第九章:细胞骨架
09第九章细胞骨架

(4)应力纤维 )应力纤维(stress fiber) 广泛存在于真核细胞。成分:肌动蛋白、肌球蛋白、 广泛存在于真核细胞。成分 :肌动蛋白、肌球蛋白、原 肌球蛋白和α 肌动蛋白。 肌球蛋白和α-辅肌动蛋白。介导细胞间或细胞与基质表面的 粘着。 细胞贴壁与粘着斑的形成相关, 粘着。(细胞贴壁与粘着斑的形成相关,在形成粘合斑的质 膜下, 微丝紧密平行排列成束, 形成应力纤维, 膜下 , 微丝紧密平行排列成束 , 形成应力纤维 , 具有收缩功 能。) (5)参与胞质分裂 ) 收缩环由大量反向平行排列的微丝组成, 收缩环由大量反向平行排列的微丝组成,其收缩机制是 肌动蛋白和肌球蛋白相对滑动。 肌动蛋白和肌球蛋白相对滑动。
三、核纤层(Nuclear Lamina) 核纤层 (1)核纤层分布与形态结构 ) 核纤层蛋白(Lamin) (2)成分 )成分——核纤层蛋白 核纤层蛋白 (3)核纤层蛋白的分子结构及其与中间纤维蛋白的关系 ) 核纤层与中间纤维之间的共同点 两者均形成10nm纤维; 两者均形成10nm纤维; 10nm纤维 两者均能抵抗高盐和非离子去垢剂的抽提; 两者均能抵抗高盐和非离子去垢剂的抽提; 某些抗中间纤维蛋白的抗体能与核纤层发生交叉反应; 某些抗中间纤维蛋白的抗体能与核纤层发生交叉反应; 两者在结构上有密切的联系, 两者在结构上有密切的联系,说明核纤层蛋白是中间纤维 蛋白。 蛋白。
是由G-actin单体形成的多聚体,肌动蛋白单体具有 单体形成的多聚体, (1)MF是由 ) 是由 单体形成的多聚体 极性, 装配时呈头尾相接, 故微丝具有极性,既正极与负极之别。 极性 装配时呈头尾相接 故微丝具有极性,既正极与负极之别。 正极与负极都能生长, (2)体外实验表明,MF正极与负极都能生长,生长快的一 )体外实验表明, 正极与负极都能生长 端为正极,慢的一端为负极;去装配时,负极比正极快。 端为正极,慢的一端为负极;去装配时,负极比正极快。由于 G-actin在正极端装配,负极去装配,从而表现为踏车行为。 在正极端装配,负极去装配,从而表现为踏车行为。 在正极端装配 呈现出动态不稳定性, (3)体内装配时,MF呈现出动态不稳定性,主要取决于 )体内装配时, 呈现出动态不稳定性 主要取决于Factin结合的 结合的ATP水解速度与游离的 水解速度与游离的G-actin单体浓度之间的关 结合的 水解速度与游离的 单体浓度之间的关 系。 动态变化与细胞生理功能变化相适应。 (4)MF动态变化与细胞生理功能变化相适应。在体内 有些 ) 动态变化与细胞生理功能变化相适应 在体内, 微丝是永久性的结构, 有些微丝是暂时性的结构。 微丝是永久性的结构 有些微丝是暂时性的结构。
细胞生物学教程第九章细胞骨架

+
Treadmilling
细胞中大多数微丝结构处于动态的组装和去组装过程中,并通过这种方式实现其功能。 细胞松弛素(cytochalasin)可切断微丝纤维,并结合在微丝末端抑制肌动蛋白加合到微丝纤维上,特异性的抑制微丝功能。 鬼笔环肽(phalloidin)与微丝能够特异性的结合,使微丝纤维稳定而抑制其功能。荧光标记的鬼笔环肽可特异性的显示微丝。
原肌球蛋白(tropomyosin.Tm) 每个Tm的长度相当于7个肌动蛋白,呈长杆状。组成两条平行纤维,位于肌动蛋白双螺旋的沟中,主要作用是加强和稳定肌动蛋白丝,抑制肌动蛋白与肌球蛋白结合。 肌钙蛋白(troponin,Tn), 含三个亚基,肌钙蛋白C特异地与钙结合,肌钙蛋白T与原肌球蛋白有高度亲和力,肌钙蛋白I抑制肌球蛋白的ATP酶活性,主要作用是调节肌肉收缩。
第二节 微管 Microtubule, MT
微管在胞质中形成网络结构,作为运输路轨并起支撑作用。微管是由微管蛋白组成的管状结构,对低温、高压和秋水仙素敏感。
A fluorescently stained image of cultured epithelial cells showing the nucleus (yellow) and microtubules (red)
The Orientation of Microtubules in a Cell
PART ONE
五、微管的功能
支架作用
细胞内运输 是胞内物质运输的路轨。 涉及两大类马达蛋白:驱动蛋白kinesin,动力蛋白dyenin,均需ATP供能。 Kinesin发现于1985年,是由两条轻链和两条重链构成的四聚体 ,能向着微管(+)极运输小泡 。
胶质原纤维酸性蛋白glial fibrillary acidic protein 存在于星形神经胶质细胞和许旺细胞。起支撑作用。 波形纤维蛋白vimentin 存在于间充质细胞及中胚层来源的细胞中。 神经纤丝蛋白neurofilament protein 是由三种分子量不同的多肽组成的异聚体,功能是提供弹性使神经纤维易于伸展和防止断裂。
第九章_细胞骨架习题及答案

第九章细胞骨架本章要点:本章阐述了细胞骨架的基本涵义、细胞中存在的几种骨架体系的结构、功能及生物学意义。
要求重点掌握细胞质骨架的结构及功能。
一、名词解释1、细胞骨架:细胞骨架(Cytoskeleton)是指存在于真核细胞质内的中的蛋白纤维网架体系。
包括狭义和广义的细胞骨架两种概念。
广义的细胞骨架包括:细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。
狭义的细胞骨架指细胞质骨架,包括微丝、微管和中间纤维。
2、应力纤维:应力纤维是真核细胞中广泛存在的微丝束结构,由大量平行排列的微丝组成,与细胞间或细胞与基质表面的粘着有密切关系,可能在细胞形态发生、细胞分化和组织的形成等方面具有重要作用。
3、微管:在真核细胞质中,由微管蛋白构成的,可形成纺锤体、中心体及细胞特化结构鞭毛和纤毛的结构。
4、微丝:在真核细胞的细胞质中,由肌动蛋白和肌球蛋白构成的,可在细胞形态的支持及细胞肌性收缩和非肌性运动等方面起重要作用的结构。
5、中间纤维:存在于真核细胞质中的,由蛋白质构成的,其直径介于微管和微丝之间,在支持细胞形态、参与物质运输等方面起重要作用的纤维状结构。
6、踏车现象:在一定条件下,细胞骨架在装配过程中,一端发生装配使微管或微丝延长,而另一端发生去装配而使微管或微丝缩短,实际上是正极的装配速度快于负极的装配速度,这种现象称为踏车现象。
7、微管组织中心(MTOC):微管在生理状态及实验处理解聚后重新装配的发生处称为微管组织中心。
动物细胞的MTOC为中心体。
MTOC决定了细胞中微管的极性,微管的(-)极指向MTOC,(+)极背向MTOC。
8、胞质分裂环:在有丝分裂末期,两个即将分裂的子细胞之间产生一个收缩环。
收缩环是由大量平行排列的微丝组成,由分裂末期胞质中的肌动蛋白装配而成,随着收缩环的收缩,两个子细胞被分开。
胞质分裂后,收缩环即消失。
二、填空题1细胞质骨架__是一种复杂的蛋白质纤维网络状结构,能使真核细胞适应多种形状和协调的运动。
第9章 细胞骨架

分子马达的定义
◆肌球蛋白的结构
由重链和轻链组成,并组成三个结构域∶
●头部 含有与肌动蛋白、ATP结合的位点,负责产生力。 ●颈部 颈部通过同钙调素或类似钙调素的调节轻链亚基的结合 来调节头部的活性。 ●尾部 含有决定尾部是否同膜结合还是同其它的尾部结合的位
肌球蛋白的结构(Ⅱ型)
中心体与基体
中心体结构(电镜照片)
中 心 粒
四、微管的功能
1、支架作用:细胞中的微管就像混凝土中的 钢筋一样,起支撑作用,在培养的细胞中, 微管呈放射状排列在核外,(+)端指向质 膜。
2、影响细胞器的分布与走向
3、细胞内物质运输:微管起细胞内物质运输的路
轨作用,破坏微管会抑制细胞内的物质运输。图1 分子马达:能利用水解ATP将化学能转变为机 械能,有规则地沿微管运输货物的分子。主要有 驱动蛋白和胞质动力蛋白
微丝组装的踏车现象
体外组装过程中,当溶液中ATP-肌动蛋白 处于临界浓度时,微丝(+)端由于ATPactin添加而延长、(-)端由于ADP-actin 解离而缩短,表现出一种“踏车”现象。
图
微丝的蹋车现象和动态平衡
(三)作用于微丝的药物
◆细胞松弛素B(cytochalasins B) ◆鬼笔环肽(phalloidin)
第三节、中间纤维(intermediate filament,IF)(中间丝)
10nm纤维,因其直径介于肌粗丝和细丝之间, 故被命名 为中间纤维。IF几乎分布于所有动物细胞,往往形成一个网 络结构,特别是在需要承受机械压力的细胞中含量相当丰富。 如上皮细胞中。除了胞质中,在内核膜下的核纤层也属于IF。
图
微管的结构
微管蛋白(tubulin)
第九章细胞骨架

第九章细胞骨架第一篇:第九章细胞骨架第九章细胞骨架用电子显微镜观察经非离子去垢网架结构通常称为细胞骨架(cytoskeleton)。
细胞骨架包括微丝(microfilament,MF)、微管(microtube,MT)和中间丝(intermediate filament,IF)3种结构组分,他们都是由相应的蛋白亚基组装而成。
第一节微丝与细胞运动微丝又称肌动蛋白丝(actin filament)或纤维状肌动蛋白(fibrous actin,F-actin),这种直径为7nm的细胞骨架存在于所有真核细胞中。
微丝网格的空间结构与功能取决于所结合的微丝结合蛋白(miceofilament-associated proteins)的种类。
细胞内微丝的组装和去组装的动力学过程与细胞突起(微绒毛、伪足)的形成、细胞质分裂、细胞内物质运输、肌肉收缩、吞噬作用、细胞迁移等多种细胞运动过程相关。
一、微丝的组成及其组装(一)结构与成分微丝的主要结构成分是肌动蛋白(actin)。
肌动蛋白在细胞内有两种存在形式,即肌动蛋白单体(又称球状肌动蛋白,G-actin)和由单体组装而成的纤维状肌动蛋白。
肌动蛋白在生物进化过程中是高度保守的。
(二)微丝的组装及动力学特征肌动蛋白单体组装称微丝的过程大体上可以分为几个阶段:第一个阶段是成核反应,即形成至少有2~3个肌动蛋白单体组成的寡聚体,然后开始多聚体的组装。
第二个阶段是纤维的延长。
在体外组装过程中有时可见到微丝的正极由于肌动蛋白亚基的不断添加二延长,而负极则由于肌动蛋白亚基去组装而缩短,这一现象称为踏车行为(treadmilling)。
(三)影响微丝组装的特异性药物一些药物可以影响肌动蛋白的组装和去组装,从而影响细胞内微丝网格的结构。
细胞松弛素(cytochalasin),与微丝结合后可以将微丝切断,并结合在微丝末端阻抑肌动蛋白在该部位的聚合,但对微丝的解聚没有明显的影响。
鬼笔环肽(philloidin),与微丝表面有强亲和力,但不与肌动蛋白单体结合,对微丝的解聚有抑制作用。
第九章 细胞骨架

② 重链上含有两个结合位点:一是ATP结合位
点;二是微管结合位点。
③ 胞质动力蛋白轻链端还结合着动力蛋白激
活蛋白复合体,介导胞质动力蛋白与需转运物质 之间的结合。
胞质动力蛋白的结构示意图
胞质动力蛋白的功能:
• 膜结合蛋白:使微丝与细胞质膜结合。
单体隔离蛋白
封端蛋白
交联蛋白
成核蛋白
成束蛋白
单体聚合蛋白
膜结合蛋白 纤维-解聚蛋白
纤维切割蛋白
各种微丝结合蛋白功能示意图
三、微丝的功能
1、维持细胞形态,赋予质膜机械强度
微丝遍及胞质各处,其中集中分布于质膜下的微丝与微 丝结合蛋白形成网络结构,维持细胞形态,赋予质膜机械强 度,如血红细胞膜内表面的膜骨架。
尾部结构域:决定肌球蛋
白的功能。
8、参与肌肉收缩
◆肌肉的细微结构(以骨骼肌为例)
◆肌小节的组成 ◆粗丝和细丝的组成 ◆肌肉收缩的滑动丝模型
第二节 微管及其功能
微管:是由微管蛋白组成的外径为24nm,内径为 15nm的中空管状结构。
一、微管的结构组成
α亚基上有GTP结合位点:该位点能结合GTP,但不能水解
2、基体的功能
形成细菌的鞭毛和纤毛,参与细菌的运动。
六、微管结合蛋白(P288) (Microtubule Associated Protein, MAP)
微管结合蛋白是一类与微管相结合的蛋白,对微 管网络的形成和功能进行调节。一般来说,MAP至 少含有两个结构域:一个是结合微管的结构域,具 有稳定微管的作用;另一个是向外突出的结构域, 负责与微管外其他细胞组分(如中间纤维、质膜等)
第九章__细胞骨架

相同细胞中微管、微丝和中间纤维的荧光定位 三种不同荧光染料探针同相应的蛋白纤维结合从而使细胞内的纤维被染色。(a)含有
肌动蛋白的纤维被蘑菇毒素鬼笔环肽标记; (b)含微管蛋白的微管被微管蛋白的抗体标记; (c)中间纤维被抗波形蛋白的抗体标记。三种混合的荧光标记物, 各自的光都不强, 并且各 自的荧光波长不同。检查时, 用不同的滤光片 , 每次滤去两种光
2+ + + Ca 、低浓度Na 、K (微丝趋于解聚成actin)
纤维状肌动蛋 白(MF)
单体G-肌动蛋白和 F-肌动蛋白的结构 (a)非肌细胞中β-Actin单体的结构模型, 像是扁平的分子,由体积相等的 两个部分组成, 中间有一个裂口, 并且有四个亚结构域, 用Ⅰ-Ⅳ表示。 ATP在裂口的地方与肌动蛋白结合。N端和C末端位于亚结构域Ⅰ。(b) 电子显微镜观察的经负染的丝状肌动蛋白的形态。(c)肌动蛋白纤维亚 基的装配模型。
二、微丝网络动态结构的调节与细胞运动
(一)非肌肉细胞内微丝的结合蛋白
纯化的肌动蛋白在体外能够聚合形成肌动蛋白纤
维,但是这种纤维不具有相互作用的能力,也不 能行使某种功能, 原因是缺少微丝结合蛋白。
■ 微丝结合蛋白的种类 肌细胞和非肌细胞中都有微丝结合蛋白,至少已 分离出100多种。
1. 几类主要的微丝结合蛋白
在适宜的温度,存在ATP、K 、Mg 离子的条件下,肌动蛋白单体可自组装为纤维。
ATP-actin(结合 ATP 的肌动蛋白)对微丝纤维末端的亲和力高,ADP-actin 对纤维末端的 亲和力低,容易脱落。当溶液中 ATP-actin 浓度高时,微丝快速生长,在微丝纤维的两端 形成 ATP-actin“帽子”,这样的微丝有较高的稳定性。伴随着 ATP水解,微丝结合的 ATP 就变成了 ADP,当 ADP-actin 暴露出来后,微丝就开始去组装而变短。
第九章 细胞骨架

维以十分有序的方式组装在一起。
粗肌丝的成分是肌球蛋白,细肌丝的成分主要是肌动 蛋白,辅以原肌球蛋白和肌钙蛋白。
• 肌肉收缩是由肌动蛋白丝与肌球蛋白丝的相对滑 动所致。
原肌球蛋白(tropomyosin, Tm)由两条平行的多肽链形
成α-螺旋构型,位于肌动蛋白螺旋沟内,一个Tm分子 的长度相当于7个肌动蛋白。Tm结合于细肌丝,调节肌 动蛋白与肌球蛋白头部的结合 肌钙蛋白 (Troponin, Tn)为复合物,包括三个亚基: Tn-C (Ca2+ 敏感性蛋白)能特异与Ca2+结合,Tn-T与原肌 球蛋白结合;Tn-I抑制肌球蛋白ATPase活性。细肌丝中
组分的相互作用来实现。
迁移过程:前端伸出突起 →
突起与基质之间形成锚定
位点使突起附着在基质表面 → 以附着点为支点向前移动 → 后部的附着点与基质脱离,细胞的尾部前移。 在此过程中,都涉及肌动蛋白以多种方式发挥作用。 在迁移细胞的前缘,肌动蛋白的聚合使细胞伸出宽而扁
平的片状伪足,内部充满正向排列的微丝束,正极通常位于
和依赖于微丝的肌球蛋白(myosin)这三类蛋白质
超家族成员。 它们既能与微管/微丝结合,又能与一些细胞器 或膜状小泡特异性结合,利用水解ATP所产生的能量 有规则地沿微管或微丝等细胞骨架纤维运输所携带
的货物。
1. II型肌球蛋白
II型肌球蛋白存在于多种细胞,由2条重链和4 条轻链组成高度不对称分子。 • 在肌细胞中,II型肌 球蛋白组装成肌原纤维 的粗丝,其含量约占肌 细胞总蛋白的一半。 • 在非肌细胞中,II型 肌球蛋白参与胞质分裂 环和张力纤维的活动及 介导物质的运输。
(五)微绒毛(microvillus)
小肠上皮细胞微绒毛的轴心微丝是非肌肉细胞中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为微丝的踏车行为。
微丝特异性药物
细胞松弛素B(cytochalasin B)
由肌动蛋白和肌球蛋白-II 组成
应力纤维结构模型
Myosin I和Myosin II 的功能
(5) 收缩环
(6) 胞质环流
(7) 肌肉收缩
肌球蛋白(myosin)
组成
• 两条重链 • 四条轻链ຫໍສະໝຸດ 结构特点• 两个头部
• 与肌动蛋白纤维结合,水解 ATP
• 一个尾部
• 装配成粗丝
肌球蛋白分子结构
为什么中心体是微管的组织中心
结构 在植物中没 有中心体
中心体
微管的成核反应与 -tubulin蛋白有关
The centrosome is the major MTOC of animal cells
基体的结构
微管特异性药物
(1) 秋水仙素(Colchicine)
与微管二聚体结合, 阻止微管的聚合
各种微丝结合蛋白
末端阻断蛋白 单体隔离蛋白
交联蛋白
膜结合蛋白
去聚合蛋白
纤维切割蛋白
微丝的功能
(1) 维持细胞形态
(2) 细胞迁移
细胞迁移分为四步:
①:微丝纤维生长,使细胞表面突出,形成片
足(lamellipodium);
②在片足与基质接触的位置形成粘着斑;
③在myosin的作用下微丝纤维滑动,使细胞主
不同的动力蛋白沿着微管向不同的方向运输货物
动力蛋白的移动于ATP和ADP的转化相关.
轴突运输
色素颗粒的运输
色素颗粒的运输
C. 细胞器的定位
D. 纤毛和鞭毛的运动
D. 纤毛和鞭毛的运动
鞭毛和纤毛的结构
D. 纤毛和鞭毛的运动
滑动模型
E. 纺锤体和染色体的移动
中间纤维(Intermediate filaments, Ifs)
(2) 紫杉醇(Taxol)
与微管结合, 稳定微管
微管相关蛋白
• 微管相关蛋白(microtubule associated proteins MAPs)分子至少包含一个结合微管的结 构域和一个向外突出的结构域。突出部位伸到微 管外与其它细胞组分(如微管束、中间纤维、质 膜)结合。 • 主要功能是
Intermediate filaments
光镜下显示细胞骨架:红色荧光显示微丝黄色显示微管兰色显示细胞核
细胞骨架构成
微丝(microfilament)
微管(microtubule) 中间纤维(intemediate filament)
广义的细胞骨架还包括
核骨架(nucleoskeleton) 核纤层(nuclear lamina) 细胞外基质(extracellular matrix)
• ①促进微管聚集成束;
• ②增加微管稳定性或强度;
• ③促进微管组装。
微管结合蛋白
• 与微管结合,调节微管活性的一类蛋白。
– – – – MAP-1 MAP-2 tau MAP-4
微管的功能
A.维持细胞形态 B.细胞内物质运输 C. 细胞器定位 D. 纤毛与鞭毛的运动
E. 纺锤体与染色体的形成
第九章:细胞骨架 (Cytoskeleton)
• 细胞骨架(Cytoskeleton)是真核细胞中的蛋白质纤
维网架体系,它对于维持细胞的形状、细胞的运动、
细胞内的物质运输、染色体的分离和细胞的分裂起
着重要的作用。
细胞骨架
微管
微丝
中间纤维
Microbubules
Microfilamemts
鞭毛轴丝的结构
分布
• 真核细胞中普遍存在(脊椎动物脑组织)
• 主要位于细胞质中,控制着膜性细胞器的定位和
胞内物质运输
• 细胞特殊结构 – 纤毛、鞭毛、基体、中心体、纺锤体
微管组装
成核期(nucleation phase) 聚合期(polymerization phase)
稳定期(steady phase)
中间纤维分类
角蛋白纤维(keratin filament,上皮细胞) 结蛋白纤维(desmin filament,肌细胞) 神经胶质纤维(neuroglial filament,神经胶质 细胞) 波形纤维(vimentin filament,间质细胞) 神经元纤丝(neurofilament ,神经元),此外细胞 核中的核纤肽(lamin)也是一种中间纤维。
微管的装配和GTP帽
微管装配的特点
踏车模型(Treading milling)
微管组织中心 microtubule-organizing centers (MTOCs)
(1) 间期: 中心体
动态不稳定性
(2) 正在分裂的细胞:
有丝分裂纺锤体
动态不稳定性
(3) 鞭毛和纤毛基部: 基体
稳定
体前移;
④解除细胞后方的粘和点。如此不断循环,细
胞向前移动。阿米巴原虫、白细胞、成纤维细
胞都能以这种方式运动。
amoeba
(3) 微绒毛: 在上皮细胞中的支持作用
冷冻蚀刻电镜技术显示上皮细胞中的微绒毛结构
绒毛蛋白 毛缘蛋白
肌球蛋白Ⅰ 钙调蛋白
(4) 张力纤维(Stress fibers)
成束蛋白(fascin protein)
末端阻断蛋白(end blocking protein) 纤维切割蛋白(filament-severing protein) 去聚合蛋白(actin filament depolymerization protein) 膜结合蛋白(membrane-binding protein)
• 真菌-生物碱 • 微丝+端结合 鬼笔环肽 (phalloidin) • 毒蘑菇(Amanita)-毒素 • 与聚合的微丝结合 • 抑制肌动蛋白纤维的解聚
非肌肉细胞的微丝相关蛋白
分类:
单体隔离蛋白(monomer-sequenstering protein) 成核蛋白(nucleation protein)
微丝组成
MFs are made of actin and involved in cell motility.
微丝结构
• 由肌动蛋白单体聚合形成双螺旋
微丝的组装(assembly)
组装:
条件: ATP 盐浓度 K+ Mg++
过程(三个阶段):
• 成核期 — 微丝组装的限速过程 • 延长期 — 肌动蛋白在核心两端聚合 • 稳定期 — 聚合速度与解离速度
微管的功能
A. 维持细胞形态
B. 细胞内物质运输
马达蛋白(Motor proteins) 驱动蛋白(kinesin) : 向微管正极移动货物. 细胞质动力蛋白(cytoplasmic dynein): 向微
管负极移动货物.
鱼类表皮细胞中色素分子的运动
驱动蛋白(kinesin)
细胞质动力蛋白(cytoplasmic dynein)
微管组织中心
微管组织中心(microtubule organizing center MTOCs)是微管进行组装的区域,着丝粒、成膜体、 中心体、基体均具有微管组织中心的功能。所有微管 组织中心都具有γ微管球蛋白,这种球蛋白的含量很
低,可聚合成环状复合体,像模板一样参与微管蛋白
的核化,帮助α和β球蛋白聚合为微管纤维。
中间纤维的主要结构域.
中间纤维蛋白分子结构和种类
中间纤维的组装
中间纤维装配的一个模型.
电镜观察到的中间纤维.
中间纤维的功能 :
细胞骨架系统
总结: 骨架的功能
微管的结构(microtubule structure)
结构
(1)微管蛋白(tubulin)
• α管蛋白 异二聚体→原丝→微管(极性结构)
• β管蛋白
• γ微管蛋白-微管组织中心(MTOC)
(2)微管 (tubule)
• 单微管(13)
• 二联微管(13+10)(纤毛、鞭毛) • 三联微管(13+10+10)(基体、中心粒)
第一节 微丝与细胞运动
微丝(microfilament,MF) – 是由肌动蛋白(actin)组成的直径约7nm的骨架纤
维,又称肌动蛋白纤维(actin filament)或纤维
状肌动蛋白。
微丝的组成及组装
(1)肌动蛋白(actin)
存在形式 • 游离 球状肌动蛋白(G-actin) • 纤维状肌动蛋白(F-actin) 肌动蛋白在进化过程中高度保守
Microtubule, MT
微管结构
细胞内的微管有三种类型:单管( singlet), 二联管(double), 三联管( triplet )
Singlet Double
A B In cilia and flagella
Triplet
A B C
In centrioles and basal bodies
肌节(Sarcomere)
肌丝滑动模型(Thick and thin filaments sliding model)
由神经冲动诱发的肌肉收缩基本过程
(1)动作电位的产生 (2)钙离子的释放 (3)原肌球蛋白位移 (4)肌动蛋白丝与肌球蛋白丝的相对滑动
肌肉收缩图解
第二节 微管(Microtubule ,MT)
所有的微丝都是有极性的
微丝的动力学特性
踏车模型(treadmilling model)