相变储能材料在建筑节能中的应用
相变材料在节能建筑中的应用前景探讨

相变材料在节能建筑中的应用前景探讨近年来,随着人们对环境保护和可持续发展的重视,节能建筑逐渐成为建筑领域的热门话题。
而相变材料作为一种新兴的节能技术,其在节能建筑中的应用前景备受关注。
本文将探讨相变材料在节能建筑中的应用前景,并分析其优势和挑战。
首先,我们来了解一下什么是相变材料。
相变材料是指在特定温度范围内会发生相变(从固态到液态或从液态到固态)的物质。
相变过程中,物质会吸收或释放大量的热量,从而实现热能的储存和释放。
这一特性使得相变材料在节能建筑中具有广阔的应用前景。
在节能建筑中,相变材料可以应用于墙体、屋顶、地板等部位,以实现室内温度的调节。
当室内温度升高时,相变材料吸收热量并发生相变,从而起到降温的效果;当室内温度下降时,相变材料释放储存的热量,起到保温的作用。
相比传统的保温材料,相变材料具有更高的储热能力和更好的调温效果,能够有效地减少室内温度的波动,提高室内舒适度。
此外,相变材料还可以应用于太阳能热水器、空调系统等设备中,实现能源的高效利用。
相变材料可以用于储能装置,将太阳能转化为热能并储存起来,以供后续使用。
在空调系统中,相变材料可以用于储存和释放热量,减少能源的消耗。
这些应用不仅可以提高能源利用效率,还可以降低能源消耗对环境造成的影响,符合可持续发展的理念。
然而,相变材料在节能建筑中的应用还面临着一些挑战。
首先是成本问题。
目前,相变材料的制造成本较高,使得其在市场上的价格相对较高,限制了其大规模应用。
其次是材料的稳定性和耐久性问题。
相变材料需要经历多次相变过程,因此需要具备较好的稳定性和耐久性,以保证长期的使用效果。
此外,相变材料的选择和设计也需要根据具体的建筑环境和需求进行调整,增加了应用的复杂性。
针对这些挑战,我们可以通过技术创新和产业发展来推动相变材料在节能建筑中的应用。
首先,可以加大对相变材料研发的投入,提高其制造工艺和成本效益,降低市场价格。
其次,可以加强对相变材料的稳定性和耐久性研究,提高其使用寿命和性能稳定性。
相变储能材料及其在绿色建材领域的应用

相变储能材料及其在绿色建材领域的应用摘要:城镇化进程的全面推进使得城市土地资源的利用率不断提升,同时建筑的能耗也逐步增加。
当前阶段相变材料研究不仅是影响城市整体能源消耗状况的重要课题,同时与建筑材料的技术选择、复合应用也有着密切的关系。
相变储能类型的材料作为一种新型建材,具备节能性强、热性能好、体积小、密度高、储放能效率高、经济适用性强等方面的特点,能够满足建筑不同空间与时间上能量控制的需求。
在此基础上本文从变相储能建筑材质的应用特点出发,对其在绿色、节能建筑领域的应用进行具体探析。
关键词:节能地板;玻璃门窗;调温性能相变材料实质上是指通过物相的变化,在特定环境中吸收、释放能量从而实现储能、温度调节目的的材料类型。
现阶段,相变材料根据化学物质构成可以分为有机材料、无机材料以及混合材料三种,变相原理包括潜热储能与显热储能、化学反应。
使用变相材料的建筑在能耗控制方面有着显著的优势,是现阶段绿色建材技术研究的重点项目。
一、相变储能材料的主要应用特性相变材料相较于传统建筑材料在使用性能与经济性方面有着显著优势,是现阶段绿色建筑工程中常见的建材选择,主要的应用特性表现为:1、热性能相变材料在热性能方面可以在适合的熔点、温度环境中发生储能变化,具备良好的相变潜热性能,无论是处于固体还是液体形态导热率都高于普通材质。
因此在进行建材选择时,为保证相变材料的热性能能够有效的发挥出来,可以将其用于室内温度调控,一般选择相变点处于20-30℃的相变材料。
如果在建设太阳能储热设备工程中,选择相变点在60℃以上的材料进行蓄热,可以有效降低建筑能源的消耗,满足人们的基本建筑使用需求。
与此同时相变潜热性能与储热设备的体积、密度有着直接的关系,热性能越高材料体积越小。
而导热性能与材料储能、放能的效率呈正相关,导热性能越强,材质的能量控制效率越高。
2、物理性能相变储能材质的物理性能表现为高密度、蒸汽压低、体积变化率小。
材料密度高使得材料的体积相对较小,而在相变的过程中体积变化率低对封装容器的材质要求不高,经济成本降低。
相变储能材料在建筑节能中的应用

与传统的对流式散热器相比,地板采暖是一种舒适的采暖方式,
而且现在由于这种采暖方式的优越性得到了大力的推广。
因为的相变材料的蓄热特性,可以利用夜间廉价电加热相变材料,使其产生相变,以潜热形式储存热量,白天放出给房间供暖。
如果可以很好解决相变材料体积储存的问题,那么这种采暖方式将可以完全普及。
因为利用了相变蓄热与电热膜相结合,在实行峰谷电价的地区,利用低谷廉价电运行,可大大降低电热膜采暖的电费开支。
相变储能材料在建筑节能中的应用

相变储能材料在建筑节能中的应用相变储能材料是一种新型的建筑节能材料,它具有很高的热储能量,可以在相变的过程中吸收或释放大量的热量,从而实现节能的目的。
近年来,相变储能材料在建筑节能领域得到了越来越广泛的应用,成为了建筑节能技术的重要组成部分。
一、相变储能材料的基本原理相变储能材料是一种可以在相变过程中储存和释放大量热能的材料,它常用的原理是蓄热和释热。
相变储能材料通常采用的是固-液相变,其具有的优点是凝固时会释放出大量的潜热,对于建筑节能来说非常有用。
相变储能材料在室内环境中,通过固液相变可以实现储能和释放热量的双重作用。
当室内温度下降时,固液相变的材料会吸收室内周围的热量进行蓄热,使室内的温度保持稳定,同时也可以减少冬季供暖的能耗。
当室内温度升高时,相变储能材料会释放出储存的热量,从而降低室内温度,减少夏季空调的运行时间和能耗。
二、相变储能材料在建筑节能中的应用1、用于墙体的隔热相变储能材料可以被用于室内墙体中进行隔热,这种墙体可以在夏季蓄热并释放热量,从而减少室内温度,降低空调的运行时间和运行能耗。
同时,该种建筑节能材料也可以在冬季吸收室内的热量,使墙体从外部保持温暖。
2、用于地面和屋顶的隔热相变储能材料可以用于地面和屋面的隔热,抑制室内温度波动,并且可以缓解室外温度和室内温度之间的差异。
使用这种建筑节能材料可以大大减少空调和供暖的运行成本。
3、用于建筑外墙的隔热相变储能材料也可以被用于建筑外墙中,实现墙面隔热、保温的功能,该建筑节能材料还可以降低外部环境温度对室内环境的影响。
三、相变储能材料的优势与不足相变储能材料具有以下优势:1、高热量储存能力:相变储能材料在相变过程中吸收或释放大量的热量,储存能力较高。
2、减少空调和供暖的耗能:使用相变储能材料可以在夏季减少空调的运行时间,降低室内温度;在冬季吸收室内热量,保持室内温暖,缩短供暖时间。
3、潜在的大规模应用:相变储能材料已经得到广泛的研究,可以在大规模的建筑中使用。
储能材料在建筑中的应用

储能材料在建筑中的应用
储能材料在建筑中有多种应用,主要体现在以下几个方面:
1.提升建筑隔热功能。
使用相变储能材料可以提升建筑的隔热功能,进而提升建筑的节能性质。
这种材料能在环境发生变化时,自动凝结成固态,释放热量;当环境温度升高时,储能材料的性质会逐渐转化成为液态,吸收热量,从而可以有效的保证室内温度的稳定性。
2.增强墙板的保温性能。
相变储能材料在墙板中的运用可以提升其保温性能,同时可以增加房屋的使用面积。
由于在环境发生变化时,材料会自动凝结成固态,释放热量;当环境温度升高时,储能材料的性质会逐渐转化成为液态,吸收热量,从而可以有效的保证室内温度的稳定性。
3.用于冷热源配置。
相变储能材料也可在冷热源处配置,如冰蓄冷设备。
4.用于被动式房屋。
被动式房屋是近年来较为火热的建筑理念,通过与采暖通风系统结合,相变储能材料得到了很好的应用。
此外,相变储能材料还可以用于制作成各种建筑结构,并具有较好的储热性能。
如将相变材料融合到传统的建筑材料中,可以制作成各种建筑结构,如内墙、楼板等,也可在冷热源处配置。
相变储能材料的研究进展与应用

相变储能材料的研究进展与应用相变储能材料是近年来备受研究关注的一种新型储能材料,具有高能量密度、长寿命、高效率等特点,是未来智能电网和可再生能源等领域的关键技术之一。
本文将从相变储能材料的基本原理、研究进展和应用等方面进行分析和探讨。
一、基本原理相变储能材料是利用物质在相变过程中所释放或吸收的潜热实现储能和释能的一种功能材料。
相变储能材料通常由两种物料组成,一种是相变材料,另一种是传热材料。
相变材料是指在特定温度范围内,其内部结构发生相变,从而在储能和释能过程中释放或吸收热量。
传热材料是指能够促进相变材料与环境之间的热传递的材料,它们构成了相变储能材料的基本组成部分。
二、研究进展相变储能材料的研究起源于20世纪60年代,最初的应用是在太空科技领域。
随着全球能源危机和环境问题的日益严重,人们开始更加重视新能源技术的发展,相变储能材料也越来越受到研究者的关注。
目前,相变储能材料的研究范围已经涵盖了多个领域,包括建筑节能、汽车空调、电子产品、工业生产等。
其中,建筑节能领域是相变储能材料最为广泛的应用领域之一。
使用相变储能材料进行建筑节能,可以减少建筑物对空调的依赖性,降低能耗,减缓全球气候变化等方面发挥着重要作用。
三、应用前景随着人们对环境和能源问题的日益重视,相变储能材料的应用前景也越来越广阔。
相变储能材料的主要应用领域有:1. 建筑节能。
相变储能材料可以应用于建筑外墙、屋顶、地板等位置,实现建筑节能。
当前,相变储能材料已经得到了广泛的应用,如利用相变墙体技术进行绿色建筑改造等。
2. 汽车空调。
相变储能材料可以应用于汽车空调系统,通过储存汽车内部的剩余能量和外界环境热量,使汽车可以更加智能化地进行热调节,提升舒适度。
3. 电子产品。
相变储能材料可以应用于电子产品中,如手机配件、电脑散热器等。
它可以将电子产品中产生的废热转化为储存热量的形式进行存储,实现节能减排。
4. 工业生产。
相变储能材料可以应用于工业生产中,如炼钢、铸造、密封等领域。
相变储能技术的应用

相变储能技术的应用相变储能技术是一种利用物质相变释放或吸收潜热来储存或释放能量的技术。
相变储能技术在多个领域得到了广泛的应用,包括建筑节能、太阳能储能、电动汽车储能等。
本文将从以下几个方面介绍相变储能技术的应用。
相变储能技术在建筑节能方面有着广泛的应用。
建筑物内部存在着昼夜温差,相变储能技术可以利用这种温差来储存和释放能量。
在夏季白天,建筑物受到阳光照射变得温暖,而在夜晚温度下降,可以利用相变储能材料吸收白天收集到的能量,然后在夜晚释放热量,起到降低室内温度的作用。
这样一来,可以减少建筑物的空调耗能,达到节能的目的。
相变储能技术在太阳能储能方面也有重要的应用。
太阳能是一种清洁的可再生能源,但其受天气影响较大,往往无法保证持续性的发电。
相变储能技术可以利用太阳能给相变储能材料充能,当阳光不足时,这些相变材料就可以释放能量,供给电力系统使用。
这样一来,相变储能技术可以解决太阳能发电的不稳定性问题,提高太阳能利用率。
相变储能技术在电动汽车储能方面也有着重要的应用。
电动汽车的续航里程一直是其发展面临的重要问题。
相变储能技术可以利用电动汽车在行驶过程中产生的热能,将其转化成潜热储存起来,在需要时释放热能,以维持电池的温度和提高车辆的续航里程。
这种应用方式可以提高电动汽车的能量利用效率,延长电池的寿命,为电动汽车的发展提供了新的可能性。
相变储能技术在建筑节能、太阳能储能和电动汽车储能等多个领域都具有重要的应用前景。
随着技术的不断进步和成本的不断降低,相变储能技术将在未来发挥越来越重要的作用,为能源领域的可持续发展做出贡献。
相变储能材料技术及其在建筑节能中的应用

相变储能材料技术及其在建筑节能中的应用
相变储能材料也成为相变储能技术,是指利用多孔凝胶、凝聚态有机晶体、分子链等有机、无机材料,经过特殊设计和结构改造,形成的可调节的冷/热储能材料。
相变储能技术的出现,使得建筑节能取得了一定的进展,相变储能材料主要应用于建筑外墙和顶部的玻璃幕墙,结合建筑面积与太阳辐射量,可以从太阳辐射获取热能,将其动态改变,从而调节室内室外温度。
首先,相变储能材料可以吸收建筑表面上太阳光照射所收集到的热量,将有热量转化成低温能量储存起来,防止温度陡升,从而达到减小室内夏季空调制冷的能耗的效果。
其次,相变储能材料在配置床垫、隔断、装点等设施时,可以将暖空气用于室内热水系统,减少两次制冷、加热的情况,从而节约能源。
此外,相变储能材料可以调节空气温度,保证室内温度保持在一个合适的范围内。
再者,相变储能材料在热能收集及分配方面的特性,可以在室内需要时,从储能材料中放出能量,改善室内环境温湿度,达到节能的目的。
同时,夏季高温也可以将存储的能量用于空调的制冷,并可以用于动态地挡太阳辐射,有效地改善室内环境,减少室内夏季制冷的耗能,节省能源,保护环境。
总之,相变储能材料在建筑节能方面具有较强的优势,能够在一定程度上减少室内制冷的能耗,并可通过储存和释放能量,调节室内温度,节约能源,保护环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相变储能材料及其在建筑节能中的应用摘要:相变材料具有储能密度大、效率高以及近似恒定温度下吸热与放热等优点。
将该材料用于墙体天花板和地板,可提高建筑物热容量,从而可以降低室内温度波动,提高舒适度。
本文介绍了相变储能材料的机理及其分类,综述了目前国内外相变节能材料的研究进展,分析了相变材料用于建筑上的应用方面,列举了相变材料在示范性建筑中的使用情况,最后提出相变储能材料的不足之处及应用前景。
关键词:建筑节能,相变,蓄能,建筑材料Phase Change Materials and Its Application in the Constructionof Energy-efficientJi yongyu(Xi'an University of Architecture and Technology, Xi’an 710055) Abstract: A phase change material having a large energy density, high efficiency, and other advantages approximately constant temperature of the endothermic and exothermic. Thematerials used for walls ceilings and floors, the building thermal capacity can be increased, which can reduce the indoor temperature fluctuations and improve comfort. This paperdescribes the mechanism of phase change material and its classification, review the progress of the current domestic and international research phase change energy-saving materials,analysis of phase change materials for applications in buildings, citing the phase changematerial in an exemplary buildings usage, concludes the phase transition inadequacies energy storage materials and application prospects.Keywords: building energy efficiency, phase transformation, storage, construction materials 0 引言近年来随着中国的经济快速发展以及人们生活水平的日益提高,人们对室内环境舒适度的要求也越来越高。
在影响室内环境舒适度的诸多因素中,室温是一个非常关键的因素,而维持室温在 16.0~28.0°C 是保持室内环境舒适度的关键。
为达到这一标准,人们通过利用空调和供暖系统来调节温度,但是相应的会造成能耗大幅度增加和能源消耗过快、环境污染加剧等问题。
如何在室内环境舒适度、节能、环保中保持平衡已经成为建筑设计以及节能领域的热点问题在众多的节能方法中, 近年新出现的相变储能材料, 逐渐走进人们的视野, 成为建筑节能开发的新宠。
相变储能材料在很多领域都有应用, 但应用于建材的研究始于1982 年, 由美国能源部太阳能公司发起, 在我国才刚刚起步。
相变储能材料的英文全称为Phase Change Material, 简称为PCM。
相变储能材料是指随温度变化而改变物理性质并能提供潜热的物质,在一定的温度范围内,利用材料本身相态或结构的变化, 当环境温度升高或降低时, 它可以向环境自动吸收多余热量储存起来或释放储存的热量能起到保温作用。
1 相变储能材料介绍1.1 相变储能材料机理由于现代建筑的围护结构大部分为轻质材料, 热容小, 造成室内温度昼夜波动较大, 这不仅影响了室内环境的舒适度, 而且也增大了空调的负荷, 加大了能源的消耗。
如果把相变蓄能材料加入普通建筑材料中做成建筑物的围护结构, 如储热墙体或储热地板, 就可以制成具有较高热容的轻质建筑材料。
在冬季, 白天可以将照在外墙或通过窗户进入室内的太阳能储存在储热材料中, 晚上则由储热材料向室内释放热量, 从而使室内温度波动减小; 在夏季, 可通过相变储热材料的吸热作用, 延缓室温的升高, 增加居住环境的舒适度, 而且也能够降低用于室内空调的能量消耗。
图1 相变材料板材与普通板材随温度变化曲线Figure.1 Normal phase change material and the sheet with the sheet temperature curve 如图1 所示: A ) 未加相变储能材料板材; B ) 加相变储能材料板材; C ) 天气温度变化曲线。
从图1 中可以看出, 当气温较高时, 加相变储能材料的墙体内温度比未加相变储能材料的墙体内温度要低5~ 6 e , 气温较低时, 加相变储能材料的墙体内温度比未加相变储能材料的墙体内温度要高3~ 4 e 。
由于相变储能材料具有相变过程中将热量以潜热的形式储存于自身或释放给环境的性能, 因而通过恰当的设计将相变材料引入建筑材料中, 达到储存能量或控制环境温度的目的。
1.2 相变储能材料的分类相变储能材料的相变形式一般可分为四类:固—气相变、液—气相变、固—固相变、固—液相变,目前研究与应用最多的仍然是固—液类相变材料,有文献[1]对国际上报道的相变材料进行了归纳总结,但总的来说应用于建筑中的理想的相变储能材料必须满足以下条件:①相变温度接近人体的舒适度16.0~28.0 ℃;②具有足够大的相变焓和热传导性;③相变时膨胀或收缩性要小;④相变的可逆性要好;⑤无毒性、无腐蚀性、无异味、无降解;⑥制作原料廉价易得。
表1 为目前建筑方面使用较多的相变材料。
表1 水合盐与有机相变材料Table.1 Hydrated salts with an organic phase change material1.3 相变储能材料在建筑中的应用历史与现状相变材料应用于建筑的研究开始于1982年,由美国能源部太阳能公司发起。
1988年起由美国能量储存分配办公室推动此项研究。
Lane在其著作《太阳能储存———潜热材料》一书中对20世纪80 年代初以前相变材料和容器的发展作了总结。
20世纪90年代以相变材料处理石膏板、墙板与混凝土构件等建筑材料的技术发展起来了,随后,相变材料在石膏板、墙板与混凝土构件的研究和应用得到了发展,主要目的是增强轻质结构的热容。
美国Neeper 估计相变墙板能转移居民空调负荷中90%的显热负荷到用电低谷期,可降低30%的设备容量。
Oakbridge 国家实验室在1990年得出结论:在太阳房中,相变墙板能明显降低附加能量的消耗,回报期大约是5年。
日本的Kanagawa大学和Tokyo Denki大学的研究人员对相变墙板的储热性能进行了研究。
他们得出了相变墙板的使用使得热负荷更加平缓,辐射域更加舒适,用电量下降,有消减峰负荷的可能的结论。
国内对相变建筑材料的研究起步较晚,张寅平研究了无水乙酸钠和尿素的共混物,其相变温度在28~31℃。
同济大学则主要以工业级的硬脂酸丁酯为相变材料进行建筑节能混凝土材料的研究。
2 相变材料在建筑领域的应用相变蓄热材料在建筑节能领域的应用主要体现在以下3个方面:相变蓄能维护结构、供暖储能系统和空调蓄冷系统。
2.1相变蓄能维护结构将相变材料掺入到现有的建筑材料中,制成相变蓄能围护结构,可以大大增强围护结构的蓄热功能,使得少量的材料就可以储存大量的热量。
由于相变蓄能结构的储热作用,建筑物室内和室外之间的热流波动幅度被减弱,作用时间被延迟,从而可以降低建筑物供暖、空调系统的设计负荷,达到节能的目的。
如果将相变储能围护结构与合适的通风方式相结合,相变蓄能围护结构的节能作用将更为明显。
如在相变储能墙体中设置风道,利用夜间通风,在冬季可以由空气将墙体日间所蓄热量带入室内,供室内夜间采暖用;在夏季可以将墙体在夜间散入室内的热量带出室外,降低夜间空调系统的负荷。
还可以在相变蓄能墙体或楼板中设置电加热器、冷热水管,利用夜间廉价的电力蓄冷或蓄热。
2.2供暖储能系统(1) 相变蓄热地板辐射供暖系统相变蓄热的地板辐射供暖系统所需热媒的温度较低,热舒适性好,是适合于太阳能集热器、热泵等作为热源的理想供暖方式。
由于利用了低温辐射方式供暖,室内水平温度分布均匀,垂直温度梯度小,符合人体生理需要,可使人体获得非常理想的热舒适感。
另外,地板辐射采暖室内设计温度可比通常方式低2℃,而且又由于可以利用廉价的低品位能源,所以节能效果显著。
相变蓄热地板由上至下依次为相变材料层、水管(内通热水作为热媒) 和隔热材料。
可以使用水—水热泵作为热源,利用夜间廉价的电价进行储热以供次日白天使用。
也可以考虑采用平板式太阳能热水器作为热源, 节能效果将更加显著。
(2) 带相变蓄热器的空气型太阳能供暖系统此系统由空气型太阳能集热器、集热器风机、相变蓄热器、负荷风机以及辅助加热器组成。
空气在太阳能集热器和相变储热器之间、相变储热器和负荷之间形成两个循环环路。
相变蓄热器包含多个供空气流动的矩形断面的通道,这些通道相互平行并用相变材料隔开。
相变材料蓄存日间的太阳能并在夜间加热通道内送风以满足夜间房间负荷的需要。
2.3 空调蓄冷系统(1) 利用楼板蓄冷的吊顶空调系统空调系统利用吊顶内的空间向房间内送风,不必设置专用的风道,系统简单,造价低。
夜间电价低时,空调系统通向房间的送风阀关闭,空气在天花板和楼板之间的吊顶空间内循环流动,冷却天花板和楼板,楼板中的相变材料发生相变以蓄存冷量; 日间送风阀打开,空气被楼板冷却后送到空调房间内,满足房间负荷的需要。
同常规的吊顶空调相比,采用相变储能的吊顶送风方式房间内不会出现峰值负荷,比较经济。
(2) 相变蓄冷空调新风机组相变蓄冷空调新风机组是设置有平板式相变储换热器的新风机组。
板式储换热器结构简单,由一组扁平的平板式容器堆积组合而成,每两个平板式容器之间用扁平的矩形风道隔开。
相变材料封装在平板式容器中,容器中还装有若干水平水管,埋在相变材料中。
利用夜间廉价的电力进行蓄冷。
蓄冷时通入冷媒水,冷媒水将冷量传递给相变材料,使其凝固蓄冷; 释冷时,室外新风通过风道,相变材料熔化释冷,使空气降温然后送入室内。