灰色关联度分析
关联度分析

关联度分析灰色关联度分析是基于系统内参比因素和比较因素之间的关联度大小对系统行为特征进行量化分析。
灰色关联度分析是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。
因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色系统关联分析的具体计算如下:以各年份城区生活垃圾清运量作为参比数列:Y i ={Y i (k )| i =1;k =1,2,…,11},以GDP 、人居可支配收入、人均消费性支出和社会消费品零售额记为比较数列:X j ={X j (k )| j =1,2,3,4;k =1,2,…,11}。
对参比数列和比较数列作初始值的无量纲处理,即各数列均除以其对应的平均值进行初始化,初始化得到下列数列:}11211|)()()(',,,;{⋯⋯===-k i k Y k Y k Y i i i (1)⎪⎩⎪⎨⎧⋯===-},,,;11211)()()('k j k X k X k X j j j (2)再计算各比较数列与参比数列的关联系数:max )(max min )(∆+∆∆+∆=δδξk k ij ij (3)式中:|)()(|min min min ''k X k Y j i kj -=∆; |)()(|m a x m a x m a x ''k X k Y j j kj -=∆; |)()(|)(''k X k Y k ij j i -=∆。
δ为分辨系数,其作用在于提高关联系数间差异显著性,其取值范围在0到1之间,一般取值为0.5,以此计算第j 个影响因子(X j )与城区垃圾清运量(Y i )间的关联度ij γ:)(11k n n k ij ij ∑=⎪⎭⎫ ⎝⎛=ξγ (4)相关分析变量间的关系分为确定性关系和非确定性关系两类:确定性关系即通常所说的函数关系;非确定关系即相关关系。
灰色关联度分析

1.灰色关联理论
1982年,华中理工大学邓聚龙教 授首先提出灰色系统的概念,并建立了 灰色系统理论。 灰色系统理论认为,人们对客观 事物的认识具有广泛的灰色性,就是信 息的不完全性和不确定性,因而有客观 事物所形成的是一种灰色系统,即部分 信息已知、部分信息未知的系统。例如: 社会系统、经济系统、生态系统等都可 以看作是灰色系统。
\\
(min) (max) 0i (k ) 0i (k ) (max)
最后分别对各产业与GDP的关联系数求 平均可得: r01= (0.4191+0.3796+0.5808+0.7055+0.3696 +0.2881)/6 =0.4571 同样求出: r02=0.5760, r03=0.7209 r0i称为序列x0和xi(i=1,2,3)的灰 色关联。由于r03˃r02˃ r01,因而第三 产业产值与GDP的关联度最大,其次是 第二产业,第一次去农业。
5.用GRA进行综合评价
灰色关联分析的目的是揭示因素间 关系的强弱,其操作对象是因素的时间 序列,最终的结果表现为通过关联度对 各比较序列做出排列。综合评价的对象 也可以看作是时间序列(每个被评价事 物对应的各项指标值),并且往往需要 对这些时间序列做出排序,因而也可以 借助灰色关联分心来进行。
01 (1) 02 (1) ... 0 n (1) (2) (2) ... (2) 01 02 0n ... ... ... 01 ( N ) 02 ( N ) ... 0 n ( N ) N n 其中 0i (k ) x0 (k ) xi (k ) (05式) i 1,2,...n; k 1,2,..., N 绝对差矩阵中最大数和 最小数就是最大差和最 小差: max 0i (k ) (max)( 式) 06
灰色关联度分析

灰色关联度分析一、 灰色关联分析及理论对于两系统之间的因素,其随时间或不同对象而变化的关联性的大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即变化程度较高,即可谓二者的关联度较高;反之,则较低。
因此,灰色关联度分析方法,是根据因素之间发展趋势的相似或相异程度,即“灰色关联度”作为衡量因素之间关联程度的一种方法。
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定方法,去寻求系统各子系统(或因素)之间数值的关系。
因此,灰色关联度分析对于一个系统的发展变化态势提供了量化的度量,非常适合动态历程分析。
灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。
根据R 的数值,进行排序。
(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。
此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。
选定最优指标集后,可构造矩阵D (矩阵略)式中ikj 为第i 个期货公司第k 个指标的原始数值。
(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。
设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈ikC 。
ikk k i ki k j j j j C --=21,m i,2,1=,n k ,,2,1 =(矩阵略)(3)计算综合评判结果 根据灰色系统理论,将],,,[}{**2*1*n C C C C=作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i kkkii kki k k k ii k k kiCC C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。
灰色系统分析方法.精选优秀PPT

〔2〕初值化变换:分别用同一序列的第一个数据去除 后面的各个原始数据得到新的倍数数列,即为初值化 数列。
一、灰色关联度分析
〔此处不做详细讲解:本人还没有掌握,实用性不强〕 而灰色数列GM〔2,1〕模型为单序列二阶线形动态模型,它改进了这种局限性,不仅可以预测,还可以进行动态分析。
一、灰色关联度分析
设 x1,x2, ,xN为N个因素,反响各因素变化特性
的数据列分别为 x 1 t , x 2 t , , x N t ,t 1 , 2 , ,M
因素 x j 对 x i 的关联系数定义为
i(k ) m i m x 0 k k i x n x 0 ik ik n x i k m m m iam x 0 k x a k a x x 0 x ix k a k x ix k
主要内容
一、灰色关联度分析 二、灰色GM〔1,1〕模型 三、灰色GM〔2,1〕模型 四、灰色GM〔1,N〕模型
一、灰色关联度分析
关联度是对两个系统或两个因素之间关联性大小 的度量。灰色关联度分析法是建立在灰色系统理 论根底上的一种对系统开展变化态势的定量描述。 它根据评价因素间开展态势的相似和相异程度来 确定评价因素的关联程度。 关联度分析的核心是计算关联系数和关联度。
二、灰色GM〔1,1〕模型 如上面的例子在DPS中操作,完全可以用傻瓜式操作实现。 如上面的例子在DPS中操作,完全可以用傻瓜式操作实现。 为两级最大差; 灰色关联度分析法是建立在灰色系统理论根底上的一种对系统开展变化态势的定量描述。 第二步:在“其他〞菜单栏中找到“灰色系统方法〞,在其箭头里找到“灰色系统分析〞 例如,时间序列〔1,3,4,7,5,9〕变化趋势不明显,对其元素进行雷杰可以生成一列趋势明显的序列〔1,2,8,15,20,29〕。 原始数据变换方法如下: 〔3〕标准化变换:先分别求出各个序列的平均值和标准差,然后将各个原始数据渐趋平均值再除以标准差,得到的数据即为标准化序列。 x(t+1)=1989033.
灰色关联度分析方法模型

灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。
根据R 的数值,进行排序。
(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。
此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。
选定最优指标集后,可构造矩阵D (矩阵略)式中i k j 为第i 个期货公司第k 个指标的原始数值。
(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。
设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈i k C 。
i k k k i k i kj j j j C --=21,m i ,2,1=,n k ,,2,1 =(矩阵略) (3)计算综合评判结果根据灰色系统理论,将],,,[}{**2*1*n C C C C =作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i k k k i i k k i k k k i i k k k iC C C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。
这样综合评价结果为:R=ExW若关联度i r 最大,说明}{C 与最优指标}{*C 最接近,即第i 个被评价对象优于其他被评价对象,据此可以排出各被评价对象的优劣次序。
灰色关联分析

灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。
它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。
原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。
在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。
最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。
灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。
灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。
2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。
3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。
4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。
5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。
适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。
它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。
优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。
灰色关联度分析GreyRelationalAnalysis是其中的一种

( X0 ) 考試成績 考 詴 成 績 出席率 ( X1 ) 出 席 ( X2 ) 率
評分項
實例參考 ( 一 ) 六、綀習題
Hale Waihona Puke 周世傑 周阿舍 100 100 90 100% 90
100%
說明 劉阿華 蕭阿薔 蕭阿薔 劉阿華
95 95 80 90% 80
90%
60 以周阿 60 50 舍為基 80% 50
80% 準點
1、標準化
姓名 評分項目
周阿舍 1 1 1
劉阿華 0.95 0.89 0.90
蕭阿薔 0.60 0.50 0.80
總成績(X0) 考詴成績(X1) 出席率(X2)
2、對應差數列表
差值 姓名 差式
周阿舍 0 0
劉阿華 0.06 0.05
蕭阿薔 0.1 0.2
min
k
max
k
| X 0 k X 1 k |
灰色關聯度可分成「局部性灰色關 聯度」與「整體性灰色關聯度」兩 類。主要的差別在於「局部性灰色 關聯度」有一參考序列,而「整體 性灰色關聯度」是任一序列均可為 參考序列。
二.直觀分析
依據因素數列繪製曲線圖,由曲 線圖直接觀察因素列間的接近程 度及數值關係,表一某老師給學 生的評分表數據資料為例,繪製 曲線圖如圖一所示,由曲線圖大 約可直接觀察出該老師給分總成 績主要與考詴成績關聯度較高。
第五章 灰色關聯度分析
目錄
壹、何謂灰色關聯度分析 5-2 貳、灰色聯度分析實例詳說與練習 5-8
負責組員 工教行政碩士班二年級 周世傑591701017 陶虹沅591701020 林炎瑩591701025
壹、何謂灰色關聯度分析
灰色关联度

灰色关联度分析灰色关联分析(Grey Correlation Analysis )是一种分析多因素之间关系的方法,由邓聚龙教授创立,通过不同样本之间关联度分析,对各因素进行排序,对各因素之间关系进行描述的一种统计方法。
我们假设以及知道某一个指标可能是与其他的某几个因素相关的,那么我们想知道这个指标与其他哪个因素相对来说更相关,与哪个因素相对关系弱一点,依次类推,把这些因素排个序,得到一个分析结果,我们就可以知道我们关注的这个指标,与因素中的哪些更相关。
1、确定母数列(参考序列)和子数列(比较序列)设参考数列0X ,比较数列12,,,n X X X ,由于各因素之间的单位等各不相同,可能会造成有的数大有的数很小。
但是这并不是由于它们内禀的性质决定的,而只是由于量纲不同导致的,因此我们需要对它们进行无量纲化。
因此,为了使得不同因素能够进行比较,且保证结果的误差,需要对数据进行无量纲化处理。
GRA 常用的方法是初值化,即把这一个序列的数据统一除以最开始的值,由于同一个因素的序列的量级差别不大,所以通0,1,2,,4.2''0()|()()|(1,2,3,4)j j k X k X k j ∆=-= max 0min 0max max |()()|min min |()()|i i k i i k X k X k X k X k ∆=-∆=- 3、求关联度minmax max ()()j j k k ρζρ∆+∆=∆+∆ 其中,一般调节系数ρ的取值区间为()10,,通常取0.5ρ=。
4、作关联度 4、关联度排序,如果21r r <,则参考数列0x 与比较数列1x 更相似,最终的目的也是为了计算变量之间的关联程度。
GRA 算法本质上来讲就是提供了一种度量两个向量之间距离的方法,对于有时间性的因子,向量可以看成一条时间曲线,而GRA 算法就是度量两条曲线的形态和走势是否相近。
为了避免其他干扰,凸出形态特征的影响,GRA 先做了归一化,将所有向量矫正到同一个尺度和位置,然后计算每个点的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰色关联度分析第五章灰色关联度分析目录壹、何谓灰色关联度分析 --------------------------------------- 5-2 贰、灰色联度分析实例详说与练习 --------------------------- 5-8负责组员工教行政硕士班二年级周世杰591701017陶虹沅591701020林炎莹591701025第五章灰色关联度分析壹、何谓灰色关联度分析一.关联度分析灰色系统分析方法针对不同问题性质有几种不同做法,灰色关联度分析(Grey Relational Analysis)是其中的一种。
基本上灰色关联度分析是依据各因素数列曲线形状的接近程度做发展态势的分析。
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。
简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。
因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色关联度可分成「局部性灰色关联度」与「整体性灰色关联度」两类。
主要的差别在于「局部性灰色关联度」有一参考序列,而「整体性灰色关联度」是任一序列均可为参考序列。
二.直观分析2依据因素数列绘制曲线图,由曲线图直接观察因素列间的接近程度及数值关系,表一某老师给学生的评分表数据数据为例,绘制曲线图如图一所示,由曲线图大约可直接观察出该老师给分总成绩主要与考试成绩关联度较高。
表一某一老师给学生的评分表单位:分/ %姓名周阿舍刘阿华萧阿蔷评分项目总成绩(X) 100 95 60 0考试成绩(X) 90 80 50 1出席率(X) 100% 90% 80% 210090909085 總成績80808075考試成績70 出席率6060606050周阿舍劉阿華蕭阿薔圖一某老師給學生的評分表曲線圖由曲线图直观分析,是可大略分析因素数列关联度,可看出考试成绩与总成绩曲线形状较接近,故较具关联度,但若3能以量化分析予以左证,将使分析结果更具有说服力。
三.量化分析量化分析四步曲:1. 标准化(无量纲化):以参照数列(取最大数的数列)为基准点,将各数据标准化成介于0至1之间的数据最佳。
2. 应公式需要值,产生对应差数列表,内容包括:与参考数列值差(绝对值)、最大差、最小差、ζ(Zeta)为分辨系数,0,ζ,1,可设ζ = 0.5(采取数字最终务必使关联系数计算:ξi(k)小于1为原则,至于分辨系数之设定值对关联度并没影响,请参考p14例),,min,,max,(),k3. 关联系数ξ(ik)计算:应用公式 i,oi(k),,,max计算比较数列X上各点k与参考数列X参照点的关i0联系数,最后求各系数的平均值即是X与X的关联i 0度r。
i4. 比较各关联度大小,值愈大,关联度越高。
4实例参考(一):根据某一老师给学生成绩的数据数据,依灰色关联度分析法,计算出考试成绩及出席率与学生成绩的关联度。
设分辨系数:ζ=0.5 表一某一老师成绩表单位:分/%姓名说明周阿舍刘阿华萧阿蔷评分项目以周阿舍为总成绩(X) 100 95 60 0基准点考试成绩(X) 90 80 50 1出席率(X) 100% 90% 80% 21、标准化姓名周阿舍刘阿华萧阿蔷评分项目总成绩(X) 1 0.95 0.60 0考试成绩(X) 1 0.89 0.50 1出席率(X) 1 0.90 0.80 22、对应差数列表姓名 maxmin 萧阿蔷周阿舍刘阿华 kk差值5差式,,,,|Xk,Xk| 0.06 0.10 0.10 0 0 01,,,,|Xk,Xk| 0 0.05 0.20 0 0.20 023、关联系数计算:ξi(k)ζ=0.5、最大差 0.20、最小差0(一)、求比较数列X对参考数列X之关联系数ξ(k) 101,,min,,max0,0.5,0.2,1(1),,,1,01,(1),,max0,0.5,0.2,,min,,max0,0.5,0.2,1(2),,,0.625,01,(2),,max0.06,0.5,0.2,,min,,max0,0.5,0.2,1(3),,,0.5,01,(3),,max0.1,0.5,0.2 (二)、求比较数列X对参考数列X之关联系数ξ(k) 202,,min,,max0,0.5,0.2,2(1),,,1,02,(1),,max0,0.5,0.2,,min,,max0,0.5,0.2,(2),,,0.6672,,(2),,max0.05,0.5,0.2026N4、求关联度 :1即求比较数r,,,,,kii,1kN,,min,,max0,0.5,0.2,(3),,,0.3332,,(3),,max0.2,0.5,0.202列所有数关联度的平均值(一)、比较数列X对参考数列X之关联度 10311,0.625,0.5,,r,,,k,,0.70811 k,133(二)、比较数列X对参考数列X之关联度 20311,0.667,0.333 ,,r,,,k,,0.66722k,133r , r21故该教授给的总成绩主要与考试成绩关联度较高。
量化分析公式内容说明: (一)、标准化(无量纲化)由于系统中各因素列中的数据,可能因计算单位的不同,不便于比较,或在比较时难以得到正确的结论。
因此在进行灰色关联度分析时,一般都要进行标准化(无量纲化)的数据处理。
(二)、关联系数:ξ(Xi)所谓关联程度,实质上是曲线间几何形状的差别程7度。
因此曲线间差值大小,可做为关联程度的衡量尺度。
对于一个参考数列X 有若干个比较数列X, X,…, X。
012n各比较数列与参考数列在各个时刻(即曲线中的各点)的关联系数ξ(Xi)可由下列公式算出:,minmin|Xk,Xk|,maxmax|Xk,Xk|,,,,,,,,0i0iikik,,,k, i,,,,,,,,|Xk,Xk|,,maxmax|Xk,Xk|0i0iik其中ζ(Zeta)为分辨系数,0,ζ,1,,,,minmin|Xk,Xk| 为两层式取绝对差值中最小值0iik计算,第一层为先分别由各比较数列X曲线上的每一个i点与参考数列X曲线上的每一个点之绝对差值中取最小0值,再由这些最小值当中选取最小值。
简记为Δmin。
,,,,maxmax|Xk,Xk|为两层式取绝对差值中最大值0iik计算,第一层为先分别由各比较数列X曲线上的每一个i点与参考数列X曲线上的每一个点之绝对差值取最大0值,再由这些最大值当中选取最大值。
简记为Δmax。
,,,,|Xk,Xk|为各比较数列X曲线上的每一个点与i0i参考数列X曲线上的每一个点之绝对差值。
记为Δoi(k)。
0所以关联系数ξ(Xi)也可简化如下列公式:,min,,,max,(),k i,oi(k),,,max(三)、关联度 :r i8因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而讯息过于分散不便于进行整体性比较。
因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,也就是求其平均值,做为比较数列与参考数列间关联程度的数量表示,关联度r公式如下: iN1,,r,,,kii ,1kN貳、灰色联度分析实例详说如表一某家庭收入来源数据数据为例:表一某家庭 1998 ~ 2000年收入单位:十万元年度1999 2000 1998收入总收入(X) 20 30 24 0薪资收入(X)8 10 9 1投资收入(X) 5 6 7 2绘制曲线图如图二所示:940總收入303024薪資收入2020投資收入101098765199819992000圖二某家庭 1998~ 2000年收入【关联度分析】一.标准化(无量纲化) 以1998年收入为基准,将表一进行标准化(无量纲化)处理后得表二:表二标准化后的数列表年度1998 1999 2000 收入总收入(X) 1 1.5 1.2 0薪资收入(X) 1 1.25 1.125 1投资收入(X) 1 1.2 1.4 2,,,,maxmax|Xk,Xk|二.求最大差值与最小差值0iik,,,,minmin|Xk,Xk| 0iik10为求得及值,必须先,,,,,,,,minmin|Xk,Xk|maxmax|Xk,Xk|0i0iikik 求出各比较数列与参考数列之「对应差数列表」如表三:表三对应差数列表年度maxmin 2000 1998 1999差值 kk差式,,,,|Xk,Xk| 0 0.25 0.075 0 0.25 01,,,,|Xk,Xk| 0 0.3 0.2 0 0.3 02由表三对应差数列表得知各比较数列对参考数列各点对应差值中之最小值:,,,,minmin|Xk,Xk|,0,即Δmin=0 0iik各比较数列对参考数列各点对应差值中之最大值:,,,,maxmax|Xk,Xk|,0.3,即Δmax=0.3 0iik三.关联系数计算:ξi(k)设分辨系数:ζ=0.5(一)、求比较数列X对参考数列X之关联系数ξ(k) 101,,min,,max0,0.5,0.3,11、 (1),,,1,01,(1),,max0,0.5,0.3,,min,,max0,0.5,0.3,2、(2),,,0.375 1,,(2),,max0.25,0.5,0.301,,min,,max0,0.5,0.3,(3),,,0.6673、 1,,(3),,max0.075,0.5,0.301(二)、求比较数列X对参考数列X之关联系数ξ(k) 20211,,min,,max0,0.5,0.3,21、 (1),,,1,02,(1),,max0,0.5,0.3,,min,,max0,0.5,0.3,2、 (2),,,0.3332,,(2),,max0.3,0.5,0.302 ,,min,,max0,0.5,0.3,3、 (3),,,0.4292,,(3),,max0.2,0.5,0.302 N1,,r,,,k四.求关联度 : ii,1kN(一)、比较数列X对参考数列X之关联度 10311,0.375,0.667,,r,,,k,,0.68 11k,133(二)、比较数列X对参考数列X之关联度 20311,0.333,0.429,,r,,,k,,0.587 22k,133五.结论由上列运算得知:r,0.68比较数列X对参考数列X之关联度 101r,0.587比较数列X对参考数列X之关联度 202rr, 21故该家庭总收入主要与薪资收入关联度较高。
六、练习:公路建设招标中取最接近标准者得标,请问何者得标,设分辨系数:ζ=0.5标准标,,A厂 , B厂 , C厂 , ,,,厂商及指标12造价(亿) 1.1 1.1 1.2 1.5建设期限(年) 1.3 1.8 1.5 1.3车流(百辆) 5 4 3 5 车速(公里/时) 110 80 110 100解题:一、标准化厂商及指标标准标, A厂 , B厂 , C厂 , ,,,,造价 1 1.00 1.09 1.36建设期限 1 1.38 1.15 1.0013车流 1 0.80 0 .60 1.00车速 1 0.73 1.00 0.91 二、对应差数列表maxmin,,,,,,,,,,,,|Xk,Xk||Xk,Xk||Xk,Xk|指标 kk010203 0.36 0.00 0.09 0.36 0.00 造价0.38 0.15 0.00 0.00 0.38 建设期限0.20 0.40 0.00 0.00 0.40 车流0.27 0.00 0.09 0.00 0.27 车速三、关联系数与关联度关联系数ξi(k) ξ( k) ξ( k) ξ(k) 1231.00 0.69 0.35 造价0.34 0.57 1.00 建设期限0.50 0.33 1.00 车流0.42 1.00 0.69 车速关联度 r i0.57 0.65 0.76 r , r , r 321答: C 厂得标, 为暸解分辨系数的设定对关联度是否造成影响,以下将分辨系数分别以0.2、0.4、0.6、0.8来计算,由以下的结果得知:分辨系数并不影响关联度的判别,但以分辨系数为 0.2 时关联度曲线倾斜角最大最具判断性。