河北省石家庄市2020年中考数学经典试题
2020年河北省中考数学试题(图片版含答案)

2020年河北省初中毕业生升学文化课考试数学试卷注意事项:1・本试卷共X页,总分120分,考试时间120分钟.2・答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位≡±.3・答选择题时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,将答案写在答Sg卡上.写在本试卷上无效.4・考试结束后,将本试卷和答SS卡一井交回.一、选择题(本大題有16个小题,共42分.1〜10小題各3分・11〜16小題各2分.在每小題给出的四个选项中,只有一项是符合題目要求的)1・如图1.在平面内作己知亘线加的垂线,可作垂线的条数有A∙ 0 条B∙ 1 条~ fn图1 C・2条 D.无数条2.墨迹椅盖了尊式“ Z3∙x = χ2 (XH0)”中的运算符号,则覆盖的是A- +- B- "uC- ×D・÷3.对于①x —3Xy = X(I・3刃,②(X + 3)(x — 1) = X a÷2x-3 »从左到右的变形・表述正确的是A・都是因式分解,B・都是乘法运算C・Φ½B式分解,②圧乘法运算D・①是乘法运算,②是因式分解4.图2的两个几何体分别由7个和6个相同的小正方体搭成.比较两个几何体的三视图,正确的是A・仅主视图不同B・仅俯视图不同'OQ C・仅左视图不同D・主视图、左视图和俯视图都相同5.图3是小颖曲三次购买苹果单价的统计图,第四次又买的苹果单价是。
元/千克・发现这四个单价的中位数恰好也足众数,则α =A. 9 B- 8C *7 D∙ 66∙如图4' C知∕MC,用尺规作它的和平分线如图4∙2∙步骤如下,姑步・・灯为圆心,以诅半径嘶■分别交射线呗眈于点D & 第二炽分别以D, E为圆心.以必半径吹两弧业初C内部交于点P;第三步:画射线&P.射线EP即为所求A. a.方均无限制C. α有最小限制,b无限制7.若a≠b・则下列分式化简正确的是B・α AO, b>∣DE 的长D∙ α No, b <-DE的长2B・应,b-2 b8∙在图5所示的网格中・以点O为位似中心,四边形ABCD 的位似图形是A・四边形NPMQ B.四边形NPMRC.四边形N〃M0D.四边形MMR9.若(!iz>x∏2-1)=8xl0xl2,则“k下列正确的是1 -α2A图5作补充•下列正确的足H.若斤为正幣教•则(&+«+•••+&「S------- V ------- Zit*IO •如图b 將“"C 堆边,4「的屮z ∙ OWRliIteH IKO a •筋汎发现・旋转厉的厶Cw U^ABC 构 MMpI 叫讪仪 HHlJnII 卜,点儿C 分別Hi>J 7 Λ G X 处, 而,m 了点D 处.:CB AD 9J 口边彫ABCD 是半行四边形•小明为保IlL 站m 的Jff PP 更严悴• ffl ⅛ΛH*<l 1 U^Cn-AD. f∏ w Λ四边形 ... WZ 何Λ. KiHffl 理严ib 不必补允 B ∙应补允:∖IAB≈CD.C.应补充:fl AR//CD.D ∙应补充:H0Λ≈()C.12. taffl7∙从笔ri 的公路I 旁一点P 岀发•向西走6km 到达人从P 出发向北走6km 也到达/・卜列说法错误的是• •A ・从点P 向北偏西45°走3km 到达/ B. 公Wn 的走向堆南偏两45∙ C. 公埒/的走向是北偏东45°13.己知光連为300 000千米/杪,光经过f 秒(IWfWlO )传播的览肉用科学记故注&示为4? XIO A千米.IM n nl(½为A. 5 C. 5 PlCB ・6 D ・ 5 Λ 6N. ff -ItSth -已如:点O 力△・(〃('的'卜心・C8(XUU ∙・*Z.4.- SJSJ 的解呑为: 以及它的外忆翹 α iitt OB.OC.切图 8.由ZMXu-IMF .65* .而miKi%∣的不卅全•"还⅛fιM -个不屈的備.・F 列刿妙止的的足A. IMiMift 的対,且Z4的列个VLlt ∏5' B ・MuK 说的不对∙rt<y 65C. SZti 求的rΛMid ∙对・厶4应紂Mr D ・两人林不対・Z.4应"3个不同(ft数学试卷D ∙ k 2A.北尽IS.如图9 •现婴在抛物线yκ(4-n上找点PS b).针対6的不同収值,所找点P的个数,三人的说法如下,甲:若b = 5,则点P的个数为0;乙:若b=4.则点P的个数为1;丙:若b=3,则点P的个数为∣∙下列判断正确的是A.乙错,丙对B.甲和乙都错C.乙对,丙错D・I卩情,內对∣6.图IO是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是 1.2, 3. 4. 5.选取其中三块(可重复选取)按图10 的方式组成图案,使所围成的三用形是面积最大的直角• •三角形,则选取的三块纸片的面积分别是图IO A- 1, 4, 5 B. 2, 3, 5C. 3∙49 5D. 2. 2, 4二.填空题(本大题有3个小题•共12分• 17〜18小題各3分;19小题有3个空•每空2分)17._______________________________________ 己知:√ΓS->∕2≡α√2-√2=5√2 r IlM ab^ _______________________________________18.________________________________________________ 正六边形的一个内角是正丹边形一个外角的4倍,则F l= ___________________________________19.图11是8个台阶的示意图•每个台阶的高和宽分别足1和2.每个台阶凸出的角的顶点记作几S为1~8的整数)•曲数八'(x<0)的图象为曲线厶(1)若2过点环则" ____________ ;(2)若Z过点门,则它必定还过另一点&・则m≡_____________ I(3)若曲线丄使得TLT*这些点分布在它的两侧・毎.侧各4个点,则&的整数值冇________ 个・三、解答题(本大题冇7个小越•共66分•解拧应坷出文孑说明、证明过稈或演題步骤)20.(本小题満分R分)己知两个有理数:-9和5・(1)计算;匕聖艺;2(2)若再添一个负整数刃.且-9・5与刊这三个数的平均数仍小T求"的值•21.(本小题满分8分)有一电脑稈序:每按一次按键,屏幕的A区就会自动加上/・同时B区就会口动诚去3α,且均显示化简后的结果・己知A, B 两区初始显示的分别是25和-16・如图12・如,第一次按⅛t⅛, A I B两区分别显示:2;胃訂E器鸟^<1)从初始状态按2次后,分别求A, B两区显示的结果;(2)从初始状态按4次后,计算A, B两区代数式的和,请判断这个和能为负数吗?说明理由22・(本小题满分9分)如图13•点O为X〃中点,分别延长0/1到点C, OB到点D・使OC = OD.以点0 为圆心,分别以6, OQ为半径在CD上方作两个半圆•点P为小半圆上任一点(不与点A,〃車合),连接OP 并延长交大半圆于点E,连接*£・CP.(1)① 求证:∆A0E^∆P0C;②写出Zl, Z2和ZC1三者间的数蛍关系,井说明理由.(2)若OC≈2OA=2l当ZC最大时,皐悸指出CP与小半圆的位置关系,并求此时S吨OD(答集保窗兀>・Ill23・(本小题满分9分)用承垂捋数〃衡凰水平放置的长方休木板的最大承3i.fi.实验室冇些同材质冋长同 宽而厚度不-的木板,实验发规:木板承航拾数“与木板耳度X (厘米〉的平方成正比. 当x=3时,"=3・(1>求卩与X 的函数关系式・(2〉如图】4・选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为X (厘米〉, ① 求0与X 的函数关系式: ② Jr 为何值时,。
河北省石家庄市2020年(春秋版)中考数学试卷A卷

河北省石家庄市2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12小题,每小题3分,共36分. (共12题;共36分)1. (3分)(2016·慈溪模拟) ﹣2016的倒数是()A . 2016B . -2016C .D .2. (3分)下列各数:0,﹣3.14,,π中,是有理数的有()个.A . 1B . 2C . 3D . 43. (3分)如图,则该几何体的俯视图是()A .B .C .D .4. (3分)(2020·通州模拟) 2019年4月17日,国家统计局公布2019年一季度中国经济数据.初步核算,一季度国内生产总值213433亿元,按可比价格计算,同比增长6.4%.数据213433亿用科学记数法表示应为()A . 2.13433×1013B . 0.213433×1014C . 213.433×1012D . 2.13433×10145. (3分)若∠α=30°,则∠α的补角是()A . 30°B . 60°C . 120°D . 150°6. (3分)(2018·无锡模拟) 下列计算正确的是()A . a2+a2=a4B . (a2)3=a5C . a+2=2aD . (ab)3=a3b37. (3分)菱形具有而一般平行四边形不具有的性质是()A . 对角相等B . 对角线互相平分C . 对边平行且相等D . 对角线互相垂直8. (3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若+ =-1,则方程ax2+bx+c=0 一定有一根是x=1;②若c=a3 , b=2a2 ,则方程ax2+bx+c=0有两个相等的实数根;③若a<0,b<0,c>0,则方程cx2+bx+a=0必有实数根;④若ab-bc=0且<-l,则方程cx2+bx+a=0的两实数根一定互为相反数..其中正确的结论是()A . ①②③④B . ①②④C . ①③D . ②④9. (3分)如图,点M在BC上,点N在AM上,CM=CN,,下列结论正确的是()A . △ABM∽△ACBB . △ANC∽△AMBC . △ANC∽△ACMD . △CMN∽△BCA10. (3分)(2019·南海模拟) 在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A . (,0)B . (2,0)C . (,0)D . (3,0)11. (3分) (2017八下·无棣期末) 如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△PAB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是()A . ①②③B . ①②⑤C . ②③④D . ②④⑤12. (3分)把抛物线y=3x2向右平移一个单位,则所得抛物线的解析式为()A . y=3(x+1)2B . y=3(x-1)2C . y=3x2+1D . y=3x2-1二、填空题(共6小题,每小题3分,满分18分) (共6题;共18分)13. (3分) (2017七上·临川月考) 数轴上表示有理数-3.5与4.5两点的距离是________.14. (3分) (2019八下·忠县期中) 2016年5月某日,重庆部分区县的最高温度如下表所示:地区合川永川江津涪陵丰都梁平云阳黔江温度(℃)2526292624282829则这组数据的中位数是________.15. (3分)(2019·成都模拟) 我市某校开展了以“梦想中国”为主题的摄影大赛,要求参赛学生每人交一件作品.现将从中挑选的50件参赛作品的成绩(单位:分)统计如下:等级成绩(用m表示)频数频率A90≤ m ≤100x0.08B80≤ m <9034yC m <80120.24合计501请根据上表提供的信息,解答下列问题:(1)表中的值为________,的值为________;(直接填写结果)(2)将本次参赛作品获得A等级的学生依次用A1、A2、A3……表示.现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,则恰好抽到学生A1和A2的概率为________.(直接填写结果)16. (3分)(2013·镇江) 已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于________.17. (3分) (2018七下·市南区期中) 若 ,则M表示的式子为________.18. (3分)(2011·梧州) 如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称或中心对称变换,若原来点A坐标是(a,b),则经过第2011次变换后所得的A点坐标是________.三、解答题(共8小题,满分66分) (共8题;共66分)19. (6分) (2017九上·路北期末) 计算:2cos30°﹣tan45°﹣.20. (6分) (2018七上·延边期末) .21. (6分)如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置。
河北省石家庄2020年中考数学复习试卷含答案(2套)

2020年河北省石家庄中考数学复习练习试卷(一)选择题(1-10题,每题3分,11-16题,每题2分,共42分)1.下列运算中,正确的是()A.(-2)+(+1)=-3B.(-2)-(-1)=-1C.(-2)X(-1)=-2D.(-2)4-(-1)=-22.人的眼睛可以看见的红光的波长约为8X10-5啊近似数8X10-5精确到()A.0.001cmB.0.0001cmC.0.00001cmD.0.000001cm3.以下是四位同学在钝角三角形中画边上的高,其中正确的是()A.9+2/77B.9-2mC.7+2mD. 3.5-2/775.①倒数是本身的数是±1;②立方根是本身的数是0.1;③平方等于本身的数0.1;④绝对值是本身的数是0.1,其中是错的有()个.A.1B.2C.3D.46.太和县在合肥市的北偏西44°方向上,且相距215千米,则合肥市在太和县的()A.南偏东46°方向上,距215千米处B.南偏东4,4。
方向上,距215千米处C.南偏西46°方向上,距215千米处D.南偏西46°方向上,距215千米处7.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A. O b - O c - △8.已知圆的内接正六边形的面积为18寸§,则该圆的半径等于(A. 3^39.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,"人,以下列出的方程组正确的是(x+y=100*+3y=100 ox+y=100B.x+y=1009x+y=100C.D.x+y=100 x+9y=100V 3x 专100 O 10.甲、乙、丙、丁四个同学在三次阶段考试中数学成绩的方差分别为5甲2 = 0. 12, S 乙2B. 2如 C. V3)A. <=0. 19, S 丙2=0. 21, s 丁2=0. 10,则成绩最稳定的是( )A.甲B.乙C.丙D ~J~11.已知RtWBC 中,匕例。
2020年河北石家庄中考数学试卷(解析版)

2020年河北石家庄中考数学试卷(解析版)一、选择题(本大题共16小题,共42分)1.如图,在平面内作已知直线的垂线,可作垂线的条数有( ).A.条B.条C.条D.无数条2.墨迹覆盖了等式“”中的运算符号,则覆盖的是( ).A. B. C. D.3.对于①,②,从左到右的变形,表述正确的是( ).A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.图中的两个几何体分别由个和个相同的小正方体搭成,比较两个几何体的三视图,正确的是( ).正面正面A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.单价(元千克)第次第次第次次数如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是元千克,发现这四个单价的中位数恰好也是众数,则( ).A.B.C.D.6.如图,已知,用尺规作它的角平分线.如图,步骤如下:第一步:以为圆心,以为半径画弧,分别交射线,于点,;第二步:分别以,为圆心,以为半径画弧,两弧在内部交于点;第三步:画射线.射线即为所求.下列正确的是( ).图第一步第二步第三步图A.,均无限制B.,的长C.有最小限制,无限制D.,的长7.若,则下列分式化简正确的是( ).A.B.C.D.8.如图所示的网格中,以点为位似中心,四边形的位似图形是( ).A.四边形B.四边形C.四边形D.四边形9.若,则( ).A.B.C.D.10.如图,将绕边的中点顺时针旋转.嘉淇发现,旋转后的与构成平行四边形,并推理如下:点,分别转到了点而点四边形,处,转到了点处是平行四边形小明为保证嘉淇的推理更严谨,想在方框中“∵,”和“∴四边形“之间作补充.下列正确的是( ).A.嘉淇推理严谨,不必补充B.应补充:且C.应补充:且D.应补充:且11.若为正整数,则( ).A.B.C.D.个12.如图,从笔直的公路旁一点出发,向西走到达;从出发向北走也到达.下列说法错误的是( ).东北A.从点向北偏西走到达B.公路的走向是南偏西C.公路的走向是北偏东D.从点向北走后,再向西走到达13.已知光速为千米秒,光经过秒传播的距离用科学记数法表示为千米,则可能为( ).A.B.C.或D.或或14.有一题目:“已知:点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图,由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.”下列判断正确的是( ).A.淇淇说的对,且的另一个值是B.淇淇说的不对,就得C.嘉嘉求的结果不对,应得D.两人都不对,应有个不同值15.如图,现要在抛物线上找点,针对的不同取值,所找点的个数,三人的说法如下,甲:若,则点的个数为;乙:若,则点的个数为;丙:若,则点的个数为.下列判断正确的是( ).xyO()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是,,,,,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积的直角三角形,则选取的三块纸片的面积分别是( ).A.,,B.,,C.,,D.,,最.大.二、 填空题(本大题共3小题,共12分)17.已知:,则 .18.正六边形的一个内角是正边形一个外角的倍,则 .19.如图是个台阶的示意图,每个台阶的高和宽分别是和,每个台阶凸出的角的顶点记作(为的整数),函数的图像为曲线.(1)(2)(3)若过点,则 .若过点,则它必定还过另一点,则 .若曲线使得这些点分布在它的两侧,每侧各个点,则的整数值有 个.三、解答题(本大题共7小题,共66分)(1)(2)20.已知两个有理数:和.计算:.若再添一个负整数,且,与这三个数的平均数仍小于,求的值.(1)(2)21.有一电脑程序:每按一次按键,屏幕的区就会自动加上,同时区就会自动减去,且均显示化简后的结果.已知,两区初始显示的分别是和.如,第一次按键后,、两区分别显示:从初始状态按次后,分别求,两区显示的结果.从初始状态按次后,计算,两区代数式的和,请判断这个和能为负数吗?说明理由.12(1)(2)22.如图,点为中点,分别延长到点,到点,使.以点为圆心,分别以,为半径在上方作两个半圆.点为小半圆上任一点(不与点,重合),连接并延长交大半圆于点,连接,.回答下列问题:求证:≌.写出,和三者间的数量关系,并说明理由.备用图若,当最大时,指出与小半圆的位置关系,并求此时(答案保留).直.接.扇形(1)12(2)23.用承重指数衡量水平放置的长方体木板的最大承重量,实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,.求与的函数关系式.如图,选一块厚度为厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗)设薄板的厚度为(厘米),.长宽薄板厚板求与的函数关系式.为何值时,是的倍?【注:()及()中的①不必写的取值范围】厚薄薄24.表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,对图象的影响,将上面函数中的与交换位置后得另一个一次函数,设其图象为直线.(1)(2)(3)求直线的解析式.请在图上画出直线(不要求列表计算),并求直线被直线和轴所截线段的长.设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值.(1)(2)(3)25.如图,甲、乙两人(看成点)分别在数轴和的位置上,沿数轴做移动游戏.西东甲乙每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反.而后根据所猜结果进行移动.①若都对或都错,则甲向东移动个单位,同时乙向西移动个单位;②若甲对乙错,则甲向东移动个单位,同时乙向东移动个单位;③若甲错乙对,则甲向西移动个单位,同时乙向西移动个单位.经过第一次移动游戏,求甲的位置停留在正半轴上的概率.从图的位置开始,若完成了次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对次,且他停留的位置对应的数为,试用含的代数式表示,并求该位置距离原点最近时的值.从图的位置开始,若进行了次移动游戏后,甲与乙的位置相距个单位,写出的值.最.终.直.接.26.如图和图,在中,,,,点在边上,点,分别在,上,且.点从点出发沿折线—匀速移动.到达点时停止;而点在边上随移动,且始终保持.【答案】解析:作已知直线的垂线,应有无数条,故选.解析:由幂的运算规则可知,.故选.解析:(1)(2)(3)(4)图图当点在上时,求点与点的最短距离.若点在上,且将的面积分成上下两部分时,求的长.设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示).在点处设计并安装一扫描器,按定角扫描区域(含边界).扫描器随点从到再到共用时秒.若,请直接写出点被扫描到的总时长.D1.D2.C3.由定义可知,因式分解是把一个多项式化为几个整式乘积的变形,因此①属于因式分解.②是整式乘法运算.故选解析:两个几何体的三视图均为的正方形,均相同.故选.解析:第一步画弧可以选取大于的任意长度.第二步的长度必须要大于的长,否则两弧无法在角内部形成交点.故选.解析:按照位似的作图原理,可以得到的对应点为,的对应点为,的对应点为,的对应点为.故选.解析:利用平方差公式可得,,可求为.故选.解析:∵,,∴四边形是平行四边形.故选:.D 4.B 5.B 6.D 7.A 8.B 9.B 10.解析:,,故选.解析:如图,从点向西走到达,即,从点向北走到达,即,则,且.选项:过作于,,即点向北偏西走到达,故错误;选项:公路的走向是南偏西,故正确;选项:公路的走向是北偏东,故正确;选项:从点向北走后,再向西走到达,即,,故正确.故选.解析:光速为千米秒,,因此传播距离为千米千米,即为千米千米.故选.A 11.个A 12.C 13.解析:分情况讨论:①如图所示,当为锐角三角形时,此时点在内部,∵,∴;②如图所示:当为钝角三角形时,点在外部,∵,∴,则;③如图所示:当为直角三角形时,此时点在的斜边中点处,不合题意舍去.综上所述:的另一个值为.故选.A 14.解析:,二次函数的顶点坐标为,即当时,,因此,当时,点的个数为,故甲正确;当时,点的个数为,故乙正确,当时,点的个数为,故丙错误.故选.解析:中选择的纸片面积:,符合,能够围成直角三角形,其面积为.中选择的纸片面积:,符合,能够围成直角三角形,其面积为.中选择的纸片面积:,不符合,无法围成直角三角形.中选择的纸片面积:,符合,能够围成直角三角形,其面积为.故选.解析:,与原式对照可得,,则.解析:正六边形内角度数为,正边形外角度数为,依题意可得,解得.C 15.B 16.17.18.(1)(2)(3)(1)(2)解析:依题意,得,,,,,,,.若过点,则.若过点,则,而,所以过点.经分析可知,曲线若经过顶点,必定同时经过两个定点,曲线过点和点时,;曲线过点和点时,;曲线过点和点时,;曲线过点和点时,;若曲线两侧各个点,则有,所以共有个可能的整数值.解析:.平均数为:,由题意得,∴,又∵为负整数,∴.解析:(1)(2)(3)19.(1).(2).20.(1)区:;区:.(2)不能为负数,证明见解析.21.(1)(2)12(1)(2)按次后,区:;区:.按次后,区:,区:.两区代数式相加为:.∵,∴不能为负数.解析:在和中,∵,∴≌..∵≌,∴,又∵,∴.与小半圆相切.由已知可知:,,∵与⊙相切,∴,∴.在中,,,12(1)证明见解析.,证明见解析.(2)与小半圆相切,.22.(1)12(2)即,∴,∴,∴.解析:木板称重指数与木板厚度的平方成正比.∴设,当时,,.∴,故与的函数关系式为:.设薄板厚度为,则厚板的厚度为.∴,.∴.又,且.∴.故与的函数关系式为:.当是的倍时,即,∴,.∴,(舍).∴.故,是的倍.扇形(1).12(2).,是的倍.23.薄厚薄厚薄薄薄(1)(2)(3)解析:将,代入得,,解得.所以,的解析式为.的解析式为,联立,可得,解得.与轴的交点坐标.所以,被轴和所截得线段长.设直线与,和轴的交点分别为,,,其中,,解得.则的坐标,同理可得的坐标,的坐标,若其中一个是另两个的中点,则有①若是的中点.即,解得.②若是的中点.即,解得.③若是的中点,即,解得.综上,的值为或或.(1).(2).(3)的值为或或.24.(1)(2)(3)(1)解析:根据题意做表格,括号内部分别对应甲乙的运动方向和距离,左减右加,①记作②记作③记作,甲对 甲错 乙对 乙错若只移动一次,要求甲位于正半轴,则只有一种情况,概率.由题意得,次结果均为一对一错,且观察乙的运动状况即可,设乙猜对次,则猜错次,所以最终停留位置,令,则解得,所以当时,;当时,.综上距离原点最近时,.由题意得,无论①②③哪种情况发生,甲乙二人的距离都会减少(或增加)个单位,所以当移动次之后,两人相距个单位,则,解得或.解析:过作于点,(1).(2),.(3)或.25.(1).(2).(3)时,到直线距离为;时,到直线的距离为.(4).26.(2)(3)∵,∴,∵,∴,在中,,∴,∴,即在运动时,点到点的最短距离为.∵,∴,∵,∴相似于,∴,又,∴,∴,设交于,∵,,∴,在中,,∴.当时,在上运动,过作交延长线于,∵,(4)∴,∵,∴,∴,∵,其中,则,∴,∴,∴,即点到直线距离为,当时,在上运动,过作于点,∵,则,在中,,∴,∴,即点到直线的距离为.①在运动时,,∴,∴,∴,当时,,点开始被扫描到,∴,∵,∴扫描器扫描速度为,当刚开始被扫描时,运动了,在上运动,点被扫描到的时长为,②∵,,∴,又,∴,当最后一刻被扫描时即,则,,设,,则,∴,,,,,在上运动时,点不被扫描到时长为,被扫描时长为,故总时长为.。
河北省石家庄市中考2020年数学试卷

河北省石家庄市中考2020年数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各组数中,其值相等的是()A . 42和24B . ﹣24和(﹣2)4C . ﹣23和(﹣3)2D . (﹣3×2)2和﹣3×222. (2分)(2017·郑州模拟) 随着信息技术的不断发展,微信已经成为人们生活中不可或缺的沟通工具,2017年2月,腾讯公司发不了《2017微信春节数据报告》,报告中显示,全国今年除夕至初五微信红包收发总量约46000000000个,把46000000000用科学记数法表示为()A . 4.6×109B . 4.6×1010C . 4.6×1011D . 46×1084. (2分)(2016·双柏模拟) 下列四个几何体中,主视图为矩形的是()A .B .C .D .5. (2分)在一次中学生科技制作展示赛上,蕲春县代表队一位模型赛车手遥控一辆赛车,先前进一米,然后原地逆时针方向旋转a°(0<a<180),被称为一次操作,若5次操作后回到出发点,则a为()。
A . 72°B . 108°或144°C . 144°D . 72°或144°6. (2分)(2017·西城模拟) 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是()A . 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B . 以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C . 以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油D . 以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升7. (2分)下面是一位同学做的四道题:①a3+a3=a6;②x2•x3=x6;③(﹣a)2÷2a=2a;④(﹣2xy2)3=﹣6x3y6 .其中做对了几道题()A . 0B . 1C . 2D . 38. (2分)(2018·潍坊) 如图,菱形的边长是4厘米,,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为 ,下面图象中能表示与之间的函数关系的是()A .B .C .D .9. (2分)给出下列说法:(1)与圆只有一个公共点的直线是圆的切线;(2)与圆心的距离等于半径的直线是圆的切线;(3)垂直于圆的半径的直线是圆的切线;(4)过圆的半径的外端的直线是圆的切线.其中正确的说法个数为()A . 1B . 2C . 3D . 410. (2分)二次函数y=ax2+bx+c(a,b,c为常数,a<0)的图象经过点(﹣1,1),(4,﹣4).下列结论:① <0;②当x>1时,y的值随x值的增大而减小;③x=4是方程ax2+(b+1)x+c=0的一个根;④当﹣1<x<4时,ax2+(b+1)x+c>0.其中正确的是()A . ①③B . ①②④C . ①③④D . ②③④二、填空题 (共6题;共6分)11. (1分) (2018八下·深圳期中) 利用分解因式计算:32003+6×32002-32004=________.12. (1分)点M,N在线段AB上,且MB=6cm,NB=9cm,且N是AM的中点,则AB=________cm,AN=________cm.13. (1分)妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了________的思想.14. (1分)(2019·仙居模拟) 如图,四边形ABCD的边AB,BC,CD,DA的中点分别为E,F,G,H,则线段GE与线段HF的关系是________.15. (1分)如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.16. (1分)(2013·宿迁) 在平面直角坐标系xOy中,一次函数与反比例函数的图象交点的横坐标为x0 .若k<x0<k+1,则整数k的值是________.三、解答题 (共9题;共75分)17. (5分)代入消元法解方程组:(1);(2).18. (5分) (2017八上·海淀期末) 如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.19. (5分) (2020八上·黄石期末) 先化简,再求值:,从,1,2,3中选择一个合适的数代入并求值.20. (10分)(2018·浦东模拟) 如图,已知,在锐角△ABC中,CE⊥AB于点E,点D在边AC上,联结BD交CE于点F,且EF·FC=FB·DF.(1)求证:BD⊥AC;(2)联结AF,求证:AF·BE=BC·EF.21. (10分)(2017·西城模拟) △ABC是等边三角形,以点C为旋转中心,将线段CA按顺时针方向旋转60°得到线段CD,连接BD交AC于点O.(1)如图1.①求证:AC垂直平分BD;①点M在BC的延长线上,点N在线段CO上,且ND=NM,连接BN,判断△MND的形状,并加以证明;(2)如图2,点M在BC的延长线上,点N在线段AO上,且ND=NM,补全图2,求证:NA=MC.22. (10分) (2017九下·丹阳期中) 某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A 型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?,23. (10分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:每人加工件数540450300240210120人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,为什么?24. (10分) (2019八上·东台期中) 旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为________.25. (10分)(2017·临高模拟) 已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共75分)17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
2020年河北石家庄中考数学试卷(解析版)

2020年河北石家庄中考数学试卷(解析版)一、选择题(本大题共16小题,共42分)1.如图,在平面内作已知直线的垂线,可作垂线的条数有( ).A.条B.条C.条D.无数条2.墨迹覆盖了等式“”中的运算符号,则覆盖的是( ).A. B. C. D.3.对于①,②,从左到右的变形,表述正确的是( ).A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.图中的两个几何体分别由个和个相同的小正方体搭成,比较两个几何体的三视图,正确的是( ).正面正面A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.单价(元千克)第次第次第次次数如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是元千克,发现这四个单价的中位数恰好也是众数,则( ).A.B.C.D.6.如图,已知,用尺规作它的角平分线.如图,步骤如下:第一步:以为圆心,以为半径画弧,分别交射线,于点,;第二步:分别以,为圆心,以为半径画弧,两弧在内部交于点;第三步:画射线.射线即为所求.下列正确的是( ).图第一步第二步第三步图A.,均无限制B.,的长C.有最小限制,无限制D.,的长7.若,则下列分式化简正确的是( ).A.B.C.D.8.如图所示的网格中,以点为位似中心,四边形的位似图形是( ).A.四边形B.四边形C.四边形D.四边形9.若,则( ).A.B.C.D.10.如图,将绕边的中点顺时针旋转.嘉淇发现,旋转后的与构成平行四边形,并推理如下:点,分别转到了点而点四边形,处,转到了点处是平行四边形小明为保证嘉淇的推理更严谨,想在方框中“∵,”和“∴四边形“之间作补充.下列正确的是( ).A.嘉淇推理严谨,不必补充B.应补充:且C.应补充:且D.应补充:且11.若为正整数,则( ).A.B.C.D.个12.如图,从笔直的公路旁一点出发,向西走到达;从出发向北走也到达.下列说法错误的是( ).东北A.从点向北偏西走到达B.公路的走向是南偏西C.公路的走向是北偏东D.从点向北走后,再向西走到达13.已知光速为千米秒,光经过秒传播的距离用科学记数法表示为千米,则可能为( ).A.B.C.或D.或或14.有一题目:“已知:点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图,由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.”下列判断正确的是( ).A.淇淇说的对,且的另一个值是B.淇淇说的不对,就得C.嘉嘉求的结果不对,应得D.两人都不对,应有个不同值15.如图,现要在抛物线上找点,针对的不同取值,所找点的个数,三人的说法如下,甲:若,则点的个数为;乙:若,则点的个数为;丙:若,则点的个数为.下列判断正确的是( ).xyO()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是,,,,,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积的直角三角形,则选取的三块纸片的面积分别是( ).A.,,B.,,C.,,D.,,最.大.二、 填空题(本大题共3小题,共12分)17.已知:,则 .18.正六边形的一个内角是正边形一个外角的倍,则 .19.如图是个台阶的示意图,每个台阶的高和宽分别是和,每个台阶凸出的角的顶点记作(为的整数),函数的图像为曲线.(1)(2)(3)若过点,则 .若过点,则它必定还过另一点,则 .若曲线使得这些点分布在它的两侧,每侧各个点,则的整数值有 个.三、解答题(本大题共7小题,共66分)(1)(2)20.已知两个有理数:和.计算:.若再添一个负整数,且,与这三个数的平均数仍小于,求的值.(1)(2)21.有一电脑程序:每按一次按键,屏幕的区就会自动加上,同时区就会自动减去,且均显示化简后的结果.已知,两区初始显示的分别是和.如,第一次按键后,、两区分别显示:从初始状态按次后,分别求,两区显示的结果.从初始状态按次后,计算,两区代数式的和,请判断这个和能为负数吗?说明理由.12(1)(2)22.如图,点为中点,分别延长到点,到点,使.以点为圆心,分别以,为半径在上方作两个半圆.点为小半圆上任一点(不与点,重合),连接并延长交大半圆于点,连接,.回答下列问题:求证:≌.写出,和三者间的数量关系,并说明理由.备用图若,当最大时,指出与小半圆的位置关系,并求此时(答案保留).直.接.扇形(1)12(2)23.用承重指数衡量水平放置的长方体木板的最大承重量,实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,.求与的函数关系式.如图,选一块厚度为厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗)设薄板的厚度为(厘米),.长宽薄板厚板求与的函数关系式.为何值时,是的倍?【注:()及()中的①不必写的取值范围】厚薄薄24.表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,对图象的影响,将上面函数中的与交换位置后得另一个一次函数,设其图象为直线.(1)(2)(3)求直线的解析式.请在图上画出直线(不要求列表计算),并求直线被直线和轴所截线段的长.设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值.(1)(2)(3)25.如图,甲、乙两人(看成点)分别在数轴和的位置上,沿数轴做移动游戏.西东甲乙每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反.而后根据所猜结果进行移动.①若都对或都错,则甲向东移动个单位,同时乙向西移动个单位;②若甲对乙错,则甲向东移动个单位,同时乙向东移动个单位;③若甲错乙对,则甲向西移动个单位,同时乙向西移动个单位.经过第一次移动游戏,求甲的位置停留在正半轴上的概率.从图的位置开始,若完成了次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对次,且他停留的位置对应的数为,试用含的代数式表示,并求该位置距离原点最近时的值.从图的位置开始,若进行了次移动游戏后,甲与乙的位置相距个单位,写出的值.最.终.直.接.26.如图和图,在中,,,,点在边上,点,分别在,上,且.点从点出发沿折线—匀速移动.到达点时停止;而点在边上随移动,且始终保持.【答案】解析:作已知直线的垂线,应有无数条,故选.解析:由幂的运算规则可知,.故选.解析:(1)(2)(3)(4)图图当点在上时,求点与点的最短距离.若点在上,且将的面积分成上下两部分时,求的长.设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示).在点处设计并安装一扫描器,按定角扫描区域(含边界).扫描器随点从到再到共用时秒.若,请直接写出点被扫描到的总时长.D1.D2.C3.由定义可知,因式分解是把一个多项式化为几个整式乘积的变形,因此①属于因式分解.②是整式乘法运算.故选解析:两个几何体的三视图均为的正方形,均相同.故选.解析:第一步画弧可以选取大于的任意长度.第二步的长度必须要大于的长,否则两弧无法在角内部形成交点.故选.解析:按照位似的作图原理,可以得到的对应点为,的对应点为,的对应点为,的对应点为.故选.解析:利用平方差公式可得,,可求为.故选.解析:∵,,∴四边形是平行四边形.故选:.D 4.B 5.B 6.D 7.A 8.B 9.B 10.解析:,,故选.解析:如图,从点向西走到达,即,从点向北走到达,即,则,且.选项:过作于,,即点向北偏西走到达,故错误;选项:公路的走向是南偏西,故正确;选项:公路的走向是北偏东,故正确;选项:从点向北走后,再向西走到达,即,,故正确.故选.解析:光速为千米秒,,因此传播距离为千米千米,即为千米千米.故选.A 11.个A 12.C 13.解析:分情况讨论:①如图所示,当为锐角三角形时,此时点在内部,∵,∴;②如图所示:当为钝角三角形时,点在外部,∵,∴,则;③如图所示:当为直角三角形时,此时点在的斜边中点处,不合题意舍去.综上所述:的另一个值为.故选.A 14.解析:,二次函数的顶点坐标为,即当时,,因此,当时,点的个数为,故甲正确;当时,点的个数为,故乙正确,当时,点的个数为,故丙错误.故选.解析:中选择的纸片面积:,符合,能够围成直角三角形,其面积为.中选择的纸片面积:,符合,能够围成直角三角形,其面积为.中选择的纸片面积:,不符合,无法围成直角三角形.中选择的纸片面积:,符合,能够围成直角三角形,其面积为.故选.解析:,与原式对照可得,,则.解析:正六边形内角度数为,正边形外角度数为,依题意可得,解得.C 15.B 16.17.18.(1)(2)(3)(1)(2)解析:依题意,得,,,,,,,.若过点,则.若过点,则,而,所以过点.经分析可知,曲线若经过顶点,必定同时经过两个定点,曲线过点和点时,;曲线过点和点时,;曲线过点和点时,;曲线过点和点时,;若曲线两侧各个点,则有,所以共有个可能的整数值.解析:.平均数为:,由题意得,∴,又∵为负整数,∴.解析:(1)(2)(3)19.(1).(2).20.(1)区:;区:.(2)不能为负数,证明见解析.21.(1)(2)12(1)(2)按次后,区:;区:.按次后,区:,区:.两区代数式相加为:.∵,∴不能为负数.解析:在和中,∵,∴≌..∵≌,∴,又∵,∴.与小半圆相切.由已知可知:,,∵与⊙相切,∴,∴.在中,,,12(1)证明见解析.,证明见解析.(2)与小半圆相切,.22.(1)12(2)即,∴,∴,∴.解析:木板称重指数与木板厚度的平方成正比.∴设,当时,,.∴,故与的函数关系式为:.设薄板厚度为,则厚板的厚度为.∴,.∴.又,且.∴.故与的函数关系式为:.当是的倍时,即,∴,.∴,(舍).∴.故,是的倍.扇形(1).12(2).,是的倍.23.薄厚薄厚薄薄薄(1)(2)(3)解析:将,代入得,,解得.所以,的解析式为.的解析式为,联立,可得,解得.与轴的交点坐标.所以,被轴和所截得线段长.设直线与,和轴的交点分别为,,,其中,,解得.则的坐标,同理可得的坐标,的坐标,若其中一个是另两个的中点,则有①若是的中点.即,解得.②若是的中点.即,解得.③若是的中点,即,解得.综上,的值为或或.(1).(2).(3)的值为或或.24.(1)(2)(3)(1)解析:根据题意做表格,括号内部分别对应甲乙的运动方向和距离,左减右加,①记作②记作③记作,甲对 甲错 乙对 乙错若只移动一次,要求甲位于正半轴,则只有一种情况,概率.由题意得,次结果均为一对一错,且观察乙的运动状况即可,设乙猜对次,则猜错次,所以最终停留位置,令,则解得,所以当时,;当时,.综上距离原点最近时,.由题意得,无论①②③哪种情况发生,甲乙二人的距离都会减少(或增加)个单位,所以当移动次之后,两人相距个单位,则,解得或.解析:过作于点,(1).(2),.(3)或.25.(1).(2).(3)时,到直线距离为;时,到直线的距离为.(4).26.(2)(3)∵,∴,∵,∴,在中,,∴,∴,即在运动时,点到点的最短距离为.∵,∴,∵,∴相似于,∴,又,∴,∴,设交于,∵,,∴,在中,,∴.当时,在上运动,过作交延长线于,∵,(4)∴,∵,∴,∴,∵,其中,则,∴,∴,∴,即点到直线距离为,当时,在上运动,过作于点,∵,则,在中,,∴,∴,即点到直线的距离为.①在运动时,,∴,∴,∴,当时,,点开始被扫描到,∴,∵,∴扫描器扫描速度为,当刚开始被扫描时,运动了,在上运动,点被扫描到的时长为,②∵,,∴,又,∴,当最后一刻被扫描时即,则,,设,,则,∴,,,,,在上运动时,点不被扫描到时长为,被扫描时长为,故总时长为.。
石家庄市2020版中考数学试卷C卷

石家庄市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,共36.0分) (共12题;共36分)1. (3分) (2018七上·银川期中) 银川市某天的气温是7℃~﹣3℃.则计算这天温差的算式()A . (7﹣3)℃B . (7+3)℃C . (﹣3﹣7)℃D . [7﹣(﹣3)]℃2. (3分) (2019七下·韶关期末) 如图,点E在BC的延长线上,则下列条件中,能判定的是()A .B .C .D .3. (3分) (2018八上·罗湖期末) 若 + = (b为整数),则a的值可以是()A .B . 27C . 24D . 204. (3分)如图是一个几何体的三视图,则这个几何体的侧面积是()A . 12πcm2B . 8πcm2C . 6πcm2D . 3πcm25. (3分)从下列不等式中选择一个与x+1≥2组成不等式组,若要使该不等式组的解集为x≥1,则可以选择的不等式是()A . x>0B . x>2C . x<0D . x<26. (3分) (2019八下·余杭期中) 一组数据1,2,3,4,4,10.去掉10,剩下的数据原数据相比,不变的是()A . 平均数B . 中位数C . 众数D . 平均数和众数7. (3分) (2016八下·万州期末) 下列条件中,不能判定四边形ABCD是平行四边形的是()A . ∠A=∠C,∠B=∠DB . AB∥CD,AB=CDC . AB∥CD,AD∥BCD . AB=CD,AD∥BC8. (3分)在平面直角坐标系中,线段AB的端点坐标为A(2,4),B(4,2),直线y=kx-2与线段AB平行,则k的值是()A . -1B . -2C . -3D . -49. (3分) (2017八上·无锡期末) 如图,AE⊥AB且AE=AB ,BC⊥CD且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A . 50B . 62C . 65D . 6810. (3分) (2018八上·许昌期末) 若正多边形的一个外角是,则该正多边形的内角和为()A .B .C .D .11. (3分)如图所示的是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是x=﹣1,有下列结论:①b ﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(﹣4,y2)是抛物线上两点,则y1>y2 ,其中结论正确的序号是()A . ①②③B . ①③④C . ①②④D . ②③④12. (3分)(2019·抚顺模拟) 如图,已知在边长为4的菱形ABCD中,∠C=60°,E是BC边上一动点(与点B,C不重合).连接DE,作∠DEF=60°,交AB于点F,设CE=x,△FBE的面积为y.下列图象中,能大致表示y与x的函数关系的是()A .B .C .D .二、填空题(本大题共6小题,共18.0分) (共6题;共18分)13. (3分)分式方程:1+ = 的解是________.14. (3分) (2017九上·锦州期中) 如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,4),则点E的坐标是________15. (3分) (2017九上·灯塔期中) 从-1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为________.16. (3分) (2016九上·金华期末) 如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是________ cm.17. (3分) (2020八下·邵阳期中) 中,厘米,厘米,点D 为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动.同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当与全等时,v的值为________18. (3分) (2020七上·来宾期末) 如图为手的示意图,在各个手指间标记字母A、B、C、D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4…,当字母C第2n-1次出现时(n为正整数),恰好数到的数是________ (用含n的代数式表示).三、计算题(本大题共1小题,共6.0分) (共1题;共6分)19. (6分) (2017七下·东城期中) .四、解答题(本大题共7小题,共60.0分) (共7题;共70分)20. (5分) (2017八上·鄂托克旗期末) 将下列各式分解因式:(1)﹣4a3b2+8a2b2;(2) 9(a+b)2﹣4(a﹣b)2;(3)(x2+y2)2﹣4x2y2.21. (10分) (2016七上·揭阳期末) 尺规作图(要求保留作图痕迹):已知:线段a,b.求作:线段c,使得c=2b-a.22. (5分)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A 地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB 与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)23. (15分)(2016·高邮模拟) 为了解高邮市6000名九年级学生英语口语考试成绩的情况,从中随机抽取了部分学生的成绩(满分30分,得分均为整数),制成下表:分数段(x分)x≤1011≤x≤1516≤x≤2021≤x≤2526≤x≤30人数101535112128(1)本次抽样调查共抽取了________名学生;(2)若用扇形统计图表示统计结果,则分数段为x≤10的人数所对应扇形的圆心角为________°;(3)学生英语口语考试成绩的众数________落在11≤x≤15的分数段内;(填“会”或“不会”)(4)若将26分以上(含26)定为优秀,请估计该区九年级考生成绩为优秀的人数.24. (10分) (2017七下·丰城期末) 为了响应“足球进校园”的目标,光明中学准备购买一批足球,若购买2个A品牌足球和3个B品牌足球共需340元,购买5个A品牌足球和2个B品牌足球共需410元.(1)购买一个A品牌足球、一个B品牌足球各需多少元?(2)根据学校的实际情况,需购买两种品牌足球共50个,并且总费用不超过3120元.问最多可以购买多少个B品牌足球?25. (10分)如图,点C、E、B和F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:(1)△ABC≌△DEF;(2)AB∥ED.26. (15分)(2017·诸城模拟) 将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°, ]得△AB′C′,则S△AB′C′:S△ABC=________;直线BC与直线B′C′所夹的锐角为________度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.参考答案一、选择题(本大题共12小题,共36.0分) (共12题;共36分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(本大题共6小题,共18.0分) (共6题;共18分) 13-1、14-1、15-1、16-1、17-1、18-1、三、计算题(本大题共1小题,共6.0分) (共1题;共6分)19-1、四、解答题(本大题共7小题,共60.0分) (共7题;共70分) 20-1、20-2、20-3、21-1、22-1、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。
2020年河北省中考数学试题(含答案)

2020年河北省初中毕业生升学文化课考试数 学 试 卷说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共12个小题,1~6小题,每小题2分;7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,为负数的是( )A .0 B.2- C.1 D.122.计算3()ab 的结果是( )A .3ab B.3a b C.33a b D.3ab 3.图1中几何体的主视图是( )4.下列各数中,为不等式组23040x x ->⎧⎨-<⎩解的是( )A .1- B.0 C.2 D.45.如图2,CD 是O ⊙的直径,AB 是弦(不是直径),AB CD ⊥于点E ,则下列结论正确的是( )A .AE BE > B.AD BC = C.12D AEC =∠∠ D.ADE CBE △∽△ 6.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A.每2次必有1次正面向上 B .可能有5次正面向上 C .必有5次正面向上 D .不可能有10次正面向上7.如图3,点C 在AOB ∠的OB 边上,用尺规作出了CN OA ∥,作图痕迹中,FG 是( )A .以点C 为圆心,OD 为半径的弧 B.以点C 为圆心,DM 为半径弧C.以点E 为圆心,OD 为半径的弧 D.以点E 为圆心,DM 为半径的 8.用配方法解方程2410x x ++=,配方后的方程是( )A .2(2)3x += B.2(2)3x -= C.2(2)5x -= D.2(2)5x += 9.如图4,在ABCD 中,70A ∠=︒,将ABCD 折叠,使点D C 、分别落在点F 、E处(点,F E 都在AB 所在的直线上),折痕为MN ,则AMF ∠等于( )A .70 B.40 C.30 D.20 10.化简22111x x ÷--的结果是( ) A .21x - B.321x - C.21x + D.2(1)x +11.如图5,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b ()a b >,则()a b -等于( )A .7 B.6 C.5 D.412.如图6,抛物线21(2)3y a x =+-与221(3)12y x =-+交于点(13)A ,,过点A 作x 轴的平行线,分别交两条抛物线于点B C ,.则以下结论: ①无论x 取何值,2y 的值总是正数. ②1a =.③当0x =时,214y y -=.④23AB AC =.其中正确结论是( )A .①② B.②③ C.③④ D.①④2020年河北省初中毕业生升学文化课考试数 学 试 卷 卷Ⅱ(非选择题,共9 0分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13.5-的相反数是 .14.如图7,AB CD ,相交于点O ,AC CD ⊥于点C ,若BOD ∠=38,则A ∠等于 . 15.已知1y x =-,则2()()1x y y x -+-+的值为 .16.在12⨯的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为 .17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报111⎛⎫+ ⎪⎝⎭,第2位同学报112⎛⎫+⎪⎝⎭,第3位同学报113⎛⎫+⎪⎝⎭……这样得到的20个数的积为 .18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图91-,用n 个全等的正六边形按这种方式拼接,如图92-,若围成一圈后中间也形成一个正多边形,则n 的值为 .三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:021153)6(1)32⎛⎫--+⨯-+-⎪⎝⎭. 20.(本小题满分8分)如图10,某市A B ,两地之间有两条公路,一条是市区公路AB ,另一条是外环公路AD DC CB --.这两条公路转成等腰梯形ABCD ,其中DC AB AB AD DC ∥,::=10:5:2.(1) 求外环公路总长和市区公路长的比;(2) 某人驾车从A 地出发,沿市区公路去B 地,平均速度是40km/h ,返回时沿外环公路行驶,平均速度是80km/h ,结果比去时少用了110h ,求市区公路的长.21.(本小题满分8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).=__________;(1)a ___________,x乙(2)请完成图11中表示乙成绩变化情况的折线;(3)①观察图11,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.22.(本小题满分8分)如图12,四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,.反比例函数(0)my x x=>的图象经过点D ,点P 是一次函数33(0)y kx k k =+-≠的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数33(0)y kx k k =+-≠的图象一定过点C ;(3)对于一次函数33(0)y kx k k =+-≠,当y x 随的增大而增大时,确定点P 横坐标的取值范围(不必写出过程). 23.(本小题满分9分)如图131-,点E 是线段BC 的中点,分别以B C ,为直角顶点的EAB EDC △和△均是等腰直角三角形,且在BC 的同侧.(1)AE ED 和的数量关系为___________,AE ED 和的位置关系为___________;(2)在图131-中,以点E 为位似中心,作EGF △与EAB △位似,点H 是BC 所在直线上的一点,连接GH HD ,,分别得到了图132-和图133-;①在图132-中,点F 在BE 上,EGF EAB △与△的相似比是1:2,H 是EC 的中点.求证:.GH HD GH HD =⊥,②在图133-中,点F 在BE 的延长线上,EGF EAB △与△的相似比是k :1,若2BC =,请直接写出CH 的长为多少时,恰好使得GH HD GH HD =⊥且(用含k 的代数式表示). 24.(本小题满分9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm )在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:2cm )成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.(1) 求一张薄板的出厂价与边长之间满足的函数关系式; (2) 已知出厂一张边长为40cm 的薄板,获得的利润是26元(利润=出厂价-成本价).① 求一张薄板的利润与边长之间满足的函数关系式;② 当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.25.(本小题满分10分)如图14,(50)(30).A B --,,,点C 在y 轴的正半轴上,CBO ∠=45,CD AB ∥,90CDA =∠.点P 从点(40)Q ,出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1) 求点C 的坐标;(2) 当15BCP =∠时,求t 的值;(3) 以点P 为圆心,PC 为半径的P ⊙随点P 的运动而变化,当P ⊙与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.26.(本小题满分12分)如图151-和图152-,在ABC △中,51314cos .13AB BC ABC ===,,∠ 探究在如图151-,AH BC ⊥于点H ,则AH =_______,AC =_______, ABC △的面积ABC S △=___________.拓展如图152-,点D 在AC 上(可与点A C ,重合),分别过点A C ,作直线BD 的垂线,垂足为E F ,.设.BD x AE m CF n ===,,(当点D 与点A 重合时,我们认为ABC S △=0. (1)用含x m ,或n 的代数式表示ABD S △及CBD S △;(2)求()m n +与x 的函数关系式,并求()m n +的最大值和最小值.(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围. 发现请你确定一条直线,使得A B C ,,三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.2020年河北省初中毕业生升学文化课考试数学试题参考答案二、填空题(每小题3分,满分18分) 13.5 14.52 15.1 16.3417.21 18.6 三、解答题(本大题共8小题,共72分)19.解:021153)6(1)32⎛⎫--+⨯-+-⎪⎝⎭=51(23)1-+-+ ··········································································· 5分 =4. ····························································································· 8分 20.解:(1)设10AB x =km ,则5AD x =km ,2CD x =km . 四边形ABCD 是等腰梯形,DC AB ∥,5.BC AD x ∴==12.AD DC CB x ∴++=∴外环公路总长和市区公路长的比为12x x :10=6:5. ··········································· 3分(2)由(1)可知,市区公路物长为10x km ,外环公路的总长为12x km .由题意,得10121408010x x =+. ············································································· 6分 解这个方程,得1x =.1010x ∴=.答:市区公路的长为10km. ··············································································· 8分 21.解:(1)4,6 ··························································································· 2分 (2)如图1 ··································································································· 3分(3)①乙 ····································································································· 4分2222221[(76)(56)(76)(46)(76)]5S =-+-+-+-+-乙=1.6. ································ 5分 由于22S S <乙甲,所以上述判断正确. ····································································· 6分②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中. ···· 8分 22.解:(1)由题意,2AD BC ==,故点D 的坐标为(1,2). ··························· 2分 反比例函数mx的图象经过点(12)D ,, 2. 2.1mm ∴=∴= ∴反比例函数的解析式为2.y x= ······································································· 4分(2)当3x =时,333 3.y k k =+-=∴一次函数33(0)y kx k k =+-≠的图象一定过点C . ········································· 6分(3)设点P 的横坐标为23.3a a <<, ································································ 8分 (注:对(3)中的取值范围,其他正确写法,均相应给分)23.解:(1)AE ED AE ED =⊥,. ······························································ 2分 (2)①证明:由题意,90.B C AB BE EC DC =====∠∠,EGF EAB △与△位似且相似比是1:2,1190.22GFE B GF AB EF EB ∴====∠∠,, GFE C ∴=∠∠.12EH HC EC ==,111.222GF HC FH FE EH EB EC BC EC CD ∴==+=+===, HGF DHC ∴△≌△. ···················································································· 5分 .GH HD GHF HDC ∴==,∠∠又9090HDC DHC GHF DHC +=∴+=∠∠,∠∠..GHD ∴∠=90GH HD ∴⊥. ······························································································· 7分 ②CH 的长为k . ···························································································· 9分24.解:(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y kx n =+. ·························································································· 2分由表格中的数据,得50207030.k n k n =+⎧⎨=+⎩, 解得210.k n =⎧⎨=⎩,所以210.y x =+ ··························································································· 4分 (2)①设一张薄板的利润为P 元,它的成本价为2mx 元,由题意,得22210.P y mx x mx =-=+- ·········································································· 5分将4026x P ==,代入2210P x mx =+-中,得2262401040m =⨯+-⨯.解得1.25m = 所以21210.25P x x =-++ ············································································· 7分 ②因为1025a =-<,所以,当22512225b x a =-=-=⎛⎫⨯- ⎪⎝⎭(在5~50之间)时,221410242535.14425ac b P a ⎛⎫⨯-⨯- ⎪-⎝⎭===⎛⎫⨯- ⎪⎝⎭最大值即出厂一张边长为25cm 的薄板,获得的利润最大,最大利润是35元. ······················ 9分 (注:边长的取值范围不作为扣分点) 25.解:(1)45BCO CBO ==∠∠,3.OC OB ∴==又点C 在y 轴的正半轴上,∴点C 的坐标为(0,3) ················································································ 2分(2)当点P 在点B 右侧时,如图2. 若15BCP =∠,得30PCO =∠.故tan 303OP OC ==4t =······················································ 4分 当点P 在点B 左侧时,如图3,由15BCP =∠, 得60PCO =∠,故tan 6033PO OC ==此时4t =+t ∴的值为4+4+·········································································· 6分(3)由题意知,若P ⊙与四边形ABCD 的边相切,有以下三种情况:①当P ⊙与BC 相切于点C 时,有90BCP =∠,从而45OCP =∠得到3OP =. 此时1t =. ···································································································· 7分 ②当P ⊙与CD 相切于点C 时,有PC CD ⊥,即点P 与点O 重合,此时4t =. ···································································································· 8分 ③当P ⊙与AD 相切时,由题意,90DAO =∠,∴点A 为切点,如图4.22222(9)(4)PC PA t PO t ==-=-,.于是222(9)(4)3t t -=-+.解处 5.6t =.t ∴的值为1或4或5.6. ················································································ 10分26.解:探究:12,15,84 ············································································· 3分 拓展:(1)由三角形面积公式,得ABD CBD S mx S nx △△11=,=22. ···························· 4分 (2)由(1)得22ABD CBD S Sm n x x==△△,, 22168ABD CBD S S m n x x x∴+=+=△△. ································································· 5分 由于AC 边上的高为22845615155ABC S ⨯==△, x ∴的取值范围是56145x ≤≤.()m n +随x 的增大而减小, ∴当565x =时,()m n +的最大值为15. ····························································· 7分 当14x =时,()m n +的最小值为12. ································································· 8分 (3)x 的取值范围是565x =或13x <≤14. ····················································· 10分 发现:AC 所在的直线, ·············································································· 11分 最小值为565. ······························································································ 12分 友情提示:一、认真对待每一次考试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .2.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① abc <0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个3.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个4.如图,二次函数y=ax 1+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=1,且OA=OC .则下列结论:①abc >0;②9a+3b+c >0;③c >﹣1;④关于x 的方程ax 1+bx+c=0(a≠0)有一个根为﹣1a;⑤抛物线上有两点P (x 1,y 1)和Q (x 1,y 1),若x 1<1<x 1,且x 1+x 1>4,则y 1>y 1.其中正确的结论有( )A .1个B .3个C .4个D .5个5.若分式有意义,则x 的取值范围是( )A .x >3B .x <3C .x≠3D .x=36.已知5a =27b =,且a b a b +=+,则-a b 的值为( ) A .2或12B .2或12-C .2-或12D .2-或12-721的相反数是( )A .21-B .21+C .21--D .12-8.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=147000(140)0x + B .10000x +10=147000(140)0x + C .100000(140)0x -﹣10=14700x D .100000(140)0x -+10=14700x9.滴滴快车是一种便捷的出行工具,计价规则如下表: 计费项目 里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( ) A .10分钟B .13分钟C .15分钟D .19分钟10.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( )A .2πcmB .4πcmC .6πcmD .8πcm二、填空题(本题包括8个小题)11.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____. 12.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.13.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是.14.若代数式1x-在实数范围内有意义,则x的取值范围是_______.15.不等式组2x+1x{4x3x+2>≤的解集是▲.16.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.17.观察下列各等式:231-+=56784--++=1011121314159---+++=171819202122232416----++++=……根据以上规律可知第11行左起第一个数是__.18.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.三、解答题(本题包括8个小题)19.(6分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B求证:△ADF∽△DEC;若AB=8,AD=63,AF=43,求AE的长.20.(6分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.21.(6分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)18 12备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?22.(8分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?23.(8分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)24.(10分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?25.(10分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.26.(12分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:78 86 74 81 75 76 87 70 75 90八年级75 79 81 70 74 80 86 69 83 7793 73 88 81 72 81 94 83 77 83九年级80 81 70 81 73 78 82 80 70 40整理、描述数据将成绩按如下分段整理、描述这两组样本数据:成绩(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年级人数0 0 1 11 7 1九年级人数 1 0 0 7 10 2(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6(1)表格中a 的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.D 【解析】 【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D . 【详解】解:观察图形可知图案D 通过平移后可以得到. 故选D . 【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转. 2.C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0. ∴abc <0, ①正确; 2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0, 即4a-2b+c <0∵b=-2a , ∴4a+4a+c <0即8a+c <0,故⑤正确. 正确的结论有①②⑤, 故选:C 【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 3.C 【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断. 解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意; 图(3)有二条对称轴,是轴对称图形,符合题意; 图(3)有五条对称轴,是轴对称图形,符合题意; 图(3)有一条对称轴,是轴对称图形,符合题意. 故轴对称图形有4个. 故选C .考点:轴对称图形. 4.D 【解析】 【分析】根据抛物线的图象与系数的关系即可求出答案. 【详解】解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:2ba->0,∴b >0,∴abc >0,故①正确;令x=3,y >0,∴9a+3b+c >0,故②正确; ∵OA=OC <1,∴c >﹣1,故③正确; ∵对称轴为直线x=1,∴﹣2ba=1,∴b=﹣4a . ∵OA=OC=﹣c ,∴当x=﹣c 时,y=0,∴ac 1﹣bc+c=0,∴ac ﹣b+1=0,∴ac+4a+1=0,∴c=41a a+-,∴设关于x 的方程ax 1+bx+c=0(a≠0)有一个根为x ,∴x ﹣c=4,∴x=c+4=1a-,故④正确; ∵x 1<1<x 1,∴P 、Q 两点分布在对称轴的两侧, ∵1﹣x 1﹣(x 1﹣1)=1﹣x 1﹣x 1+1=4﹣(x 1+x 1)<0,即x 1到对称轴的距离小于x 1到对称轴的距离,∴y 1>y 1,故⑤正确. 故选D . 【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 1+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型. 5.C 【解析】 【详解】 试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x≠3;故选C . 考点:分式有意义的条件. 6.D 【解析】 【详解】根据a =5,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D. 7.D 【解析】 【分析】根据相反数的定义求解即可. 【详解】1的相反数是1,故选D . 【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数. 8.B 【解析】 【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可. 【详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.9.D【解析】【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.10.B【解析】【分析】首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.【详解】解:如图,连接OC,AO,∵大圆的一条弦AB与小圆相切,∴OC⊥AB,∵OA=6,OC=3,∴OA=2OC , ∴∠A=30°, ∴∠AOC=60°, ∴∠AOB=120°, ∴劣弧AB 的长=1206180π⨯⨯ =4π,故选B . 【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键. 二、填空题(本题包括8个小题) 11.5000x =8000600+x 【解析】 【分析】设甲每小时搬运x 千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程求出其解就可以得出结论. 【详解】解:设甲每小时搬运x 千克,则乙每小时搬运(x+600)千克,由题意得:5000x =8000600+x . 故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键. 12.22 【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长. 详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°, ∴∠ADB=45°, ∴∠AOB=90°, ∵OA=OB=2,∴,故答案为:.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.1【解析】【详解】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=1.x≥14.1【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.15.﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x>﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.16.55°【解析】【分析】由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得. 【详解】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=12(180°﹣∠AOB′)=12(180°﹣70°)=55°.故答案为55°.【点睛】考核知识点:补角,折叠.17.-1.【解析】【分析】观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一个数比右侧的数大一,∴第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键. 18.55.【解析】【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C ∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.三、解答题(本题包括8个小题)19.(1)见解析(2)6【解析】【分析】(1)利用对应两角相等,证明两个三角形相似△ADF ∽△DEC.(2)利用△ADF ∽△DEC ,可以求出线段DE 的长度;然后在在Rt △ADE 中,利用勾股定理求出线段AE 的长度.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B ,∴∠AFD=∠C在△ADF 与△DEC 中,∵∠AFD=∠C ,∠ADF=∠DEC ,∴△ADF ∽△DEC(2)∵四边形ABCD 是平行四边形,∴CD=AB=1.由(1)知△ADF ∽△DEC , ∴AD AF DE CD=,∴AD CD DE 12AF ⋅===在Rt △ADE 中,由勾股定理得:AE 6=== 20.(1)①212y x x =-+;②n≤1;(2)ac≤1,见解析. 【解析】【分析】 (1)①△=1求解b =1,将点(3,1)代入平移后解析式,即可;②顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12),关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n ,联立方程组即可求n 的范围; (2)将点(c ,1)代入y =ax 2﹣bx+c 得到ac ﹣b+1=1,b =ac+1,当1<x <c 时,y >1. b 2a ≥c ,b≥2ac ,ac+1≥2ac ,ac≥1;【详解】解:(1)①ax 2﹣bx =x ,ax 2﹣(b+1)x =1,△=(b+1)2=1,b =﹣1,平移后的抛物线y =a (x ﹣1)2﹣b (x ﹣1)过点(3,1),∴4a ﹣2b =1,∴a =﹣12,b =﹣1, 原抛物线:y =﹣12x 2+x , ②其顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12), ∴关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n . 由221y=x +x+2n 21y=-x +x 2⎧⎪⎪⎨⎪⎪⎩得:x 2+2n =1有解,所以n≤1. (2)由题知:a >1,将此抛物线y =ax 2﹣bx 向上平移c 个单位(c >1),其解析式为:y =ax 2﹣bx+c 过点(c ,1),∴ac 2﹣bc+c =1 (c >1),∴ac ﹣b+1=1,b =ac+1,且当x =1时,y =c ,对称轴:x =b 2a,抛物线开口向上,画草图如右所示. 由题知,当1<x <c 时,y >1.∴b 2a≥c ,b≥2ac , ∴ac+1≥2ac ,ac≤1;【点睛】本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a 的值不变是解题的关键. 21.(1)A 类图书的标价为27元,B 类图书的标价为18元;(2)当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本,利润最大.【解析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得540540101.5x x-=,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),由题意得,() 1812100016800600t tt+-≤⎧≥⎨⎩,解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.22.男生有12人,女生有21人.【解析】【分析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×3 5 =男生的人数,列出方程组,再进行求解即可.设该兴趣小组男生有x 人,女生有y 人, 依题意得:2(1)13(1)5y x x y =--⎧⎪⎨=-⎪⎩, 解得:1221x y =⎧⎨=⎩. 答:该兴趣小组男生有12人,女生有21人.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.23.(1)第一批T 恤衫每件的进价是90元;(2)剩余的T 恤衫每件售价至少要80元.【解析】【分析】(1)设第一批T 恤衫每件进价是x 元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T 恤衫每件售价y 元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.【详解】解:(1)设第一批T 恤衫每件进价是x 元,由题意,得45004950x x 9=+, 解得x=90经检验x=90是分式方程的解,符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50件. 由题意,得120×50×45+y×50×15﹣4950≥650, 解得y≥80.答:剩余的T 恤衫每件售价至少要80元.24.(1)14;(2)12;(3)x=1. 【解析】【分析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算; (3)根据频率估计出概率,利用概率公式列式计算即可求得x 的值.【详解】解:(1)∵4件同型号的产品中,有1件不合格品,∴P (不合格品)=14; (2)共有12种情况,抽到的都是合格品的情况有6种,P (抽到的都是合格品)=612=12; (3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴34x x ++ =0.95, 解得:x=1.【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法.25.(1)证明见解析;(2)6105【解析】【分析】(1)连接BD ,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD ,根据已知条件求得AD 、DF 的长,再证明△AFD ∽△EFB ,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD ,∵AB 为⊙O 的直径,∴BD ⊥AC ,∵D 是AC 的中点,∴BC=AB ,∴∠C=∠A =45°,∴BC 是⊙O 的切线;(2)连接OD ,由(1)可得∠AOD=90°,∵⊙O 的半径为2, F 为OA 的中点,∴OF=1, BF=3,AD ==∴DF ==,∵BD BD =,∴∠E=∠A ,∵∠AFD=∠EFB ,∴△AFD ∽△EFB ,∴DF BFAD BE =3BE=,∴BE =【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.26. (1)81;(2) 108人;(3)见解析.【解析】【分析】(1)根据众数的概念解答;(2)求出九年级学生体质健康的优秀率,计算即可;(3)分别从不同的角度进行评价.【详解】解:(1)由测试成绩可知,81分出现的次数最多,∴a=81,故答案为:81;(2)九年级学生体质健康的优秀率为:10+2100%=60%20⨯, 九年级体质健康优秀的学生人数为:180×60%=108(人),答:估计该校九年级体质健康优秀的学生人数为108人;(3)①因为八年级学生的平均成绩高于九年级的平均成绩,且八年级学生成绩的方差小于九年级的方差,所以八年级学生的体质健康情况更好一些.②因为九年级学生的优秀率(60%)高于八年级的优秀率(40%),且九年级学生成绩的众数或中位数高【点睛】本题考查的是用样本估计总体、方差、平均数、众数和中位数的概念和性质,正确求出样本的众数、理解方差和平均数、众数、中位线的性质是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°2.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:A .B .C .D .3.下列计算正确的是( ) A .(a 2)3=a 6 B .a 2+a 2=a 4 C .(3a )•(2a )2=6aD .3a ﹣a =34.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2ky x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .45.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A .B .C .D .6.如图,AB 是O 的直径,弦CD AB ⊥,CDB 30∠=,CD 23=,则阴影部分的面积为( )A .2πB .πC .π 3D .2π 37.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是( ) A .94m <B .94mC .94m >D .94m8.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒9.在△ABC 中,若21cos (1tan )2A B -+-=0,则∠C 的度数是( ) A .45°B .60°C .75°D .105°10.若关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根,则m 的取值范围是( ) A .m <﹣1B .m <1C .m >﹣1D .m >1二、填空题(本题包括8个小题)11.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子粒数85 318 652 793 1 604 4 005发芽频率0.850 0.795 0.815 0.793 0.802 0.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).12.,A B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y (千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有____________千米.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.14.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.15.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=_____.16.如图,点A,B在反比例函数y=1x(x>0)的图象上,点C,D在反比例函数y=kx(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为32,则k的值为_____.17.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.18.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.三、解答题(本题包括8个小题)19.(6分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A 市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.20.(6分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A 1B 1C 1绕点B 1逆时针旋转90°,得到△A 1B 1C 1.求点C 1在旋转过程中所经过的路径长.21.(6分)解方程:214111x x x ++=--. 22.(8分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?23.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m= ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.24.(10分)先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根. 25.(10分)解不等式组:426113x x x x >-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.26.(12分)如图,在东西方向的海岸线MN 上有A ,B 两港口,海上有一座小岛P ,渔民每天都乘轮船从A ,B 两港口沿AP ,BP 的路线去小岛捕鱼作业.已知小岛P 在A 港的北偏东60°方向,在B 港的北偏西45°方向,小岛P 距海岸线MN 的距离为30海里.求AP ,BP 的长(参考数据:2≈1.4,3≈1.7,5≈2.2);甲、乙两船分别从A ,B 两港口同时出发去小岛P 捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.B 【解析】试题分析:如图,延长DC 到F ,则∵AB ∥CD ,∠BAE=40°,∴∠ECF=∠BAE=40°. ∴∠ACD=180°-∠ECF=140°. 故选B .考点:1.平行线的性质;2.平角性质. 2.B 【解析】 【详解】由方程2210x x kb ++=-有两个不相等的实数根, 可得()4410kb =-+>,。