,则GF交DE于F,F为DE中点. 点C在面ABCD内的射影在GF上, 设为H. ∴∠CGH为二面角CABD的平面角. ∴ = .设AB=a,则CG= a. ∴GH= ,即H为正方形中心. 连结CD、CE,则四棱锥C—ABDE为正四棱锥. 又连结NF、MN,∵MN
2008年普通高等学校招生全国统一考试(全国Ⅰ 卷) 理科数学(必修+选修Ⅰ) 第Ⅰ卷
参考公式: 如果事件互斥,那么 球的表面积公式
如果事件相互独立,那么 其中表示球的半径 球的体积公式 如果事件在一次试验中发生的概率是,那么 次独立重复试验中恰好发生次的概率 其中表示球的半径 一、选择题 1.函数的定义域为( ) A. B. C. D. 2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这 一过程中汽车的行驶路程看作时间的函数,其图像可能是( ) s t O A. s t O s t O s t O B. C. D. 3.在中,,.若点满足,则( ) A. B. C. D.
cos∠CGE= 所以二面角C-AD-E为arccos()
解法二: (I)作AO⊥BC,垂足为O,则AO⊥底面BCDE,且O为BC的中点,以 O为坐标原点,射线OC为x轴正向,建立如图所示的直角坐标系O-xyz. 设A(0,0,t),由已知条件有 C(1,0,0), D(1,,0), E(-1, ,0), 所以,得AD⊥CE (II)作CF⊥AB,垂足为F,连接FE, 设F(x,0,z)则=(x-1,0,z), 故CF⊥BE,又AB∩BE=B,所以CF⊥平面ABE, ∠CEF是CE与平面ABE所成的角,∠CEF=45° 由CE=,得CF= 又CB=2,所以∠FBC=60°,△ABC为等边三角形,因此A(0,0,) 作CG⊥AD,垂足为G,连接GE,在Rt△ACD中,求得|AG|=|AD| 故G[] 又 所以的夹角等于二面角C-AD-E的平面角。 由cos()= 知二面角C-AD-E为arccos()
4.设,且为正实数,则( ) A.2 B.1 C.0 D. 5.已知等差数列满足,,则它的前10项的和( ) A.138 B.135 C.95 D.23 6.若函数的图像与函数的图像关于直线对称,则( ) A.e2x-1 B.e2x C.e2x+1 D. e2x+2 7.设曲线在点处的切线与直线垂直,则( ) A.2 B. C. D. 8.为得到函数的图像,只需将函数的图像( ) A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位 9.设奇函数在上为增函数,且,则不等式的解集为( ) A. B. C. D. 10.若直线通过点,则( ) A. B. C. D. 11.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心, 则与底面所成角的正弦值等于( ) A. B. C. D. 12.如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每 块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A.96 B.84 C.60 D.48 D