21聚合物材料的动态力学性能测试
第四篇 聚合物材料的动态力学分析DMTA

(1)扭摆法
由振幅A可求得对数减量Δ :
ln A1 ln A2 ln A2 ln A3 ...... ln A A1 A ln 2 ..... ln n A2 A3 An1
式中:A1、A2、A3……An、An+1分别为个相应振幅的宽 度。 剪切模量G’由曲线求得,与1/P2成正比; 损耗模量G”和内耗角正切tgδ计算:
E" tg E'
—损耗因子
2、聚合物力学性质与温度、频率、时间的关系
聚合物的性质与温度有关,与施加于材料上外力 作用的时间有关,与外力作用的频率有关。 为了了解聚合物的动态力学性能,我们有必要进 行宽广的温度范围对性能的测定,简称温度谱; 在宽广的频率范围内进行测定,简称频率谱。
动态力学曲线
动态力学曲线
频率谱—在恒温、恒应力下,测量 动态模量及损耗随频率变化的试验 ,用于研究材料力学性能与速率的 依赖性。图14-4是典型非晶态聚合 物频率谱图。 当外力作用频率ω» 链段运动最可 几频率ω0时,E’很高,E”和tanδ 都很小;当ω« ω0时,材料表现出 理想的高弹态,E’很小,E”和 tanδ都很小;当ω=ω0时链段运 动有不自由到自由,即玻璃化转变 ,此时E’急剧变化,E”和tanδ都 达到峰值。
图14-4 lgE’、lgE”和tanδ对lgω关系
通过测定聚合物的DMA谱图,可以了解到材料在 外力作用下动态模量和阻尼随温度和频率变化的 情况,所测的动力学参数有效地反映了材料分子 运动的变化,而分子运动是与聚合物的结构和宏 观性能紧密联系在一起的,所以动态力学分析把 了解到的分子运动作为桥梁,进而达到掌握材料 的结构与性能的关系。
(二)强迫共振法
指强迫试样在一定频率范围内的恒幅力作用下发生振 动,测定共振曲线,从共振曲线上的共振频率与共振 峰宽度得到储能模量与损耗因子的方法。 A 共振峰宽度:共振曲线上 2 处所对应的两个频率之 差 f r f2 f1;有时也取最大振幅的一半时两频率之 差。 2 f 或 f 储能模量正比于 r r ( fr为共振频率) ; tan f r f r 损耗因子: A
广东工业大学-高分子近代测试技术-第1章 概述-第2章 FTIR-第3章-拉曼

35
聚碳酸酯(PC)
由于聚碳酸酯 光学性能好, 常作为较好的 透光材料;力 学性能强,耐 热,可作为婴 儿奶瓶,水杯 等。
36
聚甲基丙烯酸甲酯 PMMA
聚甲基丙烯酸甲酯(PMMA, Poly methyl methactylate ) ✓ 结构式
✓ 性质 ✓ 优点 ✓ 缺点
一、高分子材料的定性鉴定方法
了解样品的来源、用途和性能 对样品的外观(物理状态、透明度、颜 色、光泽)进行观察 燃烧试验 溶解性试验
常见高聚物的燃烧特性
高聚物名称 难易性
火焰特点
试样的状态
气味
酚醛树脂 难
黄色带火星
膨胀龟裂
苯酚甲醛味
聚乙烯
可直接点火
聚氯乙烯 难
聚苯乙烯 可直接点火
底部蓝色、顶部黄色 熔融落下
✓ 用途
非晶体聚合物;透光率92%;HDT 74 ℃ ~102 ℃ 高透明性;耐候性佳;刚性佳;易染色 耐化学性差;长期使用温度最高为93 ℃ ;应力集中处 易碎化 灯罩、窗玻璃、标示牌、光学透镜
37
热固性塑料--(聚醛类)
常见的热固性塑料有:胶木、电玉、装饰板 及不饱和聚酯塑料等。
电插头(酚醛树脂)
11
聚乙烯制品---薄膜类
12
13
14
聚丙烯 PP
聚丙烯(PP, Polypropylene)
CH3
✓ 性质 质轻, ρ 0.9g/cm3, 白色透明 ✓ 优点 易染色;耐湿性佳;耐化性佳;高铰链特性 ✓ 分类 均聚聚丙烯,共聚聚丙烯,高结晶聚丙烯 ✓ 用途 水管、胶膜、容器、汽车保险杆、仪表板、铰链
胶木手柄(酚醛树脂—木粉)
纽扣(脲醛树脂)
(完整版)高分子材料基础——习题

第一章一.选择题1.1907年,世界上第一个合成树脂()也即电木,投入工业化生产。
A.脲醛树脂B.有机硅树脂C.醇醛树脂D.酚醛树脂2.世界经济的四大支柱产业是信息工业、能源工程、生物工程和()。
A.木材工业B.材料工业C.金属工业D.家具工业3.以下哪一种材料()属于合成高分子材料。
A.聚氯乙烯B.头发C.硅酸钠D.蛋白质4.()双键既可均裂,也可异裂,因此可进行自由基聚合或阴阳离子聚合。
A.烯类单体的C—CB.醛、酮中羰基C.共轭D.不存在5.分子中含有()基团,如烷基、烷氧基、苯基、乙烯基等,碳—碳双键上电子云增加,有利于阳离子聚合进行。
A.吸电子B.推电子C.极性D.非极性6.分子中含有(A)基团,如腈基、羰基(醛、酮、酸、酯)等有利于阴离子聚合进行。
A.吸电子B.推电子C.极性D.非极性7.连锁聚合反应每一步的速度和活化能(A)。
A.相差很大B.相差不大C.没有规律D.完全相同8.多数()反应是典型的逐步聚合反应。
A.自由基聚合B.阳离子聚合C.缩聚D.加成9.()可分离出中间产物,并使此中间产物再进一步反应。
A.自由基聚合B.阳离子聚合C.连锁聚合D.逐步聚合10.羧基在中和反应中的活性中心是()。
A.—COOHB.HC.—OHD.—COO11.羧基在酯化反应中的活性中心是()。
A.—COOHB.HC.—OHD.—COO二.填空题1.高分子化合物简称(),又称()或(),是指分子很长很大,相对分子质量很高的化合物。
2.当一个化合物的()足够大,以致多一个链节或少一个链节不会影响其基本性能时,称为()。
3.聚合物的形成是指()通过一定的化学反应,以一定的()方式以共价键彼此连接起来的。
4.1965年我国用人工合成的方法制成(),这是世界上出现的第一个(),对于揭开生命的奥秘有着重大的意义。
5.按性能分类,高分子材料主要包括()、()和()三大类。
6.按主链元素组成分类,高分子材料主要包括()、()和()。
聚合物动态力学性能的测定.

实验7 聚合物动态力学性能的测定聚合物材料,如塑料、橡胶、纤维及其复合材料等都具有粘弹性,用动态力学的方法研究聚合物材料的粘弹性,已证明是一种非常有效的方法。
材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下作出的力学响应。
测定材料在一定温度范围内的动态力学性能的变化即为动态力学分析(dynamic mechanical thermal analysis, DMTA )一、二、实验目的了解动态力学分析的测量原理及仪器结构。
了解影响动态力学分析实验结果的因素,正确选择实验条件。
掌握动态力学分析的试样制备及测试步骤。
掌握动态力学分析在聚合物分析中的应用。
实验原理聚合物的粘弹性是指聚合物既有粘性又有弹性的性质,实质是聚合物的力学松弛行为。
研究聚合物的粘弹性常采用正弦的交变应力,使试样产生的应变也以正弦方式随时间变化。
这种周期性的外力引起试样周期性的形变,其中一部分所做功以位能形式贮存在试样中,没有损耗,而另一部分所做功,在形变时以热的形式消耗掉。
应变始终落后应力一个相位,以拉伸为例,当试样受到交变的拉伸应力作用时,其交变应力和应变随时间的变化关系如下: 应力 )sin(0δϖσσ+=t (7-1))900(0<<δ应变t ϖεεsin 0= (7-2) 式中0σ和0ε为应力和形变的振幅;ω是角频率;δ是应变相位角。
式(7-1)和式(7-2)说明应力变化要比应变领先一个相位差δ,见图7.1。
图7.1 应力应变和时间的关系将式(7-1)展开为:δϖσδωσσsin cos cos sin 00t t += (7-3)即认为应力由两部分组成,一部分)cos sin (δϖσt 与应变同相位,另一部分)sin cos (0δϖσt 与应变相差2/π。
根据模量的定义可以得到两种不同意义的模量,定义'E 为同相位的应力和应变的比值,而''E 为相位差2/π的应力和应变的振幅的比值,即t E t E ϖεωεσcos ''sin '00+= (7-4)此时模量是一个复数,叫复数模量*E 。
动态粘弹谱仪测定聚合物的动态力学性能-高分子物理-实验13-14介绍

这里 J1(ω) =|J |cosδ,
也是应力作用频率ω的函数,所以J1(ω)、J2 (ω)也是频率ω的函数。
J1(ω)
δ
G
G2(ω)
•
|J|
∗
J2(ω)
δ
G1(ω) 图2 在复平面上复数模量 G 与储能模量G1(ω)和损耗模量G2(ω)(左),复数柔量 | J | 与储能柔量J1(ω) 和损耗柔量J2(ω) 的关系(右)
测 试 方 法 频 率 范 围 /H z
σ(t) =
这里,
σ sinωt
是交变应力σ(t)
∧
自 由 振 动衰 减 法 扭 摆 扭 辫 受 迫 振 动共 振 法 振 簧 受 迫 振 动 非共 振 法 粘弹谱 仪 驻波 法 波 传 导 法 0 .1 - 1 0
4
σ
∧
1 0 - 5 x1 0
的峰值, 应变ε(t)将是时间 的什么函数?对虎克弹体,
1
的进步, 已有可能在实验中的任一时刻直接测量该时刻的振幅和相位差, 从而避免了扭摆和 扭辫实验中每一次都必须等待它慢慢衰减和动态振簧法每点必达共振而引起的实验时间过 长的不足。扭摆、扭辫、振簧和粘弹谱仪是一般高分子物理实验室中最常用的动态力学实验 方法,其中尤以动态粘弹谱仪最为人受用。 (2)λ ≈ b, 由于应力波长 λ 与聚合物试样尺寸 b 相近,应力波在聚合物试样中形成 驻波。测量驻波极大、驻波节点位置可计算得到杨氏模量 E 和损耗角正切 tgδ 。驻波法特 别适用于合成纤维力学行为的测定。 (3)λ << b, 是波传导法。由于应力波比聚合物试样小,应力波(通常使用声波)在 试样中传播。测定应力波的传播速度和波长的衰减可求得聚合物材料的模量 E 和损耗角正 切 tanδ 。显然,波传导法也特别适用于合成纤维力学行为的测定。 这里重要的是各种测试方法的频率范围。各种测试方法的频率范围为 维持应力 σ(t) 为正弦 函数
聚合物纳米复合材料的制备及其力学性能分析

聚合物纳米复合材料的制备及其力学性能分析聚合物纳米复合材料是一种具有很高应用价值的新型材料,它可以将不同材料的优点融合在一起,从而得到更好的性能表现。
在这篇文章中,我们将详细介绍聚合物纳米复合材料的制备方法和力学性能分析。
一、聚合物纳米复合材料的制备聚合物纳米复合材料的制备方法有很多,其中最常见的是溶液共混法和原位聚合法。
1. 溶液共混法:这种方法的原理是将纳米颗粒和聚合物放入同一溶剂中,经过搅拌和混合,使颗粒和聚合物相互溶解,最终形成聚合物纳米复合材料。
这种方法制备的聚合物纳米复合材料通常具有比较均匀的颗粒分布和较好的机械性能。
2. 原位聚合法:这种方法的原理是将聚合物的原料和纳米颗粒放在一起进行反应,通过化学反应的过程将聚合物和纳米颗粒形成复合材料。
这种方法制备的聚合物纳米复合材料通常具有比较强的化学结合力和良好的加工性能。
二、聚合物纳米复合材料的力学性能分析聚合物纳米复合材料的力学性能是其最重要的性能之一。
力学性能的好坏直接影响着材料的实际应用效果。
聚合物纳米复合材料的力学性能分析可以通过以下两种方法来进行。
1. 材料力学性能测试:通过拉伸、弯曲、压缩等测试方式,可以得到聚合物纳米复合材料的机械性能指标,包括弹性模量、屈服强度、断裂韧性等。
这些指标能够反映聚合物纳米复合材料的材料硬度、强度和耐久性等方面的实际表现。
2. 材料结构分析:通过扫描电镜、X射线衍射等实验手段,可以深入分析聚合物纳米复合材料的微观结构和晶体结构,得到材料的物理结构参数,比如晶格常数、结晶度等。
这些物理结构参数与材料的力学性能密切相关,能够帮助提高聚合物纳米复合材料的性能和制备工艺。
三、聚合物纳米复合材料的应用前景聚合物纳米复合材料具有很广阔的应用前景,在汽车、航空、电子等领域都有着广泛的应用。
在汽车领域中,利用聚合物纳米复合材料可以制造更轻、更坚固和更节能的汽车结构材料;在航空领域中,将聚合物纳米复合材料应用于飞机轻量化上,可以有效提高飞机性能和降低油耗;在电子领域中,聚合物纳米复合材料可用于制备导电材料、透明材料等,为电子器件的制造提供重要的支持。
聚氨酯制备
第2章实验部分2.1实验原料及仪器2.1.1实验原料实验用到的主要试剂见表2.1。
表2.1实验主要原料试剂名称缩写纯度生产厂家甲苯二异氰酸酯TDI 分析纯上海凌峰化学试剂有限公司聚氧化丙烯二醇1000 PPG1000 工业级天津石化三厂聚氧化丙烯二醇2000 PPG2000 工业级天津石化三厂聚氧化丙烯二醇2000 TDB2000 工业级天津石化三厂聚四氢呋喃醚二醇1000 PTMG1000 工业级天津石化三厂聚氧化丙烯三醇1000 TMN1000 工业级天津石化三厂凤凰牌环氧树脂6101 E-44 工业级江苏三木化工集团有限公司正丁醇n-butanol 分析纯国药集团化学试剂有限公司三羟甲基丙烷TMP 工业级天津市博迪化工有限公司2,4-二氨基-3,5-二甲硫基氯苯Tx-2 分析纯国药集团化学试剂有限公司二端氨基低聚醚胺D2000 工业级江苏三木化工集团有限公司三端氨基低聚醚胺T403 工业级江苏三木化工集团有限公司盐酸HCl 分析纯国药集团化学试剂有限公司碳酸钠Na2CO3分析纯国药集团化学试剂有限公司二正丁胺C2H8N2分析纯国药集团化学试剂有限公司丙酮C3H6O 分析纯国药集团化学试剂有限公司乙醇C2H6O 分析纯国药集团化学试剂有限公司乙醇C2H6O 工业级哈尔滨华信化工有限公司2.1.2实验仪器实验室用的主要仪器设备见表2.2。
表2.2实验使用的主要仪器设备设备名称设备型号生产厂家环境力学分析谱仪粘弹仪DMA 50 法国METRA VIB公司动态热分析仪DMA+450 法国METRA VIB公司差示扫描量热仪(DSC)Q800 美国TA公司的Q800 FT-IR Spectrometer FT-IR 200美国V ARIAN公司数显邵尔A硬度计TH-200 北京时代之峰科技有限公司FA2004型电子分析天平FA2004上海天平仪器厂DK-98-1电热恒温水浴锅DK-98-1天津市泰斯特仪器有限公司电热恒温真空干燥箱DZF 上海跃进医疗器械厂数显式鼓风干燥箱GZX-GF-Ⅱ上海跃进医疗器械厂2.2材料的制备2.2.1阻尼层材料约束复合阻尼材料主要由约束层和阻尼层共同组成,阻尼层材料主要为复合材料提供阻尼性能。
21聚合物材料的动态力学性能测试
实验15 聚合物材料的动态力学性能测试在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。
动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。
这些物理量是决定聚合物使用特性的重要参数。
同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。
1. 实验目的(1)了解聚合物黏弹特性,学会从分子运动的角度来解释高聚物的动态力学行为。
(2)了解聚合物动态力学分析(DMA)原理和方法,学会使用动态力学分析仪测定多频率下聚合物动态力学温度谱。
2. 实验原理高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。
它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。
当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。
能量的损耗可由力学阻尼或内摩擦生成的热得到证明。
材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。
如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。
形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。
如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。
假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。
聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。
在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。
聚合物动态力学性能测定
实验7 聚合物动态力学性能的测定聚合物材料,如塑料、橡胶、纤维及其复合材料等都具有粘弹性,用动态力学的方法研究聚合物材料的粘弹性,已证明是一种非常有效的方法。
材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下作出的力学响应。
测定材料在一定温度范围内的动态力学性能的变化即为动态力学分析(dynamic mechanical thermal analysis, DMTA )一、二、实验目的了解动态力学分析的测量原理及仪器结构。
了解影响动态力学分析实验结果的因素,正确选择实验条件。
掌握动态力学分析的试样制备及测试步骤。
掌握动态力学分析在聚合物分析中的应用。
实验原理聚合物的粘弹性是指聚合物既有粘性又有弹性的性质,实质是聚合物的力学松弛行为。
研究聚合物的粘弹性常采用正弦的交变应力,使试样产生的应变也以正弦方式随时间变化。
这种周期性的外力引起试样周期性的形变,其中一部分所做功以位能形式贮存在试样中,没有损耗,而另一部分所做功,在形变时以热的形式消耗掉。
应变始终落后应力一个相位,以拉伸为例,当试样受到交变的拉伸应力作用时,其交变应力和应变随时间的变化关系如下: 应力 )sin(0δϖσσ+=t (7-1))900(0<<δ应变t ϖεεsin 0= (7-2) 式中0σ和0ε为应力和形变的振幅;ω是角频率;δ是应变相位角。
式(7-1)和式(7-2)说明应力变化要比应变领先一个相位差δ,见图7.1。
图7.1 应力应变和时间的关系将式(7-1)展开为:δϖσδωσσsin cos cos sin 00t t += (7-3)即认为应力由两部分组成,一部分)cos sin (δϖσt 与应变同相位,另一部分)sin cos (0δϖσt 与应变相差2/π。
根据模量的定义可以得到两种不同意义的模量,定义'E 为同相位的应力和应变的比值,而''E 为相位差2/π的应力和应变的振幅的比值,即t E t E ϖεωεσcos ''sin '00+= (7-4)此时模量是一个复数,叫复数模量*E 。
聚合物材料的动态力学分析
❖ 聚合物材料具有粘弹性,其力学性能受时间、频率、温度影 响很大。无论实际应用还是基础研究,动态热力分析均已成 为研究聚合物材料性能的最重要的方法之一:
1. 可以给出宽广温度、频率范围的力学性能,用于评价材料 总的力学行为。
2. 检测聚合物的玻璃化转变及次级松弛过程,这些过程均与聚 合物的链结构和聚集态结构密切相关。当聚合物的化学组成、 支化和交联、结晶和取向等结构因素发生变化时,均会在动态 力学谱图上体现出来,这使得动态热力分析成为一种研究聚合 物分子链运动以及结构与性能关系的重要手段。
复数柔量D*——复 数模量的倒数
D*
1 E*
D* D D
D D* cos
D D* sin
tan D
D
D
E2
E E2
(13) (14) (15)
(16)
(17)
D
E E2 E2
D’——储能柔量;D’’——损耗柔量
(18)
当试样受到剪切形变也有类似的表示方式:
G* G G G D* cos G G* sin tan G
复。
三、松弛:材料在外部变量的作用下,其性质随时间的变化叫 做松弛。
四、力学松弛:高聚物在力的作用下力学性质随时间而变化的 现象称为力学松弛。
❖ 力的作用方式不同,力学松弛的表现形式不同。 1. 静态粘弹性:在恒定应力或恒定应变作用下的力学松弛。最
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验15 聚合物材料的动态力学性能测试在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。
动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。
这些物理量是决定聚合物使用特性的重要参数。
同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。
1. 实验目的(1)了解聚合物黏弹特性,学会从分子运动的角度来解释高聚物的动态力学行为。
(2)了解聚合物动态力学分析(DMA)原理和方法,学会使用动态力学分析仪测定多频率下聚合物动态力学温度谱。
2. 实验原理高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。
它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。
当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。
能量的损耗可由力学阻尼或内摩擦生成的热得到证明。
材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。
如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。
形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。
如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。
假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。
聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。
在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。
图2-61(b)是典型的黏弹性材料对正弦应力的响应。
正弦应变落后一个相位角。
应力和应变可以用复数形式表示如下。
σ*=σ0exp(iωt)γ*=γ0 exp[i (ωt-δ) ]式中,σ0和γ0为应力和应变的振幅;ω是角频率;i是虚数。
用复数应力σ*除以复数形变γ*,便得到材料的复数模量。
模量可能是拉伸模量和切变模量等,这取决于所用力的性质。
为了方便起见,将复数模量分为两部分,一部分与应力同位相,另一部分与应力差一个90o 的相位角,如图2-61(c)所示。
对于复数切变模量E*=E′+i E″(2-60)式中E′=∣E*∣cosδE″=∣E*∣sinδ显然,与应力同位相的切变模量给出样品在最大形变时弹性贮存模量,而有相位差的切变模量代表在形变过程中消耗的能量。
在一个完整周期应力作用内,所消耗的能量△W与所贮存能量W之比,即为黏弹性物体的特征量,叫做内耗。
它与复数模量的直接关系为=2π=2πtanδ(2-61) 这里tanδ称为损耗角正切。
图2-61 应力和应变相位角关系聚合物的转变和松弛与分子运动有关。
由于聚合物分子是一个长链的分子,它的运动有很多形式,包括侧基的转动和振动、短链段的运动、长链段的运动以及整条分子链的位移各种形式的运动都是在热能量激发下发生的。
它既受大分子内链段(原子团)之间的内聚力的牵制,又受分子链间的内聚力的牵制。
这些内聚力都限制聚合物的最低能位置。
分子实际上不发生运动,然而随温度升高,不同结构单元开始热振动,并不断外加振动的动能接近或超过结构单元内旋转位垒的热能值时,该结构单元就发生运动,如移动等,大分子链的各种形式的运动都有各自特定的频率。
这种特定的频率是由温度运动的结构单元的惯量矩所决定的。
而各种形式的分子运动的开始发生便引起聚合物物理性质发生变化而导致转变或松弛,体现在动态力学曲线上的就是聚合物的多重转变(如图2-62所示)。
线形无定形高聚物中,按温度从低到高的顺序排列,有5种可能经常出现的转变。
δ转变侧基绕着与大分子链垂直的轴运动。
γ转变主链上2~4个碳原子的短链运动——沙兹基(Schatzki)曲轴效应(如图2-63)。
β转变主链旁较大侧基的内旋转运动或主链上杂原子的运动。
α转变由50~100个主链碳原子的长链段的运动。
TⅡ转变液-液转变,是高分子量的聚合物从一种液态转变为另一种液态,两种液态都是高分子整链运动,表现为膨胀系数发生拐折。
图2-62 聚合物的多重转变示意图图2-63 Schatzki曲轴效应示意图1-第1个键;2-旋转轴;3-第7个键在半结晶高聚物中,除了上述5种转变外,还有一些与结晶有关的转变,主要有以下转变。
T m转变:结晶熔融(一级相变)。
T cc转变:晶型转变(一级相变),是一种晶型转变为另一种晶型。
T ac转变:结晶预溶。
通常使用动态力学仪器来测量材料形变对振动力的响应、动态模量和力学损耗。
其基本原理是对材料施加周期性的力并测定其对力的各种响应,如形变、振幅、谐振波、波的传播速度、滞后角等,从而计算出动态模量、损耗模量、阻尼或内耗等参数,分析这些参数变化与材料的结构(物理的和化学的)的关系。
动态模量E′、损耗模量E″、力学损耗tanδ=E″/ E′是动态力学分析中最基本的参数。
3. 实验设备和材料(1)仪器DMA Q800是由美国TA INSTRUMENTS公司生产的新一代动态力学分析仪(见图2-64)。
它采用非接触式线性驱动马达代替传统的步进马达直接对样品施加应力,以空气轴承取代传统的机械轴承以减少轴承在运行过程中的摩擦力,并通过光学读数器来控制轴承位移,精确度达1nm;配置多种先进夹具(如三点弯曲、单悬臂、双悬臂、夹心剪切、压缩、拉伸等夹具),可进行多样的操作模式,如共振、应力松弛、蠕变、固定频率温度扫描(频率范围为0.01~210Hz,温度范围为-180~600℃)、同时多个频率对温度扫描、自动张量补偿功能、TMA等,通过随机专业软件的分析可获得高解析度的聚合物动态力学性能方面的数据。
(测量精度:负荷0.0001N,形变1nm,Tanδ0.0001,模量1%)。
本实验使用单悬臂夹具进行试验(见图2-65)。
图2-64 DMA Q800动态力学分析仪图2-65 单悬臂夹具示意1-六角螺母;2-可动钳;3-样品;4-夹具固定部分;5-中央锁母(2)试样聚甲基丙烯酸甲酯(PMMA)长方形样条。
试样尺寸要求:长a=35~40mm;宽b≤15mm;厚b≤5mm。
准确测量样品的宽度、长度和厚度,各取平均值记录数据。
4. 实验步骤(1)仪器校正(包括电子校正、力学校正、动态校正和位标校正,通常只作位标校正)将夹具(包括运动部分和固定部分)全部卸下,关上炉体,进行位标校正(position calibration),校正完成后炉体会自动打开。
(2)夹具的安装、校正(夹具质量校正、柔量校正),按软件菜单提示进行。
(3)样品的安装1)放松两个固定钳的中央锁螺,按“FLOAT”键让夹具运动部分自由。
2)用扳手起可动钳,将试样插入跨在固定钳上,并调正;上紧固定部位和运动部位的中央锁螺的螺丝钉。
3)按“LOCK”键以固定样品的位置。
4)取出标准附件木盒内的扭力扳手,装上六角头,垂直插进中央锁螺的凹口内,以顺时针用力锁紧。
对热塑性材料建议扭力值0.6~0.9N.m。
(4)实验程序1)打开主机“POWER’’键,打开主机“HEATER”键。
2)打开GCA的电源(如果实验温度低于室温的话),通过自检,“Ready”灯亮。
3)打开控制电脑,载进“Thermal Solution”,取得与DMA Q800的连线。
4)指定测试模式(DMA、TMA等5项中1项)和夹具。
5)打开DMA控制软件的“即时讯号”(real time signal)视窗,确认最下面的。
“Frame Temperature”与“Air Pressure”都已“OK”,若有接GCA则需显示“GCA Liquid Level:XX%full”。
6)按"Furnace"键打开炉体,检视是否需安装或换装夹具。
若是,请依标准程序完成夹具的安装。
若有新换夹具。
则重新设定夹具的种类,并逐项完成夹具校正(MASS/ZERO/COMPLIANCE)。
若沿用原有夹具,按“FLOAT”键,依要领检视驱动轴漂动状况,以确定处于正常。
7)正确的安装好样品试样,确定位置正中没有歪斜。
对于会有污染、流动、反应、黏结等顾忌的样品,需事先做好防护措施。
有些样可能需要一些辅助工具,才能有效地安装在夹具上。
8)编辑测试方法,并存档。
9)编辑频率表(多频扫描时)或振幅表(多变形量扫描时),并存档。
10)打开“Experimental Parameters”视窗,输入样品名称、试样尺寸、操作者姓名及一些必要的注解。
指定空气轴承的气体源及存档的路径与文件名,然后载入实验方法与频率表或振幅表。
11)打开“Instrument Parameters”视窗,逐项设定好各个参数。
如数据取点间距、振幅、静荷力、Auto-strain、起始位移归零设定等。
12)按下主机面板上面的“MEASURE”键,打开即时讯号视窗,观察各项讯号的变化是否够稳定(特别是振幅),必要时调整仪器参数的设定值(如静荷力与Auto-Strain),以使其达到稳定。
13)确定好开始(Pre-view)后便可以按“Furnace”键关闭炉体,再按“START”键,开始正式进行实验。
14)只要在连线(ON-LINE)状态下,DMA Q800所产生的数据会自动的、一次次的转存到电脑的硬盘中,实验结束后,完整的档案便存到硬盘罩。
15)假定不中途主动停止实验.刚会依据原先载入的实验方法完成整个实验,假如觉得实验不需要再进行的话。
可以按“STOP”键停止(数据有存档)或按“SCROL-STOP”或“REJECT”键停止(数据不存档)。
16)实验结束后,炉体与夹具会依据设定之“END Conditions”回复其状态,若有设定“GCA AUTO Fill”,则之后会继续进行液氮自动充填作业。
17)将试样取出,若有污染则需予以清除。
18)关机。
步骤如下。
按“STOP”键,以便贮存Position校正值。
等待5s后,使驱动轴真正停止。
关掉”HEATER”键。
关掉“POWER”键,此时自然与电脑离线。
关掉其他周边设备,如ACA、GCA、Compressor等。
进行排水(Compressor气压桶、空气滤清调压器、GCA)。
5. 数据处理打开数据处理软件“thermal analysis”,进入数据分析界面。
打开需要处理的文件,应用界面上各功能键从所得曲线上获得相关的数据,包括各个选定频率和温度下的动态模量E′、损耗模量E″以及阻尼或内耗tanδ,列表记录数据。