现代电力电子技术的发展

合集下载

电力电子技术发展趋势分析

电力电子技术发展趋势分析

电力电子技术发展趋势分析电力电子技术是一门涉及电气工程、电子工程和控制工程等多个领域的交叉学科。

随着科技的快速发展,电力电子技术也在不断地发展和升级。

本文从硬件发展、软件发展以及应用发展三个方面来分析当前电力电子技术的发展趋势。

一、硬件发展趋势1.小型化在电力电子领域,小型化其实并不是一个新概念。

然而,随着电子元件的尺寸越来越小,电力电子设备也朝着小型化的方向不断发展。

小型化不仅能够使设备更加轻便,便于携带,也能节省空间,更容易安装和维护。

2.集成化集成电路技术的发展使得电力电子设备能够更好地完成各种电气功能。

随着芯片设计能力和制造水平的不断提高,电力电子集成电路在功率密度和效率方面的表现也在不断提升。

3.高性能随着人们对设备性能的要求越来越高,对电力电子设备的要求也越来越高。

高性能的电力电子设备能够在各个方面都表现得更加优异,例如响应速度快、精度高、可靠性强等一系列指标都能够得到更好地满足。

二、软件发展趋势1.智能化在越来越复杂的电力电子设备中,软件系统的智能化越来越受到人们的关注。

智能化软件系统能够自动适应不同的工作环境,简化操作流程,提高设备使用效率。

2.可编程化软件编程技术在电力电子领域的应用也越来越广泛。

可编程化的电力电子设备不仅能够灵活地满足不同的任务需要,而且能够随时根据工作环境的变化自动调整。

三、应用发展趋势1.新能源电力电子技术随着新能源技术的不断发展和应用,新能源电力电子技术也得到不断升级和完善。

新能源电力电子技术可以更好地满足新能源发电和储能系统的需求。

2.绿色电力电子技术随着全球环保意识的不断提高,绿色电力电子技术也成为一个引人注目的领域。

绿色电力电子技术能够有效地减少电气设备的能耗,降低环境污染。

3.电力互联网技术随着物联网技术的发展和应用,电力互联网技术也逐渐走进人们的视野。

电力互联网技术能够将多个电力系统与网络互联起来,实现能源信息的共享和传递,使得能源资源更加高效地利用。

电力电子的发展方向

电力电子的发展方向

电力电子的发展方向请根据自己的实际情况对本文进行修改:电力电子作为现代电力系统的重要组成部分,关系到我国能源战略的实施和电力行业的可持续发展。

随着科技的不断进步和电力市场的日益繁荣,电力电子技术的发展方向也日益明确。

以下是我对未来电力电子技术发展方向的一些思考。

一、提高电力电子器件的性能1. 发展高性能、低损耗的电力电子器件。

随着硅基电力电子器件性能逐渐接近其理论极限,新型宽禁带半导体材料如碳化硅(SiC)、氮化镓(GaN)等逐渐成为研究热点。

未来发展方向应着重于提高这些材料的晶体质量、降低成本,并实现批量生产。

2. 研究新型电力电子器件拓扑结构。

通过创新器件结构,进一步提高电力电子器件的性能,降低损耗,减小体积,降低成本。

二、提升电力电子装置的智能化水平1. 发展具有自适应、自诊断、自优化功能的电力电子装置。

利用现代通信技术、大数据分析、人工智能等手段,实现对电力电子装置的实时监测、故障诊断和性能优化。

2. 推动电力电子装置与电网的深度融合。

通过智能化技术,实现电力电子装置与电网的协同优化,提高电力系统的稳定性和经济性。

三、拓展电力电子技术的应用领域1. 电力电子技术在新能源发电领域的应用。

随着可再生能源的快速发展,电力电子技术在光伏、风能、储能等新能源发电领域的应用将更加广泛。

研究方向包括:高效光伏逆变器、风力发电变流器、储能系统等。

2. 电力电子技术在电力系统中的应用。

电力电子技术在电力系统中的应用包括:柔性直流输电、无功补偿、电力电子变压器等。

未来发展方向应关注这些技术的可靠性、经济性和适用性。

四、促进电力电子技术的标准化和产业化1. 加强电力电子技术的标准化工作。

制定和完善电力电子器件、装置和系统的相关标准,推动产业链上下游的协同发展。

2. 推动电力电子技术的产业化进程。

加大政策支持力度,培育具有竞争力的电力电子企业,推动产业技术创新和产业升级。

五、加强人才培养和国际合作1. 培养电力电子领域的高端人才。

电力电子技术和开关电源的发展历程

电力电子技术和开关电源的发展历程

电力电子技术和开关电源的发展历程1. 电力电子技术的发展现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。

电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。

八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1 整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。

大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。

当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2 逆变器时代七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。

变频调速的关键技术是将直流电逆变为0~100Hz的交流电。

在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。

类似的应用还包括高压直流输出,静止式无功功率动态补偿等。

这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3 变频器时代进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。

将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。

综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状1. 引言1.1 电力电子技术在电力系统中的重要性电力电子技术在电力系统中的重要性体现在多个方面。

电力电子技术可以实现电力系统的高效能转换。

传统的电力系统中,能源的传输和转换过程存在能量损耗和效率低下的问题。

而通过应用先进的电力电子技术,可以实现电能的高效转换,提高系统的能源利用率。

电力电子技术还可以提高电力系统的稳定性和可靠性。

在传统电力系统中,电网的运行容易受到外部因素的影响,导致电能供给不稳定,造成供电问题。

通过引入电力电子技术,可以实现电力系统的智能化控制和优化管理,提高系统的稳定性和可靠性。

电力电子技术在电力系统中的应用具有重要意义,不仅可以提高系统的效率和稳定性,还可以推动电力系统向智能化、可持续发展的方向迈进。

1.2 电力电子技术发展的背景电力电子技术是指利用电子器件和电子电路来控制和转换电力的技术。

在电力系统中,电力电子技术的应用越来越广泛,其发展已经成为电力系统发展的重要驱动力。

电力电子技术的背景可以追溯到20世纪60年代,当时电力系统开始面临一系列新的挑战,如电力负载的快速增长、电力系统的不稳定性、传统直流和交流系统的柔性度不足等问题。

为了应对这些挑战,研究者们开始积极探索新的电力转换技术,逐渐形成了现代电力电子技术。

现代电力电子技术主要包括功率半导体器件、PWM调制技术、微电网技术、智能电网技术等。

这些技术的发展为电力系统的稳定运行、高效能利用、智能化管理提供了重要支持。

随着可再生能源的快速发展和成熟,电力电子技术在可再生能源集成和智能电网建设中也扮演着至关重要的角色。

电力电子技术的背景是电力系统发展的需要,是科技进步和市场需求的结果,是实现清洁、可靠、高效能源供应的必然选择。

【字数:234】2. 正文2.1 传统电力系统存在的问题1. 能效低下:传统电力系统在能源传输和转换过程中存在能量损耗严重的问题,导致能效较低。

在电力系统中,直流到交流的转换、电压调节和功率转换都需要耗费大量能量。

电力电子的发展趋势

电力电子的发展趋势

电力电子的发展趋势
1. 高功率密度和高效率
电力电子的发展趋势是朝高功率密度和高效率的方向发展。

这可以通过使用新型的半导体材料和拓扑结构、优化的控制算法和散热技术等手段实现。

2. 多功能性和智能化
电力电子系统的应用领域越来越广泛,需要具备多种不同的功能。

同时,随着智能电网的发展,电力电子系统在协调能源的调度和优化方面也需要具备更高的智能化水平。

3. 集成化和模块化
随着电力电子系统的功能和复杂度不断提高,对系统集成化和模块化的需求也越来越强烈。

这可以加快系统开发和调试的速度,降低整体成本和维护难度。

4. 新能源技术的应用
随着新能源技术的不断发展,电力电子系统在太阳能、风能、储能等方面应用越来越广泛。

未来电力电子系统将需要更好地适应这些新能源技术的要求。

5. 绿色环保和可持续发展
在电力电子系统的设计和应用中,环保和可持续发展的考虑也越来越重要。

这包括降低系统的能耗、减少对环境的影响等方面。

2024年电力电子市场发展现状

2024年电力电子市场发展现状

电力电子市场发展现状1. 引言随着电力系统的快速发展和能源转型的推进,电力电子作为关键技术之一,在电力系统中发挥着越来越重要的作用。

电力电子的应用涉及到电力传输、转换、控制等多个领域,对于提高电力系统的可靠性、安全性和能源利用效率具有重要意义。

本文将对电力电子市场的发展现状进行分析。

2. 电力电子市场的背景随着工业化和城市化的发展,电力需求不断增长。

传统的电力系统难以满足复杂多变的电力需求,因此电力电子技术逐渐受到重视。

电力电子技术通过将电力转换、传输和控制,实现了能源的高效利用和进一步智能化管理,成为了电力系统中不可或缺的一部分。

3. 电力电子市场的发展趋势3.1 可再生能源的快速发展随着全球对能源可持续性的关注度增加,可再生能源的发展得到了推动,尤其是太阳能和风能等清洁能源。

这些可再生能源的高效利用离不开电力电子技术的支持,因此可再生能源的快速发展也带动了电力电子市场的增长。

3.2 能源储存技术的提升能源储存技术是电力电子市场的一个重要方向。

电池技术的进步和成本的下降,使得能源储存系统在电力系统中的应用日益广泛。

能源储存技术能够提供电力系统的稳定性和可靠性,同时也为可再生能源的大规模应用提供了可能。

3.3 电动汽车市场的增长电力电子技术在电动汽车市场上的应用也是市场发展的一个重要方向。

随着电动汽车市场的迅速增长,电力电子技术在车载充电、电动驱动等方面发挥着重要作用。

电动汽车市场的增长将直接推动电力电子市场的发展。

4. 电力电子市场的挑战和机遇4.1 技术创新和成本控制电力电子技术的应用受到技术创新和成本控制的双重挑战。

技术创新能够推动电力电子市场的发展,但也需要大量的研发投入和时间。

同时,成本控制是电力电子企业在市场竞争中必须面对的问题,低成本高性能的产品将具有竞争优势。

4.2 标准化和规范化电力电子技术的应用涉及到电力系统的安全稳定,因此标准化和规范化是电力电子市场发展的重要保障。

加强标准化和规范化工作,能够提高电力电子产品的质量和可靠性,促进市场的健康发展。

电力电子技术的未来发展趋势是什么?

电力电子技术的未来发展趋势是什么?

电力电子技术的未来发展趋势是什么?在当今科技飞速发展的时代,电力电子技术作为一门关键的交叉学科,正以前所未有的速度改变着我们的生活和工业生产方式。

从智能手机的快速充电到电动汽车的高效驱动,从可再生能源的大规模并网到智能电网的优化运行,电力电子技术的身影无处不在。

那么,未来电力电子技术又将朝着哪些方向发展呢?首先,更高的功率密度和效率将是电力电子技术追求的重要目标。

随着电子设备的日益小型化和功能的不断强大,对电源模块的功率密度提出了越来越高的要求。

通过采用新型的半导体材料,如碳化硅(SiC)和氮化镓(GaN),以及优化电路拓扑结构和控制策略,可以显著提高电力电子装置的功率密度和效率。

这不仅能够减少设备的体积和重量,还能降低能源消耗,为实现可持续发展做出贡献。

在半导体技术方面,宽禁带半导体器件的发展将成为未来的主流趋势。

相较于传统的硅基半导体器件,SiC 和 GaN 具有更高的击穿电场强度、更高的热导率和更低的导通电阻。

这使得它们能够在更高的电压、温度和频率下工作,从而提高电力电子系统的性能。

例如,在电动汽车的充电器中,采用 SiC 器件可以大大缩短充电时间,提高充电效率;在光伏逆变器中,使用 GaN 器件能够降低能量损耗,增加发电量。

集成化也是电力电子技术未来发展的一个重要方向。

将多个功能模块集成在一个芯片上,可以减少寄生参数,提高系统的可靠性和稳定性。

此外,系统级封装(SiP)和三维封装技术的不断进步,将为电力电子集成化提供更多的可能性。

未来,我们可能会看到更多高度集成的电力电子模块,它们不仅具有功率变换功能,还集成了驱动、控制和保护等电路,从而简化系统设计,降低成本。

智能化控制技术将在电力电子领域发挥越来越重要的作用。

随着人工智能、大数据和机器学习的发展,电力电子系统可以实现更加精确和自适应的控制。

通过对系统运行数据的实时监测和分析,智能控制器能够根据负载变化和工作环境的动态调整控制策略,以达到最优的性能。

现代电力电子技术的发展趋势及应用分析

现代电力电子技术的发展趋势及应用分析

现代电力电子技术的发展趋势及应用分析摘要:科技在迅猛发展,社会在不断进步,随着智能电网的发展与进步,使得信息化、自动化以及数字化的技术应用空间越来越大。

电力电子是建设智能化电网的基础所在,也是满足NB-IoT市场经济发展的重要技术所在。

因此,为了满足社会的发展,就需要对电力系统进行全面改革,使先进的电力电子技术应用到智能电网中。

关键词:电子技术;发展趋势;应用引言开展电力电子化新一代电力系统动态问题研究是保障电网安全稳定运行的重大需求。

装备是构成电力系统的基本要素,装备变革意味着客观研究对象的变革。

装备动态特性的变化意味着电力系统动力学现象及机理的变化,传统电力系统动态问题基础理论和关键技术的适应性面临重大挑战,装备替代的量变势将引起系统动态问题的质变。

开展新一代电力系统动态问题的研究是电网运行的迫切和重大的需求。

1基本概念首先针对电子技术,该项技术主要依靠电子设备对电力进行控制,可实现电力开闭控制、转换控制等,故在不同的控制要求下,电子技术又可以分为多种形式,诸如电力技术、转换器技术等。

因此本质上可以将电子技术视作一种元件控制技术,能够通过电力供给与切断、电力类型转换、电力强弱调整等方式使元件作出对应的动作,促使电气装置依照用户需求运作,实现控制目的。

同时电子技术在元件控制中会生成对应的数据,即电力数据,依照电力数据可知当前电力运作是否正常,也能判断电力的故障、安全水平等,便于及时处理异常,保障电力运作稳定。

其次针对电气控制,此概念的主要意义在于开发电气能源的利用价值,诸如利用弱电控制强电,再通过强电控制设备,最后设备运作满足需求,且随着控制技术的发展,电气控制不仅实现了自动化运作,控制对象也越来越多,故电气控制能够满足人们在生活或工作中的多种需求。

关于电气控制的自动化原理,从当前技术角度出发,主要是利用信号收发装置连接计算机与电气控制系统,用户可以从计算机上拟定指令,并发出信号,信号将被收发装置接收,随即发送给电气控制系统的控制单元,该单元将依照信号指令逐步控制设备,待指令执行完毕,控制目的达成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代电力电子技术的发展浙江大学电气工程学院电气工程及其自动化992班马玥(浙江杭州310027 E-mail: yeair@)学号:3991001053摘要:本文简要回顾电力电子技术的发展,阐述了现代电力电子技术发展的趋势,论述了走向信息时代的电力电子技术和器件的创新、应用,将对我国工业尤其是信息产业领域形成巨大的生产力,从而推动国民经济高速、高效可持续发展。

关键词:现代电力电子技术;应用;发展趋势The Development of Modern Power Electronics TechniqueMa YueElectrical Engineering College. Zhejiang University.Hangzhou 310027, ChinaE-mail: yeair@Abstract: This paper reviews the development of power electronics technique, as well as its current situation and anticipated trend of development. Keywords: modern power electronics technique, application, development trend.1、概述自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装臵,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。

那么究竟什么是现代电力电子技术呢?[1]麻省理工学院的KASSAKIAN教授的观点是:“目前电子技术的典型应用是信息处理,这些应用都需要电源提供电能;而电力电子技术主要关心的是能量处理,它把电能从一种形式高效地转换成另外一种形式”,这里强调的是电能的转换和利用效率。

九州大学的原田耕介先生认为:“电力电子技术是一种借助于半导体功率器件的开关技术”,这里强调的是电力电子器件的开关作用。

柏林工业大学的HEUMAN教授认为:“电力电子技术借助于半导体功率器件对电能进行控制”,这里强调的是对电能的控制。

综上所述,电力电子技术就是采用功率半导体器件对电能进行转换、控制和优化利用的技术,它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。

从几十年的发展来看,[2]半导体器件确实起了推动电子技术发展的作用。

晶闸管等电力半导体器件扮演了电力电子发展中的主要角色。

进入70年代,晶闸管开始形成由低电压小电流到高电压大电流的系列产品。

普通晶闸管不能自关断的半控型器件,被称为第一代电力电子器件。

随着电力电子技术理论研究和制造工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,是电力电子技术的又一次飞跃,先后研制出GTR、GTO、功率MOSFET等自关断全控型第二代电力电子器件。

这些年来的经验表明:[2]当某种关键的半导体器件诞生后,往往会引起电子技术的一个飞跃。

可以看到,以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容易高频率、响应快、低损耗方向发展,这又是一个飞跃。

而进入90年代,电力电子器件正朝着复杂化、标准模块化、智能化、功率集成的方向发展,以此为基础形成了电力电子技术的理论研究,器件开发研制,应用的高新技术领域,在国际上竞争颇激烈。

目前,[3]电力电子技术的应用已从机械、石化、纺织、冶金、电力、铁路、航空、航海等领域,进一步扩展到汽车、现代通信、家用电器、医疗设备、灯光照明等领域。

进入21世纪,随着新的理论、新的器件、新的技术的不断涌现,特别是与微电子(计算机与信息)技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。

2、电力电子技术的主要应用概况电力电子技术以实现功率变换为主,传递的是电能,微电子技术则以实现信号变换为主,传递的是信息。

如果说微电子技术是弱电电子的话,电力电子技术则是强电电子,是现代工业电子。

电力电子技术的应用贯穿在电能的获取、传输、变换和利用的几乎每个环节,将在新世纪发挥越来越重要的作用。

[4]概括地说,电力电子技术就是在采用电力半导体器件实现各种频率变换的基础上,完成运动控制(Motion Control)和功率变换(Power Conversion),提供各种变频器和功率控制电源。

2.1发电领域中的电力电子技术(1)发电机的直流励磁现在,常规发电机中励磁的建立,已经从传统的直流磁励机转变为由中频交流励磁机加电力电子整流的方法,并已取得较好的技术经济效益,可靠性大为提高。

(2)水轮发电机的低频交流变频励磁发电频率取决于发电机的转速。

而水力发电受水流量随季节的变化,特别是枯水期水流量明显减少的影响,频率无法调节到额定(50Hz),只好放弃发电,缩短发电机工作时间,浪费了许多水能。

现在,采用电力电子技术,把直流励磁转变为低频交流变频励磁:当水流量减少时,提高励磁频率,可以把发电频率补偿到额定,使水轮发电机的发电周期大大延长。

这对三峡电站等大型水力发电设施来说,将带来巨大的经济效益。

(3)可再生能源发电中的电力电子技术利用风能、太阳能、潮汐能、地热能等新能源发电,是克服能源危机(煤、石油、天然气等石化类能源日趋匮乏)的重要措施,它们是可再生的绿色能源,对环境和气候的影响也会得到缓解。

但是这些能源转换的电能,其电压、频率难免波动,无法并网应用。

通过电力电子变换装臵,使这些波动的电能以恒压恒额方式输出,实现这些新能源的实用化。

2.2储能领域中的电力电子技术用电受昼夜影响而出现高峰和低谷,如果晚间能把发电机的多余电能储存起来,到白天再送到电网应用,相当于多盖了至少三分之一的发电厂,其经济价值是明显的。

(1)抽水储能发电白天,上游水库泄水发电;晚间,利用多余的电网电能并使发电机转变成电动机运行,驱动水泵把下游水库的水抽进上游水库,增加上游水库蓄水,使白天可以更多地发电。

当然,这种电能变为机械能,再变成电能的能量变换过程,效率是比较低的。

(2)地下室内的蓄电池与电容器组储能把夜间电网提供的多余交流电整流成直流电,储存在建筑物地下室内的“蓄电池一电容器组”;白天,再把这些储存的电能逆变成交流电供给整个建筑物内的用电,已经成为某些地方的时尚。

(3)超导线圈的磁场储能上述变换还是有相当能耗的。

在超导体线圈中,数十万安培的直流电流在其中流动是不会损耗的,这种储能器体积大为缩小,转换效率很高。

但是,如何实现常规交流电能同这种低电压超大电流的直流电能的互相转换,给电力电子技术提出了更新的课题。

2.3输电领域中的电力电子技术(1)高压直流输电(HVDCT)技术在远距离输电、跨海输电、非同期(非同步)的电力系统实现联网方面,高压直流输电优于高压交流输电。

直流输电是把发电机发出的交流电通过变压器升压,再经过整流器使之变为直流,跨过几百、上千公里后,再通过逆变器变换为工频交流电,供终端使用。

这里需要几十、乃至数百万千伏安的超大功率电力电子装臵。

(2)动态无功功率补偿(SVC)技术发电厂发出的电能,只有一部分能有效地做功,称为有功功率,它占总发电量的比例称功率因数;另一部分能量或者因为电感(储磁能)、电容(储电能)的存在而与电源发生能量交换不做功,或者因为谐波的存在而不做功,这部分称之为无功功率。

无功的存在使发电机功率因数降低.谐波污染电网,增加发电机和其他电气设备发热,无功的波动使电网电压波动。

因此,对无功功率进行补偿具有明显的经济效益和社会效益。

采用电力电子技术的动态无功功率补偿装臵在这方面起着重要作用。

(3)消除谐波改善电网供电品质相控型电力电子设备是一谐波发生器.其大量的采用严重地污染了公用电网,带来电力品质的恶化。

危及电网安全运行,其产生的电磁干扰(EMI)也危及通信、金融、航空、交通、医疗等行业的安全运行。

采用电力电子技术,特别是有源滤波技术,抑制谐波发生,实现绿色电源,是新世纪必须要解决的问题。

2.4用电领域中的电力电子技术(1)电动机的优化运行全世界的用电量中[4]约有60%左右是通过电动机来消耗的。

电动机只是在额定负载附近才是高效率的,但由于对过载、安全系数的考虑,电动机经常是在低效状态下运行。

采用计算机——电力电子技术结合,使电动机经常处于高效状态,具有巨大的效益。

①变负载电动机的调压节能车床、冲床、剪床等许多机械,作为动力源的电动机是按最大负载功率来选取的。

而它们的大部分工况是轻载。

根据负载力矩大小的变化,采用电力电子技术自动改变电机的端电压——轻载时降低电压,就能使电动机轻载损耗降低。

这就是所谓“马达节能器”。

②通用机械的节能调速风机、泵、压缩机等通用机械用电量占电动机用电量的一半左右。

采用变频调速调节流体流量,比以往用挡板、阀门之类来调节,可节电20%~70%。

③工业应用机械的工艺调速轧钢、有色金属压延、造纸、榨糖、大型机床等,基于工艺需要,其拖动电动机需要调速。

采用变频调速,不仅效率高可节能,而且能使产品产量增加,质量提高。

④运输机械的牵引调速电气机车、内燃机车、地下铁道、轻轨机车、无轨电车,乃至磁悬浮列车和电动汽车,以及电梯、自动扶梯、矿井卷扬机和龙门吊等都是电动牵引系统。

这些运输工具在运行中要求及时调速。

国际上交流电动机变频调速在牵引应用中已占了优势。

⑤精密调速数控机床、伺服传动、机器人等各种运动控制,都要求很宽的调速范围和很高的调速精度,在国防上也有很多精密调速的需求。

这里,采用[4]永磁无刷电动机达到1:50000到1:100000的宽域高精度调速已经实现。

按照最保守的计算,[4]全国现有电动机需要改造为变频调速的市场总价将是1200亿~1800亿元人民币,目前中国变频器市场的年销售额约为15亿元人民币。

依此,需100年才能改造一遍,何况每年还有许多新机组投入。

(2)高能量密度的电源应用①电化学电源铜、铝、锌、镍等有色金属,氯碱等化工原料,都是靠电解来实现的。

[4]现在几十万安培的直流电解装臵早己实现国产化。

一般说来,它们都是电老虎,又是国民经济的基础。

②开关电源体积小、重量轻、效率高的各种开关电源已经从电视机、计算机、各种仪器仪表上的小功率应用,扩展到通讯电源、电焊电源、X光电源和CT电源、加速器磁铁电源、军用电源等中功率应用。

通过适度提高开关频率,电源的体积、重量会成数十倍地减少下来。

③变频电源适应各种应用需要的、许多原来采用电子管的高频电源已越来越多的被采用电力电子器件的固态化电源替代。

[4]例如:超声波电源、臭氧发生器、负氧离子发生器、荧光灯电子镇流器、热处理电源、声纳电源、无线电(长、中、短波)发射电源,以至微波电源。

相关文档
最新文档