相变储能材料及其应用
相变储能材料在太阳能热水器中的应用及性能变化机理

相变储能材料在太阳能热水器中的应用及性能变化机理太阳能热水器是一种利用太阳能进行供暖和热水制备的设备,在节能环保方面有着巨大的优势。
然而,由于太阳能热水器存在随日夜温差而波动的问题,传统的太阳能热水器需要配备大容量的水箱,不仅造价昂贵,而且占用空间大,影响美观。
为解决这一问题,近年来相变储能材料在太阳能热水器中的应用逐渐增多,这种材料可以有效地吸收白天的热量并在晚上徐徐释放,提高了太阳能热水器的热水供应能力,同时缩小了设备的体积。
相变储能材料指的是那些当温度达到一定点时,会发生物理状态改变的材料,比如蜡状物、金属合金、硅胶等。
当相应的材料温度超过区间时,原状态会迅速改变,释放或吸收能量。
以蜡状材料为例,当白天的太阳辐射照射到相变储能材料上时,材料中的蜡状物质就开始融化,吸收白天太阳所释放的热能。
储存的热量在夜晚等温度降低时开始释放,再凝固成原本的蜡状物,同时释放出储存的热能。
这一过程被称作相变反应。
相变储能材料在太阳能热水器中的应用,其基本原理正是利用相变反应的特点,将相变材料储存热量,作为夜晚供应热水的热源。
具体来说,太阳能热水器通过可拆卸的相变储能模块收集太阳能并将其辐射能够转移至相变材料中。
在降温状态下,相变材料可以逐步地释放尽其储存在其中的热量,供应热水器的需要。
相变储能材料在太阳能热水器中的应用不仅解决了设备占用空间大的问题,同时还可以大幅度缩小设备的容量。
例如,在传统太阳能热水器中,需要配备1-2平的水箱供应大部景仓库的热水使用。
相比之下,太阳能热水器配备相变储能模块后可以达到相同供水能力,却只需要装配1/3到 1/2的水箱容积。
另外,相比较于传统储存热量的方式,相变储能材料具有更显著的吸热和放热效果,热储存效果也更可靠。
当蓝天白云背景下的太阳照射到相变模块时,模块内的相变材料便开始吸收日光能量,快速达到其熔化温度。
当晚上来临时,相变材料便逐步释放储存在其中的热能,这种缓慢的反应过程可以保证热源的持续供应,而不会因热损失而降低夜晚供热水的能力。
相变储能材料及其在绿色建材领域的应用

相变储能材料及其在绿色建材领域的应用摘要:城镇化进程的全面推进使得城市土地资源的利用率不断提升,同时建筑的能耗也逐步增加。
当前阶段相变材料研究不仅是影响城市整体能源消耗状况的重要课题,同时与建筑材料的技术选择、复合应用也有着密切的关系。
相变储能类型的材料作为一种新型建材,具备节能性强、热性能好、体积小、密度高、储放能效率高、经济适用性强等方面的特点,能够满足建筑不同空间与时间上能量控制的需求。
在此基础上本文从变相储能建筑材质的应用特点出发,对其在绿色、节能建筑领域的应用进行具体探析。
关键词:节能地板;玻璃门窗;调温性能相变材料实质上是指通过物相的变化,在特定环境中吸收、释放能量从而实现储能、温度调节目的的材料类型。
现阶段,相变材料根据化学物质构成可以分为有机材料、无机材料以及混合材料三种,变相原理包括潜热储能与显热储能、化学反应。
使用变相材料的建筑在能耗控制方面有着显著的优势,是现阶段绿色建材技术研究的重点项目。
一、相变储能材料的主要应用特性相变材料相较于传统建筑材料在使用性能与经济性方面有着显著优势,是现阶段绿色建筑工程中常见的建材选择,主要的应用特性表现为:1、热性能相变材料在热性能方面可以在适合的熔点、温度环境中发生储能变化,具备良好的相变潜热性能,无论是处于固体还是液体形态导热率都高于普通材质。
因此在进行建材选择时,为保证相变材料的热性能能够有效的发挥出来,可以将其用于室内温度调控,一般选择相变点处于20-30℃的相变材料。
如果在建设太阳能储热设备工程中,选择相变点在60℃以上的材料进行蓄热,可以有效降低建筑能源的消耗,满足人们的基本建筑使用需求。
与此同时相变潜热性能与储热设备的体积、密度有着直接的关系,热性能越高材料体积越小。
而导热性能与材料储能、放能的效率呈正相关,导热性能越强,材质的能量控制效率越高。
2、物理性能相变储能材质的物理性能表现为高密度、蒸汽压低、体积变化率小。
材料密度高使得材料的体积相对较小,而在相变的过程中体积变化率低对封装容器的材质要求不高,经济成本降低。
相变储能材料的研究及应用_张静

相变储能材料的研究及应用张 静,丁益民,陈念贻(上海大学化学系熔盐化学研究室,上海 200436)摘 要:综述了相变储能材料的研究进展和实际应用。
介绍了相变材料的分类以及各类相变材料的性能、储能机理和优缺点;介绍了一些新型的相变材料,并结合实例探讨了相变材料在太阳能利用、建筑节能等领域的应用;展望了未来相变材料的发展方向和应用前景。
关键词:相变材料;热能储存;温度控制;太阳能中图分类号:TK 02 文献标识码:A 文章编号:1008-858X(2005)03-0052-060 前 言相变过程一般是一等温或近似等温过程,相变过程中伴有能量的吸收或释放,这部分能量称为相变潜热,利用相变过程的这一特点开发了许多相变储能材料。
与显热储能材料相比,潜热储能材料不仅能量密度较高,而且所用装置简单、体积小、设计灵活、使用方便且易于管理。
另外,它还有一个很大的优点,即这类材料在相变储能过程中,材料近似恒温,可以以此来控制体系的温度。
利用储能材料储能是提高能源利用效率和保护环境的重要手段之一,可用于解决热能供给与需求失配的矛盾,在能源、航天、军事、农业、建筑、化工、冶金等领域展示出十分广泛和重要的应用前景,储热材料的研究目前已成为世界范围内的研究热点。
相变储能材料的相变形式一般可分为四类:固)))固相变、固)))液相变、液)))气相变和固)))气相变。
由于后两种相变过程中有大量气体,相变物质的体积变化很大,因此,尽管这两类相变过程中的相变潜热很大,但在实际应用中很少被选用。
与此相反,固)))固相变由于体积变化小,对容器要求低(容器密封性、强度无需很高),往往是实际应用中希望采用的相变类型。
有时为了应用需要,几种相变类型可同时采用。
相变储能材料按相变温度的范围分为高温(大于250e )、中温(100~250e )和低温(小于100e )储能材料;按材料的组成成分又可分为无机类、有机类(包括高分子类)及无机)))有机复合相变储能材料。
相变储能材料及其应用研究进展

相变储能材料及其应用研究进展陈颖;姜庆辉;辛集武;李鑫;孙兵杨;杨君友【摘要】人类在面临化石能源枯竭的同时,对能量的利用率依然还停留在较低的水平.因此,在大力发展新能源的同时,着力研发节能环保新材料新技术具有十分重要的意义.相变材料(phase-change materials,PCM)是一种节能环保的储能材料,它在蓄热与温控等领域具有大规模商业应用的潜力.本文首先对相变储能材料的基本特征、工作原理以及分类等方面作了简要的介绍;并就相变储能材料在温控与蓄热等领域的应用与发展情况进行了具体的分析,指出了PCM的性能是制约其深入广泛应用的主要技术障碍.在此基础上,详细评述了PCM存在的主要问题以及针对这些问题开展的相关研究工作和最新发展动态,指出通过功能复合等新技术优化材料性能、设计新材料体系、拓展新的应用领域将是相变储能材料未来的主要发展方向.【期刊名称】《材料工程》【年(卷),期】2019(047)007【总页数】10页(P1-10)【关键词】相变材料;相变储能;热管理;蓄热;节能【作者】陈颖;姜庆辉;辛集武;李鑫;孙兵杨;杨君友【作者单位】华中科技大学材料科学与工程学院,武汉430074;华中科技大学材料科学与工程学院,武汉430074;华中科技大学材料科学与工程学院,武汉430074;华中科技大学材料科学与工程学院,武汉430074;华中科技大学材料科学与工程学院,武汉430074;华中科技大学材料科学与工程学院,武汉430074【正文语种】中文【中图分类】TK11随着全球人口的快速增长和经济发展,石油天然气等不可再生能源日益枯竭,能源危机日趋严重[1]。
然而,在能源的开采与利用过程中,能量利用率低的问题却依然没有有效的解决办法。
例如,燃油汽车中,燃料中50%以上的能量以废热的形式散失到空气中[2];工业生产中,大量的热量以余热的形式耗散[3]。
能量以热的形式散失到空气,在造成资源损耗的同时,引起全球气候变暖。
相变储能材料和相变储能技术

相变储能材料及其应用物质从一种状态变到另一种状态叫物质的存在通常认为有三态,(3)(2)液—汽相变;相变。
相变的形式有以下四种:(1)固—液相变;固相变。
相变过程个伴有能量的吸收或释放,我们就)固-固—汽(4利用相变材料来存可以利用相变过程中有能量的吸收和释放的现象,储能量。
比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可存放到夏季结束。
这是冰块就可以起到现在冰箱的效果了。
储能想变成材料一般而言,储热相变材料可以这么进行分类结晶水合盐(如NaSO?10HO)22 4熔融盐无机物金属(包括合金)其他无机类相变材料(如水)石蜡相变材料酯酸类有机物其他有机有机类与无机类相变材料的混合混合类下面我们对相变储能材料进行逐一分析:液相变材料:-、固1.(1)结晶水合盐:结晶水合盐种类繁多,其熔点也从几度到几百度可供选择,其通式可以表达为AB?nHO。
结晶水合盐通常是中、低2温贮能相变材料中重要的一类,其特点是:使用范围广,价格较便宜、导热系数较大(与有机类相变材料相比)、溶解热较大、密度较大、体积贮热密度较大、一般呈中性。
但此类相变材料通常存在过冷和析出两大问题。
所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水中形成溶液。
结晶水合盐的代表有芒硝、六水氯化钙、六水氯化镁、镁硝石等(2)石蜡:石蜡主要由直链院烃混合而成,可用通式CHn表2n+2示,短链烷烃熔点较低,但链增长熔点开始增长较快,而后逐渐减慢。
随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。
在CH以上的奇数烷烃和在CH以上的4472016偶数烷烃在7℃一22℃范围内会产生两次相变:(1)低温的固-固转变,它是链围绕长轴旋转形成的;(2)高温的固-液相变,总潜热接近溶解热,它被看作贮热中可利用的热能。
相变材料在储能技术中的应用

相变材料在储能技术中的应用随着能源需求的不断增加,能源储存技术的研究越来越重要。
相变材料是一种新型储能材料,具有高储能密度、长寿命、高节能等优点。
它的应用已经引起了越来越多的关注。
本文将介绍相变材料的基本原理、热力学过程、应用现状以及未来发展方向。
一、相变材料基本原理相变材料是指具有相变能力的物质。
它们在温度、压力、电场、磁场、电流等条件下发生相变。
相变是一种物理和化学变化,可以将物质从一个稳定平衡状态转化为另一个稳定平衡状态。
相变材料主要包括固态-固态相变、固态-液态相变和液态-气态相变等。
在固态-固态相变中,相变材料的晶格结构得到了重组,产生了不同的物理性质。
固态-液态相变是相变材料从固态转变为液态。
这种相变主要发生在金属和无机盐类等物质中。
液态-气态相变则是指相变材料从液态转变为气态,包括汽化和沸腾等过程。
相变材料的相变过程是热力学过程。
相变过程可分两个阶段进行:吸热阶段和放热阶段。
吸热阶段是指相变材料在相变过程中吸收热能,从而使温度升高。
放热阶段则是指相变材料从高温状态转变到低温状态,放出储存在相变中的热能。
相变材料的热力学性质是其储能能力的基础。
二、相变材料在储能领域的应用现状近年来,相变材料在储能领域得到了广泛的应用。
例如,相变材料储存冷能的技术可用于被动房屋的空调系统、电子设备散热等领域。
相变材料储存热能的技术也被应用于太阳能集热板、热泵、热能回收等各种系统中。
经典的相变材料是差热材料。
它们的相变峰值在零度附近,可以用来控制室温加热或冷却。
差热材料主要用于家用和商用空调设备以及个人计算机的散热控制等。
相变储能材料的应用具有很大的潜力。
其最大的优势是高储能密度和高效率。
相对于化学储能材料,相变储能材料具有更长的寿命和更高的放电效率。
相对于传统的储能方式,相变储能技术还有很大的改进空间,可以进一步提高效率和储能密度。
三、相变材料在储能领域的未来发展相变材料的应用前景十分广阔。
未来的发展方向包括:通过研究和设计新型相变材料,可以进一步提高储能密度和效率。
相变储能材料的研究进展与应用

相变储能材料的研究进展与应用相变储能材料是近年来备受研究关注的一种新型储能材料,具有高能量密度、长寿命、高效率等特点,是未来智能电网和可再生能源等领域的关键技术之一。
本文将从相变储能材料的基本原理、研究进展和应用等方面进行分析和探讨。
一、基本原理相变储能材料是利用物质在相变过程中所释放或吸收的潜热实现储能和释能的一种功能材料。
相变储能材料通常由两种物料组成,一种是相变材料,另一种是传热材料。
相变材料是指在特定温度范围内,其内部结构发生相变,从而在储能和释能过程中释放或吸收热量。
传热材料是指能够促进相变材料与环境之间的热传递的材料,它们构成了相变储能材料的基本组成部分。
二、研究进展相变储能材料的研究起源于20世纪60年代,最初的应用是在太空科技领域。
随着全球能源危机和环境问题的日益严重,人们开始更加重视新能源技术的发展,相变储能材料也越来越受到研究者的关注。
目前,相变储能材料的研究范围已经涵盖了多个领域,包括建筑节能、汽车空调、电子产品、工业生产等。
其中,建筑节能领域是相变储能材料最为广泛的应用领域之一。
使用相变储能材料进行建筑节能,可以减少建筑物对空调的依赖性,降低能耗,减缓全球气候变化等方面发挥着重要作用。
三、应用前景随着人们对环境和能源问题的日益重视,相变储能材料的应用前景也越来越广阔。
相变储能材料的主要应用领域有:1. 建筑节能。
相变储能材料可以应用于建筑外墙、屋顶、地板等位置,实现建筑节能。
当前,相变储能材料已经得到了广泛的应用,如利用相变墙体技术进行绿色建筑改造等。
2. 汽车空调。
相变储能材料可以应用于汽车空调系统,通过储存汽车内部的剩余能量和外界环境热量,使汽车可以更加智能化地进行热调节,提升舒适度。
3. 电子产品。
相变储能材料可以应用于电子产品中,如手机配件、电脑散热器等。
它可以将电子产品中产生的废热转化为储存热量的形式进行存储,实现节能减排。
4. 工业生产。
相变储能材料可以应用于工业生产中,如炼钢、铸造、密封等领域。
相变储能材料的研究与应用

相变储能材料的研究与应用第一章:引言相变储能材料是一种具有广阔应用前景的新型材料,其能够通过物质相变吸收或释放大量的热能,实现高效能量储存。
随着能源危机的加剧和环保意识的增加,相变储能材料作为一种清洁、高效、可靠的能量储存方式,越来越受到人们的关注。
针对相变储能材料的研究和应用问题,本文从材料性能、制备工艺、应用领域等方面进行探究。
第二章:相变储能材料的基本特性相变储能材料是指在特定条件下从一个相态转变为另一个相态时所释放或吸收的能量。
相变储能材料有许多具有吸引力的特点,例如能量密度高、长寿命、稳定性好、环保等。
相变储能材料的优点主要包括以下几个方面:1、高能量密度,比传统化学储能材料要高出几倍;2、分光潜热,储能效果更优;3、多次循环使用,具有较长的使用寿命;4、不受纵横向外力影响,稳定性好;5、制备过程简单、成本低。
第三章:相变储能材料的制备工艺相变储能材料的制备工艺是影响其性能的一个关键因素。
传统的相变储能材料制备方法主要包括封装法、微胶囊法、溶胶-凝胶法、溶液旋转镀法等。
这些方法制备的相变储能材料使用寿命较短,储存容量较小,不能满足实际应用需求。
针对传统制备方法出现的瓶颈,研究人员们不断探索新的相变储能材料制备方法,目前研究进展最为显著的是气相沉积法和溶胶-凝胶自组装法。
气相沉积法是一种利用高温高压条件下,使前驱体沉积在基底上形成相变储能材料的制备方法,能够制备出高纯度、晶体质量高、密度均匀的相变储能材料。
溶胶-凝胶自组装法则是通过调节前驱体浓度,利用物质自组装成膜的性质制备相变储能材料,这种方法制备出的材料具有良好的膜性能和凝胶微观结构。
第四章:相变储能材料的应用领域由于相变储能材料优异的性能特点,其在能源领域、热管理领域、建筑领域等方面均有广泛的应用。
相变储能材料在能源领域的应用主要涉及能量储存和转换。
例如,可以使用相变储能材料制成锂电池,提高电池的能量密度和使用寿命,还可以生产太阳能电池板、地热发电等途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相变储能材料及其应用
物质的存在通常认为有三态,物质从一种状态变到另一种状态叫相变。
相变的形式有以下四种:(1)固—液相变;(2)液—汽相变;(3)固—汽(4)固-固相变。
相变过程个伴有能量的吸收或释放,我们就可以利用相变过程中有能量的吸收和释放的现象,利用相变材料来存储能量。
比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可
)、溶
过冷和析出两大问题。
所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水中形成溶液。
结晶水合盐的代表有芒硝、六水氯化钙、
六水氯化镁、镁硝石等
(2)石蜡:石蜡主要由直链院烃混合而成,可用通式C n H2n+2表示,短链烷烃熔
点较低,但链增长熔点开始增长较快,而后逐渐减慢。
随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。
在C7H16以上的奇数烷烃和在C20H44以上的偶数烷烃在7℃一22℃范围内会产生两次相变:
(1)低温的固-固转变,它是链围绕长轴旋转形成的;
-固
3、有机-无机混合物
带有乙酰胺的有机和天机低共熔混合物具有较为优异的特性,而乙酰胺的熔点为80℃,潜热相当大,为251.2KJ/kg,且比较便宜。
此外乙酰胺本身及其与有机酸和盐类的低共熔混合物的化学和动力学性质都很好。
乙酰胺的毒性很低。
但是乙酰胺对某些塑料具有溶解作用,故在容器选择上应
谨慎小心,最好选用搪瓷或玻璃类容器。
此类箱变材料也是在日常生活用品开发中
很有前途的一类。
储热相变材料的遴选原则:
作为贮热(冷)的相变材料,它们灾满足的条件是:
(1)合适的相变温度;
(2)较大的相变潜热;
储热相变材料的应用涉及面根广,但大致分为以下几个方面:集中空调的相变贮能系统,相变节能建筑材料和构件,相变储热在太阳能领域的应用,热电冷(或热电)联供系统中的相变储能,利出工业废热的相空贮热系统,相变日用品开发。
随着相变材料基础和应用研究的不断断深入(包括新的相变材料的涌现),相变材料应用的
深度和广度都将不断拓展。
(1)集中空调的相变储能系统
为厂缓解电网负荷过重,鼓励采用‘削峰填谷”的方法解决电网峰、谷差过大的问题,世界上不少发达国家实行了电价按电网负荷峰谷时间段分计,我国在近期内也即将实行电价分计制。
据有关资料介绍,在普通城市中,如果一百家中等规模宾馆楼中集中空调系统采用储冷系统,将空调电力负荷全部或部分从高峰移到低谷,即可使十万户居民在用电高峰时免受拉间限电之苦。
动式系统。
主动系统与房屋各自成体系,其换热介质由泵或风机输送,而被动式系统则由房屋结构本身来完成集热、贮热和释热功能。
在这两种系统中,使用相交材料作贮热介质都有明显的好处。
其中在被动式太阳能系统中应用箱变材料的实例非常多,如潜热蓄热加温器、蓄热天花板、相变蓄热墙、相变蓄热辐射式地板等。
(3)相变日用品
日前,一些功能新颖的相变生活用品已经在问世,这些生活用品有:冰箱蓄冷器、速冷保温奶瓶、相变蓄热取暖器、高温蓄热电短锅等。
随着时代的发展,人口也在日益增多,但是地球上的资源却是有限的,所以节约资源,充分利用资源变成了当今时代发展的主题之一。
相变材料作为一种既古老又新型的材料,为我们提供了节约资源的一种新途径,所以相变材料在今后的发展中
也必将起到越来越重要的作用。