高一数学必修一题型总结
高一数学必修一知识点总结归纳优秀5篇

高一数学必修一知识点总结归纳优秀5篇高一数学必修一知识点总结归纳篇一(一)指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且∈当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。
此时,的次方根用符号表示。
式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。
当是偶数时,正数的次方根有两个,这两个数互为相反数。
此时,正数的正的次方根用符号表示,负的次方根用符号—表示。
正的次方根与负的次方根可以合并成±(0)。
由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,2、分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
3、实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。
注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质高一数学必修一知识点总结归纳篇二指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质函数的应用1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点。
3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
高一数学必修一题型总结

必修(一)题型总结-、集合的概念与表示:1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”2. 进行集合的交、并、补运算时,不要忘记集合本身和空集⑺的特殊情况注重借助于数轴和文氏图解集合问题。
3. 注意下列性质:集合9i, a2, , a n .的所有子集的个数是2n;4. 对于集合的元素是不等式的,画数轴确定两集合的关系例题:1. 满足关系{1,2} A {1,2,3,4,5}的集合的个数是( )A: 4 B: 6 C: 8 D: 92 3 :32. 以实数X , - x , |x|, x , - <x为元素所组成的集合最多含有( ) A: 2个元素B: 3个元素C: 4个元素D: 5个元素「k 1 ] f k 1 13. M=』x|x=—+ — ,k€Z],N=d x|x=—+—,k E Z 贝U ( )(A M =N (B) M N (C) N M (D) M』N4. 已知A={(x,y)|y=x 2-4x+3},B=[(x,y)|y=-x 2-2x+2}, A n B= ______________5. 某班考试中,语文、数学优秀的学生分别有30人、28人,语文、数学至少有一科优秀的学生有38人,求:(1)语文、数学都优秀的学生人数(2)仅数学成绩优秀的学生人数2 2 26.设A={x|x -ax a -19=0} , B ={x| x-5x 6 =0},且A B,求实数a 的值.二、函数的三要素(定义域、值域、对应法则) 如何比较两个函数是否相同?1. 定义域的求法:分母、开偶次方、对数(保证它们有意义)2 .值域的求法:①判断函数类型(一次、二次、反比例、指数、对数、幕函数)由函数的单调性与图像确定当x为何值时函数有最大值(最高点)和最小值(最低点) ,②对于一个没有学过的函数表达式,需要将它变成一个学过的函数来解决(换元法、图像变换法)3表达式的求法:O1已知函数类型待定系数法②已知f(x)求f(2x+1)整体代换法,已知f(2x+1)求f(x)换元法。
指对数比较大小8种常考题型总结-高一数学(人教A版2019必修第一册)

第20讲 指对数比较大小8种常考题型总结【知识点梳理】指数和对数的比大小问题成为了高考和模拟题的一些拉档题,这里我们重点介绍几种比大小方法,让大家充分了解掌握一些指数对数大小比较的常用方法.(1)利用指数对数单调性比较大小;当底数一样或者可以化成一样,直接利用单调性比较即可 (2)利用指数对数函数图象关系比较大小(2)比较与0,1的大小关系,此类题目一般会放在单选第5题左右位置,比如12.02.0003.0=<<,12.0log 3.0log 1log 02.02.02.0=<<=(3)取中间值,比如遇到两个数都在0到1之间,我们可以比较它们与21的大小等 (4)去常数再比大小当底数和真数出现了倍数关系时候,需要将对数进行分离常数再比较.例如:log log 1log log n a a a a ma m ma m n =+=+;.(5)当真数一样我们考虑用换底公式,换为底数一样,再比较分母,如2ln =a 和2log 3=b ,e a 2log 12ln ==,3log 12log 23==b ,因为e 22log 3log >,所以b a > (6)乘倍数比较数的范围比较大小,比如3log 2=a 和4log 3=b ,则()5,427log 3log 3322∈==a ,()4,364log 4log 3333∈==b ,所以b a 33>,所以b a >(7)构造函数,利用函数的单调性比价大小 【题型目录】题型一:直接利用单调性比较大小 题型二:比较与1,0的大小关系 题型三:取中间值比较大小 题型四:利用换底公式比较大小 题型五:分离常数再比较大小 题型六:利用均值不等式比较大小题型七:乘倍数比较数的范围比较大小 题型八:构造函数比大小 【典型例题】题型一:直接利用单调性比较大小【例1】(2022·湖南邵阳·高一期末)已知222log 0.6,log 0.8,log 1.2a b c ===,则( ) A .c b a >>B .c a b >>C .b c a >>D .a b c >>【答案】A【分析】由对数函数得单调性即可得出结果. 【详解】∵2log y x =在定义域上单调递增, ∵222log 0.6log 0.8log 1.2<<,即c b a >>. 故选:A.【例2】(2022·全国·高三专题练习)已知2log 3a =,4log 6b =,8log 9c =,则a 、b 、c 的大小顺序为( ) A .a b c << B .a c b <<C .c b a <<D .b c a <<【答案】C【分析】先利用对数运算法则进行化简,再用函数单调性比较大小.【详解】42log 6log 6b ==,又382log 9log 9c ==,因为3369>>,2log y x =单调递增,所以c b a <<. 故选:C 【题型专练】1.(2022·广东珠海·高一期末)下列选项正确的是( ) A .22log 5.3log 4.7< B .0.20.2log 7log 9<C .3πlog πlog 3>D .log 3.1log 5.2(0a a a <>且1)a ≠【答案】C【分析】利用对数函数的单调性逐项判断可得答案.【详解】对于A ,因为2=log y x 是单调递增函数,所以22log 5.3log 4.7>,故A 错误; 对于B ,因为0.2=log y x 是单调递减函数,所以0.20.2log 7log 9>,故B 错误; 对于C ,因为33ππ3=1,1log πlog log 3log π><=,所以3πlog πlog 3>,故C 正确; 对于D ,当01a <<时,=log a y x 是单调递减函数,当1a >时,=log a y x 是单调递增函数, 所以当01a <<时,log 3.1log 5.2>a a ,当1a >时,log 3.1log 5.2<a a ,故D 错误. 故选:C.2.(2022·全国·高一单元测试)已知2log 3a =,ln 2b =,2log πc =,则a ,b ,c 的大小关系为( ) A .a b c >> B .c a b >>C .a c b >>D .c b a >>【答案】B【分析】根据对数函数的单调性并借助1比较即可求解.【详解】解:因为()2log f x x =为单调递增函数,所以22log πlog 31>>. 因为ln 21<,所以c a b >>. 故选:B .3.(2022·江西·上高二中模拟预测(文))已知1ln 3a=,33log 5log 2b =-,3c =a ,b ,c 的大小关系为( ) A .a c b >> B .b c a >> C .c a b >> D .c b a >>【答案】C【分析】根据对数的运算及对数函数的性质计算可得;【详解】解:2ln 3ln 3c ==,21ln e ln 3ln e 2=<<=,即12c <<, 又1ln 3a =,所以31ln elog e ln 3ln 3a ===,所以112a <<, 3335log 5log 2log 2b =-=,33315log 3log log 3122=<<=,即112b <<, 又5e 2>,所以335log e log 2>,即a b >, 综上可得c a b >>; 故选:C4.(2022·内蒙古·阿拉善盟第一中学高一期末)已知0.919x =,2log 0.1y =,2log 0.2z =,则( ) A .x y z >> B .x z y >>C .z x y >>D .z y x >>【答案】B【分析】利用指数函数和对数函数的性质比较大小即可 【详解】因为9x y =在R 上为增函数,且0.910>, 所以0.910991>=,即1x >,因为2log y x =在(0,)+∞上为增函数,且0.10.21<<, 所以222log 0.1log 0.2log 10<<=,即0y z <<, 所以x z y >> 故选:B.题型二:比较与1,0的大小关系【例1】(2022·甘肃酒泉·高二期末(理))若1223a ⎛⎫= ⎪⎝⎭,1ln 2b =,0.20.6c -=,则a ,b ,c 的大小关系为( ) A .c b a >> B .c a b >> C .b a c >> D .a c b >>【答案】B【分析】分别根据23xy ⎛⎫= ⎪⎝⎭、ln y x =、0.6x y =的单调性,比较a ,b ,c 与0、1的大小,即可比较【详解】23xy ⎛⎫= ⎪⎝⎭在(),-∞+∞上是减函数,12220133a ⎛⎫⎛⎫<== ⎪⎪⎝⎭⎝⎭< ; ln y x =在()0,+∞上是增函数,1lnln102b =<=; 0.6x y =在(),-∞+∞上是减函数,0.200.60.61c -=>=,故c a b >>, 故选:B【例2】(2022·全国·高一课时练习)已知0.3123log 2,log 3,2a b c -===,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【分析】利用函数的单调性判断出0a <,1b >,01c <<,即可得到正确答案. 【详解】因为13log y x=为减函数,所以1133log 2log 10a =<=,即0a <;因为2log y x =为增函数,所以22log 321log b =>=,即1b >; 因为2x y =为增函数,所以0.300221c -<=<=,即01c <<; 所以b c a >>. 故选:D【例3】(2022·天津·高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b >>【答案】C【分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系.【详解】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>.故答案为:C. 【题型专练】1.(2022·黑龙江·鸡东县第二中学二模)若0.110a =,lg0.8b =,5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >> D .a c b >>【答案】D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>,由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<,0.15101log 3.50lg0.8a c b ∴=>>=>>=,a cb ∴>>,故选:D2.(2022·浙江·诸暨市教育研究中心高二学业考试)已知5lg 0.2,log 6,ln 2a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .c a b << C .a c b << D .c b a <<【答案】C【分析】利用0,1分段法求得正确答案.【详解】55lg 0.20,log 6log 51,0ln 2ln e 1a b c =<=>=<=<=, 所以a c b <<. 故选:C3.(2022·陕西汉中·高一期末)已知0.60.622e log 0.6a b c -===,,,则a ,b ,c 的大小关系为( )A .b a c >>B .b c a >>C .a b c >>D .a c b >>【答案】C【分析】根据指数函数和对数函数的性质判断0.60.622e log 0.6a b c -===,,的范围,即可判断大小,即得答案.【详解】由于0.60.602022e e >2log 0.6lo <0<g 1a b c -====<=1,0=1,,故a b c >>, 故选:C题型三:取中间值比较大小【例1】(2022·吉林·东北师大附中模拟预测(文))已知32log 3a =,2log 3b =,139c =,则( ) A .c a b >> B .b a c >> C .b c a >> D .c b a >>【答案】D【分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系. 【详解】因为332log log 103a =<=,2221log 2log 3log 42b =<=<=,1133982c =>=, 因此,c b a >>. 故选:D.【例2】(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a << B .b a c << C .a c b << D .a b c <<【答案】C【分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论. 【详解】55881log 2log 5log 22log 32a b =<==<=,即a c b <<. 故选:C.【例3】(2022·山东滨州·高二期末)已知6log 2a =,0.5log 0.2b =,0.30.6c =,则a ,b ,c 的大小关系为( ) A .a c b << B .a b c << C .b c a << D .c a b <<【答案】A【分析】根据指数函数、对数函数的性质计算可得.【详解】解:110.5222log 0.2log 5log 5log 42--==>=,即2b >,66610log 1log 2log 62=<<=,即102a <<,00.30.31110.60.60.50.52=>>>=,即112c <<,所以b c a >>; 故选:A 【题型专练】1.(2022·河南濮阳·高一期末(文))已知3log 4a =,4log 5b =,32c =,则有( ) A .a b c >> B .c b a >> C .a c b >> D .c a b >>【答案】D【分析】根据对数函数的单调性,借助中间值比较大小即可. 【详解】依题意,23043<<,3243∴< ,3log y x =是单调递增,32333log 4log 32∴<=,a c ∴<,23054<<,3254∴<,4log y x =是单调递增,32443log 5log 42∴<=,b c ∴<, 45430>>,5443∴> ,3log y x =是单调递增,54335log 4log 34∴>=,54a ∴>,45054<<,5454∴<,4log y x =是单调递增,54445log 5log 44∴<=,54b ∴<,综上所述,c a b >>. 故选:D.高二期末(理))设0.632log 8c =A .b a c << B .c b a << C .a c b << D .b c a <<【答案】D【分析】利用幂函数和对数函数的性质比较即可【详解】因为533223log 8log 20.60.615c ====<, 所以c a <,因为0.6y x =在(0,)+∞上为增函数,且910<, 所以0.60.6910<,因为lg y x =在(0,)+∞上为增函数, 所以0.60.6lg9lg100.6<=,所以b c <, 综上b c a <<,故选:D3.(2022·重庆九龙坡·高二期末)已知52log 4a =,31log 72b =,4log 52c =,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c a b <<D .a b c <<【答案】B【分析】根据对数得运算性质结合对数函数的性质,利用中间量法即可得出答案. 【详解】解:由552log 4log 16a ==,则12a <<, 3331log 7log 7log 912b ==<=, 42log 5log 52252c ===>,所以b a c <<. 故选:B.题型四:利用换底公式比较大小【例1】(2021·全国·高一期末)设x ,y ,z 为正数,且345x y z ==,则( ) A .x y z << B .y x z << C .y z x << D .z y x <<【答案】D【分析】令3451x y z k ===>,用k 表示出x ,y ,z ,再借助对数函数的性质即可比较作答. 【详解】因x ,y ,z 为正数,令345x y z k ===,则1k >, 因此有:31log log 3k x k ==,41log log 4k y k ==,51log log 5k z k ==, 又函数()log k f t t =在(0,)+∞上单调递增,而1345<<<,则0log 3log 4log 5k k k <<<, 于是得111log 3log 4log 5k k k >>, 所以z y x <<. 故选:D【例2】(2022·全国·高三专题练习)设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是( ) A .a >b >c B .b >a >cC .c >a >bD .c >b >a【答案】D【分析】根据对数函数与指数函数性质,结合中间值0、1比较可得. 【详解】∵0<ln2<lne=1,ln3>1,∵log 32ln 2ln 3=<ln2, ∵a <b <1, ∵c 125=>50=1, ∵c >b >a , 故选:D .【例3】(2022·全国·高三专题练习)设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a【答案】D【分析】根据对数函数与指数函数性质,结合中间值0、1比较可得. 【详解】∵0<ln2<lne=1,ln3>1, ∵log 32ln 2ln 3=<ln2, ∵a <b <1, ∵c 125=>50=1, ∵c >b >a , 故选:D . 【题型专练】1.(2022河南·高三开学考试(文))设0.1log 4a =,50log 4b =,则( ) A .()22ab a b ab <+< B .24ab a b ab <+< C .2ab a b ab <+< D .2ab a b ab <+<【答案】D【分析】由对数函数性质得0,0a b <>,从而0ab <,由对数换底公式和对数运算法则计算得1112a b<+<,再由不等式性质可得结论.【详解】因为0.1log 4a =,50log 4b =,所以0,0a b <>,所以0ab <, ()44411log 0.1log 50log 51,2a b +=+=∈,即1112a b<+<,所以2ab a b ab <+<. 故选:D .2.(2022·重庆八中高三阶段练习)设2log a π=,6log b π=,则( )A .0a b ab -<<B .0ab a b <<-C .0ab a b <<-D .0a b ab <-<【答案】D【分析】根据对数函数的性质可得>0>0a b ab -,,111b a-<,由此可判断得选项. 【详解】解:因为22log >log 21a π==,6660log 1log log 61b π=<=<=,所以>1,01a b <<,所以>0>0a b ab -,,故排除A 、B 选项;又11log 6log 2log 3log 1a bb a abπππππ--==-=<<,且>0ab ,所以0a b ab <-<, 故选:D.3.(2021·江苏·海安高级中学高一阶段练习)设0.20.3a =,20.3b =,则( ) A .0a b ab +<< B .0ab a b <+< C .0a b ab +<< D .0ab a b <<+【答案】B【分析】根据指数式与对数式互化公式,结合对数的运算性质进行判断即可.【详解】由0.20.20.3log 0.3aa =⇒=,因为0.20.20.2log 1log 0.3log 0.2<<,所以01a <<,由220.3log 0.3bb =⇒=,因为22log 0.3log 0.51<=-,所以1b <-,因此0ab <,0a b +< 由0.20.31log 0.3log 0.2a a =⇒=,20.31log 0.3log 2b b=⇒=, 于是有:0.30.30.311log 0.2log 2log 0.4a b+=+=,因为0.30.3log 0.4log 0.31<=,所以1111b aa b ab++<⇒<,因为0ab <,所以b a ab +>, 即0ab a b <+<, 故选:B【点睛】关键点睛:利用对数函数的单调性,结合,a b 两数的倒数和与1之间的关系,进行判断是解题的关键.4.(2022·全国·高一课时练习多选题)已知正数x ,y ,z 满足346x y z ==,则下列说法中正确的是( ) A .1112x y z+= B .346x y z >>C .22xy z > D .32x y z +>⎝【答案】ACD【分析】将已知条件转化为对数的形式,利用对数运算、商比较法、基本不等式等指数对选项进行分析,从而确定正确答案.【详解】正数x ,y ,z 满足346x y z ==,设()3461x y zt t ===>,则3log x t =,4log y t =,6log z t =.对于A ,1111log 3log 4log 622t t t x y z+=+==,故A 正确; 对于B ,333log x t =,444log y t =,666log z t =, ∵33433log 3log 4144log 4x t y t ==<,∵34x y <, ∵44644log 2log 6166log 3y t z t ==<,∵46y z <,∵346x y z <<,故B 错误; 对于C ,由1111222z x y xy=+>(2x y ≠),两边平方,可得22xy z >,故C 正确; 对于D ,由22xy z >,可得232222222x y xy z z z ⎛⎫+>>=>+ ⎪ ⎪⎝⎭(x y ≠),故D 正确. 故选:ACD题型五:分离常数再比较大小【例1】(2022·河南·汝州市第一高级中学模拟预测(文))已知6log 3a =,8log 4b =,10log 5c =,则( ). A .b a c << B .c b a << C .a c b << D .a b c <<【答案】D【分析】结合对数的运算公式以及对数函数的单调性进行转化求解即可. 【详解】由题意得, 666261log 3log 1log 212log 6a ===-=-, 888281log 4log 1log 212log 8b ===-=-, 1010102101log 5log 1log 212log 10a ===-=-, 因为函数2log y x =在(0,)+∞上单调递增, 所以222log 6log 8log 10<<,则222111log 6log 8log 10>>, 所以a b c <<. 故选:D .【题型专练】1.设6log 3=a ,10log 5=b ,14log 7=c ,则( )A. a b c >>B. b c a >>C. a c b >>D. a b c >> 【答案】D【详解】由题意得,()()()335577log 321log 2,log 521log 2,log 721log 2a b c =⨯=+=⨯=+=⨯=+357log 2log 2log 2>>,所以可得:a b c >>故选:D .题型六:利用均值不等式比较大小【例1】(2022·黑龙江·绥化市第九中学高二期末)73a =,4log 20b =,33log 2log 6c =+,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .c b a >> D .c a b >>【答案】B【分析】根据对数函数的性质结合基本不等式分析比较即可 【详解】74133a ==+,4444log 20log 4log 51log 5b ==+=+,333log 2log 61log 4c =+=+, 因为433333334log 3log 81log 64log 43==>=,所以a c >,因为2423lg3lg5log 5lg5lg32log 4lg 4lg 4(lg 4)+⎛⎫ ⎪⎝⎭=⋅<222222lg15lg162lg 42221(lg 4)(lg 4)(lg 4)⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<==,43log 51,log 41>>, 所以43log 5log 4<,所以c b >, 综上a c b >>, 故选:B【例2】(2022·安徽省临泉第一中学高二期末)若lg 2lg5a =⋅,ln 22b =,ln 33c =,则a ,b ,c 的大小关系为( ) A .a b c << B .b c a << C .b a c << D .a c b <<【答案】A【分析】由基本不等式可判断14a <,由对数的性质可得14b >,再作差可判断,c b 大小.【详解】()2lg 2lg51lg 2lg544a +=⋅<=,2ln 2ln 41444b ==>,9ln ln 3ln 22ln 33ln 2803266c b --=-==>,则c b >.所以a b c <<. 故选:A . 【题型专练】1.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >>C .0b a >>D .0b a >>【答案】A【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=. 又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.2.(2022·河南商丘·高二期末(文))已知log 5a =0.62b =,0.2log 6c =-,则实数a ,b ,c 的大小关系为( ) A .a c b >> B .a b c >>C .b a c >>D .b c a >>【答案】C【分析】根据换底公式可得,1a c >,再根据换底公式与基本不等式可得c a <,再根据5532b ⎛⎫> ⎪⎝⎭可得b a >,进而求得大小关系【详解】24log 5log 51a =>=,0.25log 6log 61c =-=>,则()25224lg 4lg 6log 6lg 4lg 62log 5(lg 5)lg 5c a +⎛⎫ ⎪⋅⎝⎭==<()()2222lg 24lg 25221lg 5lg 5⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=<=,所以c a <; 243log 5log 52a ==<,()5550.63282b ⎛⎫==> ⎪⎝⎭,所以32b >,则b a >.所以b a c >> 故选:C.题型七:乘倍数比较小【例1】(2020·全国·高考真题(理))已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <cC .b <c <aD .c <a <b【答案】A【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题. 【题型专练】1.已知3log 2=a ,4log 3=b ,5log 4=c ,则实数a ,b ,c 的大小关系为( ) A .a <b <c B .a b c >>C .b a c >>D .b c a >>【答案】B【详解】()5,427log 3log 3322∈==a ,()4,364log 4log 3333∈==b ,所以b a 33>,所以b a > 又因()6,5256log 4log 4433∈==b ,()5,4625log 5log 4444∈==c ,所以c b 44>,所以c b > 所以c b a >>,故选B 题型八:构造函数比大小【例1】(2022·全国·高一专题练习)设0a >,0b >,则下列叙述正确的是( ) A .若ln 2ln 2a b b a ->-,则a b > B .若ln 2ln 2a b b a ->-,则a b < C .若ln 2ln 2a a b b ->-,则a b > D .若ln 2ln 2a a b b ->-,则a b < 【答案】A【分析】利用函数的单调性分析判断即可【详解】因为ln y x =和2y x =在(0,)+∞上均为增函数, 所以()ln 2f x x x =+在(0,)+∞上为增函数, 所以()()f a f b >时,得0a b >>,反之也成立, 即ln 2ln 2a a b b +>+时,0a b >>,反之也成立, 所以ln 2ln 2a b b a ->-时,0a b >>,反之也成立, 故选:A【例2】(2022·四川·树德中学高二阶段练习(文))若2e 2e x x y y ---<-,则( ) A .()ln 10y x -+< B .()ln 10y x -+>C .ln 0x y ->D .ln 0x y -<【答案】B【分析】先构造函数()2e x xf x -=-,通过导函数得到单调性,从而得到x y <,故可通过函数单调性判断出()ln 1ln10y x -+>=,而x y 可能比1大,可能等于1,也可能()0,1x y -∈,故CD 均错误.【详解】令()2e x x f x -=-,则()2ln 2e 0x xf x -'=+>恒成立,故()2e x x f x -=-单调递增,由2e 2e x x y y---<-可得:x y <,故()ln 1ln10y x -+>=,A 错误,B 正确;x y 可能比1大,可能等于1,也可能()0,1x y -∈,故不能确定ln x y -与0的大小关系,CD 错误.故选:B【题型专练】1.(2021·江西·高二阶段练习(理))若1a b >>,且x y x y a a b b --->-,则( ) A .()ln 10x y -+> B .()ln 10x y -+< C .ln 0x y -> D .ln 0x y -<【答案】A【分析】根据题意,构造函数()x xf x a b -=-,利用函数单调性,结合对数函数的性质,即可判断和选择.【详解】因为x y x y a a b b --->-,即x x y y a b a b --->-,故令()x xf x a b -=-,则上式等价于()()f x f y >因为1a b >>,,x x y a y b -==-都是R 上的单调增函数,故()f x 为R 上的单调增函数,则由()()f x f y >,可得x y >,即0x y ->; 则11x y -+>,故()ln 10x y -+>,则A 正确;B 错误; 因为0x y ->,故无法判断ln x y -的正负,故C ,D 错误. 故选:A .【点睛】本题考查对数函数的单调性,以及函数单调性的应用,属综合中档题;解决问题的关键是根据已知条件,构造函数()x xf x a b -=-,并利用其单调性判断,x y 的大小关系.2.(2022·全国·高一单元测试)已知正实数x ,y 满足21211log log 22x yx y ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,则( )A .11x y< B .33x y < C .()ln 10y x -+> D .122x y -<【答案】BC【分析】可以利用筛选法逐个检验选项或者构造函数,结合单调性求解.【详解】方法一(筛选法) 由题意,211log 22x yx y ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭.当x y >,即1x y >时,2log 0x y >,而1122x y ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以11022x y ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,故211log 22x yx y ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭不成立.当x y =时,2log 0x y =,11022x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,211log 22x yx y ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭不成立,故0x y <<,所以11x y >,33x y <,故A 错误,B 正确.0y x ->,则11y x -+>,()ln 10y x -+>,故C 正确.0221x y -<=,故D 不一定正确.故选:BC .方法二(构造函数法) 由题意,2211log log 22x y x y ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭.设函数()21log 2xf x x ⎛⎫=- ⎪⎝⎭,显然()f x 在区间()0,∞+上单调递增,故由()()f x f y <,得0x y <<,故11x y>,故A 错误.33x y <,B 正确;由x y <,得11y x -+>,故()ln 1ln10y x -+>=,C 正确;0221x y -<=,故D 不一定正确, 故选:BC .。
高中数学必修1知识点总结及题型

高中数学讲义必修一第一章复习知识点一集合的概念1.集合:一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素:构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集:不含任何元素的集合叫做空集,记为.知识点二集合与元素的关系1.属于:如果a是集合A的元素,就说a________集合A,记作a________A.2.不属于:如果a不是集合A中的元素,就说a________集合A,记作a________A.知识点三集合的特性及分类1.集合元素的特性_______、________、________.2.集合的分类:(1)有限集:含有_______元素的集合;(2)无限集:含有_______元素的集合.3.常用数集及符号表示名称非负整数集(自然数集) 整数集实数集符号N N*或N+Z Q R知识点四集合的表示方法1.列举法:把集合的元素______________,并用花括号“{}”括起来表示集合的方法2.描述法:用集合所含元素的________表示集合的方法称为描述法.知识点五集合与集合的关系1.子集与真子集定义符号语言图形语言(Venn图)子集如果集合A中的________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集________(或________)真子集如果集合A⊆B,但存在元素________,且________,我们称集合A是集合B的真子集________(或________)2.子集的性质(1)规定:空集是____________的子集,也就是说,对任意集合A,都有________.(2)任何一个集合A都是它本身的子集,即________.(3)如果A⊆B,B⊆C,则________.(4)如果A⊆B,B⊆C,则________.3.集合相等知识点六 集合的运算 1.交集 2.并集自然语言符号语言图形语言由_________________ _________________组成的集合,称为A 与B 的并集A ∪B =_______________3.交集与并集的性质交集的运算性质并集的运算性质 A ∩B =________ A ∪B =________ A ∩A =________ A ∪A =________ A ∩∅=________ A ∪∅=________ A ⊆B ⇔A ∩B =________A ⊆B ⇔A ∪B =________4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________. 5.补集文字语言 对于一个集合A ,由全集U 中__________的所有元素组成的集合称为集合A 相对于全集U 的补集,记作________符号语言 ∁U A =________________图形语言定义符号语言图形图言 (Venn 图)集合相等 如果集合A 是集合B 的子集(A ⊆B),且________________,此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等A =B自然语言符号语言图形语言由___________________ _____________________ 组成的集合,称为A 与B 的交集A ∩B =_________典例精讲题型一 * 判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 。
新教材人教A版高一数学必修一知识点与题型方法总结 第五章三角函数

新教材人教A版高一数学必修一知识点与题型方法总结第五章三角函数【考纲要求】序号考点课标要求1角与弧度了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性。
了解2三角函数的概念和性质①借助单位圆理解三角函数(正弦、余弦、正切)的定义,能画出这些三角函数的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值。
借助单位圆的对称性,利用定义推导出诱导公式(的正弦、余弦、正切)。
理解②借助图象理解正弦函数、余弦函数在上,正切函数在上的性质。
理解③结合具体实例,了解的实际意义,能借助图象理解的意义,了解参数的变化对函数图象的影响。
理解3同角三角函数的基本关系理解同角三角函数的基本关系:理解4三角恒等变换①经历推导两角差余弦公式的过程,知道两角差余弦的意义理解②能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。
理解③能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆)掌握5三角函数应用会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型掌握5.1 任意角和弧度制知识点总结5.1 任意角和弧度制1.角的有关概念(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
(2)角的表示:如图射线为始边,射线为终边,点为角的顶点,图中角可以记为“角”或“”,也可以简记为“”。
(3)角的分类提示:(1)角的概念的推广重在“旋转”,理解“旋转”二字应明确以下三个方面:①旋转的方向②旋转角的大小③射线未作任何旋转时的位置。
(2)角的范围不再限于2.终边相同的角:一般地,所有与角终边相同的角,连同角在内,可构成一个集合即任一与角终边相同的角,都可以表示成角与整数个周角的和。
3.角的单位制4.弧长公式及扇形面积公式5.常用角之间的换算6.象限角和轴线角(1)象限角:在平面直角坐标系内,使角的顶点与原点重合,角的始边与轴的非负半轴重合,那么角的终边在第几象限,我们就说这个角是第几象限角。
高一数学必修一函数题型与解法

高一数学必修一函数题型与解法
函数是数学中一个重要概念,它可以把一组数字的变化规律表示出来,并且可以把不同的变量之间的关系表示出来。
高一数学必修一中的函数题是高中数学教学中一个重要部分,它涉及到函数的概念,定义,性质,图像,求导,上下函数,函数的增减性等内容。
函数是一种数学概念,可以表示某种变化规律,并可以把不同变量之间的关系表示出来。
高一数学必修一中的函数题,要求学生整体理解函数的概念,理解函数的定义,函数的定义域和值域,函数的性质和图像,求导,上下函数,函数的增减性等内容。
针对高一数学必修一中的函数题,学生在解题时要注意以下几点:
1、理解函数的概念,理解函数的定义,定义域和值域,性质和图像,求导,上下函数,函数的增减性等内容;
2、根据函数的定义,用数学公式表示出函数,全部推导出函数的性质;
3、根据函数的性质,用图像、表格或计算机绘制出函数的图像;
4、根据函数的性质,求出函数的导数,判断函数的增减性;
5、根据函数的定义,求出函数的上下函数;
6、完成函数的综合应用,求出函数的最值、极值点,以及函数的上下函数对应的最值、极值点等。
高中数学必修1知识点总结及题型

高中数学必修1知识点总结及题型高中数学讲义必修一第一章复知识点一:集合的概念集合是由一些能够归纳在一起的对象构成的整体,通常用大写拉丁字母A、B、C等表示。
构成集合的对象称为元素,通常用小写拉丁字母a、b、c等表示。
不含任何元素的集合称为空集,记为∅。
知识点二:集合与元素的关系如果元素a是集合A的一部分,则称a属于集合A,记作a∈A;如果a不是集合A中的元素,则称a不属于集合A,记作a∉A。
知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。
集合可以分为有限集和无限集。
有限集包含有限个元素,无限集包含无限个元素。
知识点四:集合的表示方法集合的元素可以通过列举法和描述法来表示。
列举法是将集合的元素一一列举,并用花括号“{}”括起来表示集合的方法。
描述法是用集合所含元素的共同属性来表示集合的方法。
知识点五:集合与集合的关系子集是指集合A中的所有元素都是集合B中的元素,此时称集合A是集合B的子集,记作A⊆B。
如果A是B的子集且A不等于B,则称A是B的真子集,记作A⊂B。
空集是任何集合的子集,任何集合都是其本身的子集。
如果A是B的子集,B是C的子集,则A是C的子集。
如果A是B的真子集,B是C的真子集,则A是C的真子集。
集合相等是指A是B的子集,B是A的子集,此时称A与B相等,记作A=B。
知识点六:集合的运算交集是指两个集合中共同存在的元素构成的集合,记作A∩B。
并集是指两个集合中所有元素构成的集合,记作A∪B。
1.自然语言中,由文字、符号和图形语言组成的集合,称为集合A与B的并集。
2.交集的运算性质包括:A∩B=B∩A(交换律)A∩A=A(恒等律)A∩∅=∅(零律)A⊆B⇔A∩B=A(吸收律)3.在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。
4.对于一个集合A,由全集U中除A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁UA。
高一数学必修一,函数的奇偶性题型归纳

函数的奇偶性 题型归纳题型一、函数奇偶性的概念➢ 函数奇偶性的定义:设函数D x x f y ∈=,)(,(D 为关于原点对称的区间):①如果对于任意的D x ∈,都有)()(x f x f -=,则称)(x f y =为偶函数;②如果对于任意的D x ∈,都有)()(x f x f --=,则称)(x f y =为奇函数。
➢ 函数奇偶性的性质:①函数具有奇偶性的必要条件是其定义域关于原点对称。
②奇偶函数的图像:奇函数关于原点对称;偶函数关于y 轴对称。
③奇函数)(x f y =在0=x 处有意义,则必有0)0(=f 。
④偶函数)(x f y =必满足|)(|)(x f x f =。
1. 若)(x f 是奇函数,则其图象关于( )【答案:C 】A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2. 若函数))((R x x f y ∈=是奇函数,则下列坐标表示的点一定在函数)(x f y =图象上的是( )【答案:C 】A .))(,(a f a -B .))(,(a f a --C .))(,(a f a ---D .))(,(a f a -3. 下列说法错误的是( )【答案:D 】A.奇函数的图像关于原点对称B.偶函数的图像关于y 轴对称C.定义在R 上的奇函数()x f y =满足()00=fD.定义在R 上的偶函数()x f y =满足()00=f题型二、判断函数的奇偶性➢ 定义法:➢ 运算函数奇偶性的规律:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×÷奇=偶;奇×÷偶=奇;偶×÷偶=偶。
➢ 复合函数奇偶性判断:内偶则偶,两奇为奇。
➢ 抽象函数奇偶性:赋值法。
1、定义法:1. 下列函数中为偶函数的是( )【答案:C 】A .x y =B .x y =C .2x y =D .13+=x y2. 判断函数的奇偶性 ①)3,1(,)(2-∈=x x x f ②2)(x x f -=;③25)(+=x x f ; ④)1)(1()(-+=x x x f .⑤()xx x f 1-= ⑥()13224+-=x x x f 【答案:】(1)非奇非偶函数.(2)偶函数.(3)非奇非偶函数.(4)偶函数.(5)奇函数(6)偶函数.2、奇偶函数的四则运算法则:3. 下列函数为偶函数的是( )【答案:D 】A.()x x x f +=B.()xx x f 12+= C.()x x x f +=2 D.()2x x x f =4. 判断函数的奇偶性①53)(x x x x f ++=; ②1y 2+=x x【答案:(1)奇函数. (2)奇函数. 】5. 已知函数)(x f y =是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修(一)题型总结-、集合的概念与表示:1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”2. 进行集合的交、并、补运算时,不要忘记集合本身和空集⑺的特殊情况注重借助于数轴和文氏图解集合问题。
3. 注意下列性质:集合9i, a2, , a n .的所有子集的个数是2n;4. 对于集合的元素是不等式的,画数轴确定两集合的关系例题:1. 满足关系{1,2} A {1,2,3,4,5}的集合的个数是( )A: 4 B: 6 C: 8 D: 92 3 :32. 以实数X , - x , |x|, x , - <x为元素所组成的集合最多含有( ) A: 2个元素B: 3个元素C: 4个元素D: 5个元素「k 1 ] f k 1 13. M=』x|x=—+ — ,k€Z],N=d x|x=—+—,k E Z 贝U ( )(A M =N (B) M N (C) N M (D) M』N4. 已知A={(x,y)|y=x 2-4x+3},B=[(x,y)|y=-x 2-2x+2}, A n B= ______________5. 某班考试中,语文、数学优秀的学生分别有30人、28人,语文、数学至少有一科优秀的学生有38人,求:(1)语文、数学都优秀的学生人数(2)仅数学成绩优秀的学生人数2 2 26.设A={x|x -ax a -19=0} , B ={x| x-5x 6 =0},且A B,求实数a 的值.二、函数的三要素(定义域、值域、对应法则) 如何比较两个函数是否相同?1. 定义域的求法:分母、开偶次方、对数(保证它们有意义)2 .值域的求法:①判断函数类型(一次、二次、反比例、指数、对数、幕函数)由函数的单调性与图像确定当x为何值时函数有最大值(最高点)和最小值(最低点) ,②对于一个没有学过的函数表达式,需要将它变成一个学过的函数来解决(换元法、图像变换法)3表达式的求法:O1已知函数类型待定系数法②已知f(x)求f(2x+1)整体代换法,已知f(2x+1)求f(x)换元法。
③形如f(x)+ f(-x)= 2x+1或f(x)+ f(1/x)= 2x+1的取x相反数或倒数消元得到f(x)3.函数y = f (x)的定义域是[0,2] ,则函数g (x)=f(2x)x — 1的定义域是A . [0,1] B.[0,1)[0,1)U(1,4].(0,1)4. (1)已知 f(2x+1)=x 2(2)已知 f(x)=x :2+x ,,求 f(x) +x ,,求 f(2x+1)的表达式 的表达式 5 (1)已知f(2x+1)定义域(0, 6),求f(x)定义域(2)已知f(x)定义域(0, 6),求f(2x+1)定义域22x6.已知函数 f(x -3)= l g-^(1)x -6求f(x)表达式及定义域 ;(2)判断f(x)的奇偶性.1X 一7、设0W x w 2,则函数f(x)=4 2-3・2x +5的最大值是 _________________ ,最小值是 _______ 三、函数的单调区间与单调性:(想想两者的区别)1•函数在区间上单调性的证明步骤:一设二做差三因式分解最后判断正负号2.确定一个函数的单调区间,基本函数通过类型看它的图像,复杂的通过换元利用复合函数的方法(同增异减) 没思路的通过分析 y 随x 的增大而 .................................... 得到3 .利用单调性解不等式:关键在于将不等式两边的形式化相同 1.下列四个函数中,在(0,+g )上为增函数的是21A.f(x)=3-xB.f(x)=x -3xC.f(x)=-D.f(x)=-| x|X +122.函数f(x)=x +2(a — 1)x+2在区间(-g ,4]上递减,则a 的取值范围是A. [ -3,+g]B.(-g ,-3)C.(-g ,5]D. [ 3,+g )例:函数y 二的定义域是lg(x _3)2. 下列四组函数中,表示同一函数的是(A . y = x -1与y 二(x -1)2B.y = J x -1与 y = x — 1J x —1, 2C. y = 4 lg x 与 y = 2 lg xD.一 x 八1gx — 2与二lg ^3.判断函数f(x)=x —丄在0, •::上的单调性并证明x5.设函数f(x)是定义在R 上的奇函数,若当 x € (0,+ °时),f(x)=lgx ,则满足f(x)>0的x 的取'ax + 2 + a6若函数f(x) -Uog’Zx + A)°为定义域上的单调函数,则a 的范围是 __________[2四、函数的奇偶性问题若f(_x)二「f(x)总成立:=f(x)为奇函数=函数图象关于原点对称( )若f(-x) =f(x)总成立:二f(x)为偶函数二函数图象关于y 轴对称()判别函数y 二f (x)奇偶性的方法: 1. 利用x 的奇次幕偶次幕快速判断2. 利用定义;①求出函数定义域 A ;判别定义域是否关于原点对称,若A 不关于原点对称,则f (x)为非奇非偶函数;③计算 f(-x),-f(x);④判别记偶性:若 f(-x) = f(x), 为偶函数;若f(-x)二-f(x)为奇函数;若两式均不成立,则为非奇非偶函数;注意如下结论:(1) 在公共定义域内:奇*奇得偶;偶*偶得偶;奇*偶得奇。
(2)为既奇又偶函数(如 y=0 )。
1、如果奇函数 f (x)在[3,7]上是增函数且最小值是 5,那么f(x)在[-7,-3]上是()A .增函数且最小值是-5B 增函数且最大值是 - 5 .2.若函数f(x)为奇函数,且当x ・0时,f(x)=10x ,则f(-2)的值是()1A . -100B .C. 100100x―xxx3•若函数f(x)=3 3与g(x)=3 -3的定义域均为R ,则( )C.减函数且最小值是- 5D .减函数且最大值是 -5D.-—100A . f (x)与g (x)均为偶函数B . f (x)为奇函数,g(x)为偶函数C . f (x)与g(x)均为奇函数D . f (x)为偶函数,g(x)为奇函数4. (x), g(x)都是奇函数,f(x)= a::(x) - bg(x)+2 在(0, +::)上有最大值5,则f(x)在(_ O0 , 0)上有最 ___________ 值 __________ . 5.已知f(x)为奇函数,x>0, f(x)=x 2+x,求f(x)解析式6若f(x rW^为奇函数’则实数/____7、已知f(x)是偶函数,它在[0,+ R )上是减函数,若f(lg x) . f (1),则x 的取 值范围是() 1 1 1 A. (,1) B. (0,) _. (1, ::) C. (,10) D.(0,1) U (10,+ a )101010&已经函数 f(x)=2x 3+(2-a)x 2+bx+b+1 在区间(-2m+1, m )上是奇函数,贝U a+ b+ m= _________五、指数与对数运算、指数函数与对数函数ABCD3. y 二(log 1 a)x 在R 上为减函数,则 a ___________24、 已知函数f(x)=log2(X -2)的值域是[1 , log 214],那么函数f(x)的定义域是5、若函数f (x)炯 a (0 ::a 1 在区间l.a,2a 1上的最大值是最小值的3倍,则a 的值为()22.已知函数 住戶黠(04且 占1)(1 )求f(x)的定义域、值域;(2)讨论f(x)的单调性注意:.两个重要的奇函数2、已知函数f(x)=2 x ,则f(1 — x)的图象为( y 「, y“ -1/•- / \OxO x(3)讨论f(x)的奇偶性1•灵活应用公式,注意 0、1的特殊性。
解决函数问题的关键在底数,确定它是增函数还是减函数。
问题即解决 y六、方程的根与函数的零点 :函数有零点 = 方程有实数根 = 函数的图象与x 轴有交点=f ( a )• f ( b ) <0 1.函数、方程、不等式 之间的关系。
2零点在哪里(代入法)、 有几个零点( 图像法)3 •二分法的步骤1、 函数f (x)二-x 2 5x -6的零点是()A - 2,3B 、2 , 3C 、2,_3D 、-1,-32、 已知y =f(x)是定义在R 上的函数,对任意禺:::x 2都有f(x 1) . f(x 2),则方程f(x) =0 的根的情况是()A 、至多只有一个B 、可能有两个C 、有且只有一个D 、有两个以上3、 已知二次函数f (x)的二次项系数为a ,且不等式f(x) . -2x 的解集为(1,3).(1) 若方程f(x) 6^0有两个相等的根,求 f(x)的解析式; (2) 若f (x)的最大值为正数,求 a 的取值范围.5.设X o 是方程In x ,x=4的解,贝U X o 属于区间()x6.方程2 - x =5的解所在的区间()A . (0, 1)B . (1 , 2)C . ( 2, 3)7函数= 2父'-^-3的零点个数为 ___________________ 个4x —4, x < 1& f(x)=」2的图象和g(x) = log 2x 的图象的交点个数是()x —4x+3, XA 1A. (0, 1)B. ( 1, 2)C. (2, 3)D.(3, 4)D . ( 3, 4)C. 3D. 49、若方程2ax2 -X-1 =0在(0, 1)内恰有一解,则实数a的取值范围是()A、a --1 B 、a ::: -1 C 、一1 ::: a ::: 1 D 、0 _ a ::: 1七、抽象函数问题:1•记住常见的抽象函数类型(对称轴型、周期型)f(x+y)=f(x)+f(y)指数型:f(x+y)=f(x)*f(y) 对数型:f(x*y)=f(x)+f(y)(2 )若f(x)满足:f(x+a)=-f(x) 或f(x+a)=1/f(x) 或f(x+a)=-1/f(x)(1)常见的抽象函数类型一次型说明f(x)的周期为T=2a(3)若f(x)满足f(a-x)=f(a+x) 说明f(x)的对称轴是x=a a +力若f(x)满足f(a-x)=f(b+x) 说明f(x)的对称轴是x= ’2 .常用方法(赋值法、结构变换法)令x、y等于任何我想要的东西(数或代数式)一般等于0、1、-1、y= -x ......... 、证明单调性:f (x2) = f〔x2 - Xt ■ x21 =1定义在:;:-〜•::上的偶函数f x满足f x ■ 1二-f x,且在1-1,01上是增函数,下面是关于f(x)的判断:其中不正确的判断是_________________①f x =f (x+2):②f x的图像关于直线x= 1对称;③f x在[0 , 1]上是增函数;④ f 2i= f 02、已知定义在R上的函数y= f (x)满足f(2+x)= f (2 —x),且f (x)是偶函数,当x € [0 , 2]时,f(x)=2x—1,求f(5)= ___________3、定义在非零实数集上的函数 f (x)满足f (xy) = f(x) • f (y),且f(x)是区间(0「:)上的递增函数。