大学物理上部分试题及答案
大学物理试题及答案 13篇

大学物理试题及答案 1物理试题及答案1一、选择题1. 下列哪个物理量是标量?A. 加速度B. 动量C. 荷电量D. 质量答案:D2. 以下哪一项是描述物体向心加速度的?A. F = mV^2/RB. F = maC. F = GmM/R^2D. F = -kx答案:A3. 以下哪种基本力被用于原子核内?A. 弱相互作用力B. 强相互作用力C. 电磁力D. 万有引力答案:B4. 如果一个物体以匀速直线运动,哪些物理量会保持不变?A. 动量B. 加速度C. 动能D. 势能答案:A5. 加速度和质量都是矢量量,因为它们有什么共同之处?A. 它们都可以用标量表示B. 它们都受到相同的力C. 它们都有方向D. 它们都可以用向量表示答案:C二、填空题6. 一个物体从7m/s的速度以匀加速度减速到0m/s,它移动的距离为_____。
答案:(7^2)/2a7. 假设你跳下一个10米高的建筑物,你从地上跳起的速度至少要是_____。
答案:14m/s8. 当电荷增加_____倍,电场的力就增加了相同的倍数。
答案:两倍9. 加速度是速度的_____,速度是位移的_____。
答案:导数,导数10. 能量的单位是_____,它也等于1焦耳。
答案:耗三、解答题11. 题目:一个1000磅的汽车从初始速度60英里/小时匀加速度减速50英里/小时,它会相撞的距离有多远?解答:首先,将速度转换为英尺/秒,即60英里/小时=88英尺/秒,50英里/小时=73.3英尺/秒;通过减去初始速度和最终速度,可以算出减速度,即-5.1英尺/秒^2;将所得的值代入公式,S = (v_f^2 - v_i^2)/2a,算出S = 263英尺。
12. 题目:一颗飞船以7km/s的速度飞行,绕月球公转,它的圆周半径是6000公里。
求该飞船的向心加速度。
解答:首先,将速度转化为米/秒,即7 x 1000 = 7000米/秒;其次,将圆周半径转化为米,即6000 x 1000 = 6 x 10^6米;最后,应用公式a = v^2/r,将所得的值代入,得到a = 6.12 m/s^2。
大学物理经典试题及答案

大学物理经典试题及答案一、选择题(每题2分,共10分)1. 光的波长为λ,频率为f,光速为c,则下列关系正确的是()。
A. c=λfB. c=1/(λf)C. c=λ/fD. c=f/λ答案:A2. 一个物体在水平面上以初速度v0开始做匀加速直线运动,加速度为a,经过时间t后,其速度变为()。
A. v0 + atB. v0 - atC. v0 + 2atD. v0 - 2at答案:A3. 根据牛顿第二定律,下列说法正确的是()。
A. 力是维持物体运动的原因B. 力是改变物体运动状态的原因C. 力的大小与物体的质量成正比D. 力的方向与物体运动的方向无关答案:B4. 一个质量为m的物体在水平面上受到一个大小为F的恒定力作用,若物体与水平面之间的动摩擦因数为μ,则物体的加速度为()。
A. F/mB. (F-μmg)/mC. (F+μmg)/mD. μg答案:B5. 根据能量守恒定律,下列说法正确的是()。
A. 能量可以被创造或消灭B. 能量在转化和转移过程中总量保持不变C. 能量的转化和转移具有方向性D. 能量的转化和转移不具有方向性答案:B二、填空题(每题2分,共10分)1. 根据麦克斯韦方程组,变化的磁场可以产生______电场。
答案:感应2. 一个物体在自由落体运动中,其加速度大小为______。
答案:g3. 根据热力学第一定律,系统内能的增加等于系统吸收的热量与外界对系统做的功之和,即△U = Q + W,其中W为______。
答案:正功4. 理想气体状态方程为PV = nRT,其中R为______常数。
答案:气体5. 根据开普勒第三定律,行星绕太阳公转的周期的平方与其轨道半长轴的立方成正比,比例常数为______。
答案:k三、简答题(每题10分,共20分)1. 简述牛顿第三定律的内容及其在日常生活中的应用。
答案:牛顿第三定律指出,对于任何两个相互作用的物体,它们之间的力是相互的,大小相等,方向相反。
大学物理(上册)参考答案

第一章作业题P211.1; 1.2; 1.4;1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x,a 的单位为2sm -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值. 解: ∵x v v t x x v t v a d d d d d d d d ===分离变量:x x adx d )62(d 2+==υυ 两边积分得 cx x v ++=322221由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1.10已知一质点作直线运动,其加速度为 a =4+3t 2sm -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += 又因为2234d d t t t x v +== 分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1.11一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t = 2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即βωR R =2亦即t t 18)9(22= 则解得 923=t 于是角位移为rad67.29232323=⨯+=+=t θ1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1) bt v t sv -==0d d R bt v R v a btv a n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n --==τϕ(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b∴当b v t 0=时,b a = 第二章作业题P612.9 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t = 2 s时质点的 (1)位矢;(2)速度.解:2s m 83166-⋅===m f a x x 2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x--=⨯-+⨯⨯+⨯-=++=2.10 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m t k v v d d -= 即 ⎰⎰-=v v t m tk vv 00d dmkt e v v -=ln ln 0∴tm kev v -=0(2)⎰⎰---===tttm k m k e k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='00d k mv t ev x tm k(4)当t=k m时,其速度为e v e v ev v kmm k 0100===-⋅-即速度减至0v 的e 1.2.11一质量为m 的质点以与地的仰角θ=30°的初速0v从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量. 解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=∆由矢量图知,动量增量大小为v m,方向竖直向下.2.13作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,i p I im p v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t ttF v m t m F v m p v m p 000000d )d (,于是 ⎰∆==-=∆t p t F p p p 0102d, 同理, 12v v∆=∆,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去)3.14一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=∆=ω2.15 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==第三章作业题P883.1; 3.2; 3.7;3.13计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题2-27(a)图 题2-27(b)图题2-28图3.14 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg=∴l g 23=β (2)由机械能守恒定律,有22)31(21sin 2ωθml l mg =∴ l g θωsin 3=题2-29图3.15 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ②上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω由①式ml I v v ω-=0 ④由②式m I v v 2202ω-= ⑤所以22001)(2ωωm v ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω (2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰glM 6)32(6--=负号说明所受冲量的方向与初速度方向相反.第五章作业题P1455.1; 5.2;5.7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5.9 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E5.11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+= 5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动. (1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)g m M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k gM m khk mg x )(2arctan cos )(215.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆∴合振幅 0=A5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
大学物理上册试卷及答案(完整版)

大学物理(I )试题汇总《大学物理》(上)统考试题一、填空题(52分)1、一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI) 则 (1) 质点在t =0时刻的速度=v __________________;(2) 加速度为零时,该质点的速度=v ____________________. 2、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为: 2214πt +=θ (SI) 则其切向加速度为t a =__________________________.3、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =____________________.4、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_____________________;(2) 摆锤的速率v =_____________________.5、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =_______;它们各自收拢绳索,到绳长为 5 m 时,各自的速率v=_______.6、一电子以0.99 c 的速率运动(电子静止质量为9.11×10-31 kg ,则电子的总能量是__________J ,电子的经典力学的动能与相对论动能之比是_____________.7、一铁球由10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高__________.(已知铁的比热c = 501.6 J ·kg -1·K -1)8、某理想气体在温度为T = 273 K 时,压强为p =1.0×10-2 atm ,密度ρ = 1.24×10-2 kg/m 3,则该气体分子的方均根速率为___________. (1 atm = 1.013×105 Pa) 9、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:(1) 温度升高的是__________过程; (2) 气体吸热的是__________过程. 10、两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位 差φ1 - φ2为____________.11、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.12、折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_________________________.13、平行单色光垂直入射在缝宽为a =0.15 mm 的单缝上.缝后有焦距为f =400mm 的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8 mm ,则入射光的波长为λ=_______________.14、一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____________级和第____________级谱线.15、用相互平行的一束自然光和一束线偏振光构成的混合光垂直照射在一偏振片上,以光的传播方向为轴旋转偏振片时,发现透射光强的最大值为最小值的5倍,则入射光中,自然光强I 0与线偏振光强I 之比为__________.16、假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.二、计算题(38分)17、空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)18、3 mol 温度为T 0 =273 K 的理想气体,先经等温过程体积膨胀到原来的5倍,然后等容加热,使其末态的压强刚好等于初始压强,整个过程传给气体的热量为Q = 8×104 J .试画出此过程的p -V 图,并求这种气体的比热容比γ = C p / C V 值. (普适气体常量R =8.31J·mol -1·K -1)19、一质量为0.20 kg 的质点作简谐振动,其振动方程为 )215cos(6.0π-=t x (SI).求:(1) 质点的初速度; (2) 质点在正向最大位移一半处所受的力.17、20、一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1) 求P 处质点的振动方程; (2) 求此波的波动表达式;(3) 若图中 λ21=d ,求坐标原点O 处质点的振动方程.21、在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D =300 mm .测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.22、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?三、问答题(5分)23、两个大小与质量相同的小球,一个是弹性球,另一个是非弹性球.它们从同一高度自由落下与地面碰撞后,为什么弹性球跳得较高?地面对它们的冲量是否相同?为什么?《大学物理》(下)物探统考试题一、填空题1,如图所示,在边长为a的正方形平面的中垂线上,距中心0点21a处,有一电量为q的正点电荷,则通过该平面的电场强度通量为____________.2_______________________。
大学物理试题及答案

大学物理试题及答案一、单项选择题(每题3分,共30分)1. 光年是天文学中用来表示距离的单位,它表示的是()。
A. 时间单位B. 光在一年内传播的距离C. 光在真空中一年内传播的距离D. 光在一年内传播的距离,但与介质有关答案:C2. 根据相对论,当物体的速度接近光速时,其质量会()。
A. 保持不变B. 增加C. 减少D. 先增加后减少答案:B3. 在理想气体状态方程 PV=nRT 中,P、V、n、R、T 分别代表()。
A. 压强、体积、摩尔数、气体常数、温度B. 功率、速度、质量、加速度、时间C. 动量、位置、质量、力、时间D. 电流、电压、电荷、电阻、电势答案:A4. 根据麦克斯韦方程组,电场和磁场的关系是()。
A. 电场是磁场的源头B. 磁场是电场的源头C. 电场和磁场相互独立D. 电场和磁场相互产生答案:D5. 以下哪种现象不属于量子力学范畴()。
A. 光电效应B. 原子光谱C. 布朗运动D. 超导现象答案:C6. 根据热力学第一定律,系统内能的变化等于系统吸收的热量与对外做的功之差,即()。
A. ΔU = Q - WB. ΔU = Q + WC. ΔU = W - QD. ΔU = Q/W答案:A7. 以下哪种波是横波()。
B. 电磁波C. 光波D. 以上都是答案:D8. 根据牛顿第三定律,作用力和反作用力的关系是()。
A. 方向相同,大小相等B. 方向相反,大小相等C. 方向相同,大小不等D. 方向相反,大小不等答案:B9. 在电路中,欧姆定律描述了电压、电流和电阻之间的关系,其公式为()。
A. V = IRC. R = VID. V = RI答案:A10. 根据能量守恒定律,能量在转化和传递过程中()。
A. 可以被创造B. 可以被消灭C. 总量保持不变D. 总量不断增加答案:C二、填空题(每题4分,共20分)11. 光在真空中的传播速度是_______m/s。
答案:3×10^812. 根据普朗克关系式,E=hv,其中E代表能量,h代表普朗克常数,v代表频率,普朗克常数的值是______。
《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理试题及答案

大学物理试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^2 km/sD. 3×10^4 km/s答案:A2. 根据牛顿第二定律,力F与加速度a和质量m的关系是:A. F = maB. F = ma^2C. F = m/aD. F = a/m答案:A3. 电荷守恒定律表明:A. 电荷不能被创造或消灭B. 电荷可以被创造或消灭C. 电荷只能被创造D. 电荷只能被消灭答案:A4. 热力学第一定律表明能量守恒,其表达式为:A. ΔU = Q + WB. ΔU = Q - WC. ΔU = W - QD. ΔU = Q * W答案:B二、填空题(每题5分,共20分)1. 电磁波的传播不需要_________。
答案:介质2. 根据欧姆定律,电阻R、电流I和电压V之间的关系是R =________。
答案:V/I3. 热力学第二定律表明,不可能从单一热源吸取热量使之完全转化为_________而不产生其他影响。
答案:功4. 光的折射定律,即斯涅尔定律,可以表示为n1 * sin(θ1) = n2 * sin(θ2),其中n1和n2分别是光从介质1到介质2的________。
答案:折射率三、计算题(每题10分,共20分)1. 一个质量为2kg的物体从静止开始,受到一个恒定的力F = 10N作用,求物体在5秒内移动的距离s。
答案:根据牛顿第二定律F = ma,可得加速度a = F/m = 10/2 = 5m/s^2。
根据位移公式s = 1/2 * a * t^2,可得s = 1/2 * 5 * 5^2 = 62.5 m。
2. 一个电阻R = 5Ω,通过它的电流I = 2A,求电阻两端的电压U。
答案:根据欧姆定律U = IR,可得U = 5 * 2 = 10V。
四、简答题(每题10分,共40分)1. 简述麦克斯韦方程组的四个方程。
大学基础教育《大学物理(上册)》真题练习试题 附解析

大学基础教育《大学物理(上册)》真题练习试题附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
2、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。
3、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。
4、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
5、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。
6、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。
()7、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学一、填空题1. 一质点作半径为R 的匀速圆周运动,在此过程中质点的切向加速度的方向 改变 ,法向加速度的大小 不变 。
(填“改变”或“不变”)2. 一质点作半径为 0.1 m 的圆周运动,其角位移随时间t 的变化规律是= 2+ 4t 2 (SI)。
在t =2 s 时,它的法向加速度大小a n =_______25.6_______m/s 2;切向加速度大小a t =________0.8______ m/s 2。
3. 一质点在OXY 平面内运动,其运动方程为22,192x t y t ==-,则质点在任意时刻的速度表达式为 j t i42-=ν ;加速度表达式为j a4-=。
4、沿半径为R 的圆周运动,运动学方程为 212t θ=+ (SI) ,则t时刻质点的法向加速度大小为a n =( 16 R t 2 ) ;角加速度β=( 4 rad /s 2 )(1 分).5. 一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为:2214πt +=θ,则其切向加速度大小为t a =______0.1______2m s -⋅, 第1秒末法向加速度的大小为na =______0.1______2m s -⋅.6.一小球沿斜面向上作直线运动,其运动方程为:245t t s -+=,则小球运动到最高点的时刻是t =___2___s .7、一质点在OXY 平面内运动,其运动方程为22,192x t y t ==-,则质点在任意时刻的速度表达式为( j t i42-=ν );加速度表达式为( j a4-= )。
8. 一质点沿半径R=0.4 m 作圆周运动,其角位置θ=2+3t 2,在t=2s 时,它的法向加速度n a =( 57.6 )2/s m ,切向加速度t a =( 2.4 ) 2/s m 。
9、已知质点的运动方程为j t i t r )2(22-+=,式中r 的单位为m ,t 的单位为s 。
则质点的运动轨迹方程=y (2412x -),由0=t 到s t 2=内质点的位移矢量=∆r (j i44-)m 。
10、质点在OXY 平面内运动,其运动方程为210,2t yt x -==,质点在任意时刻的位置矢量为(j t i t )10(22-+);质点在任意时刻的速度矢量为(j t i 22-);加速度矢量为(j2-)。
二、选择题1. 某质点作直线运动的运动学方程为x =5t -2t 3 + 8,则该质点作( D )。
(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向.2. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b为常量), 则该质点作( C )。
(A) 匀速直线运动; (B) 抛物线运动; (C) 变速直线运动; (D)一般曲线运动。
3、某质点作直线运动的运动学方程为6533+-=t t x (SI),则该质点作( D )。
(A )匀加速直线运动,加速度沿x 轴正方向 (B )匀加速直线运动,加速度沿x 轴负方向 (C )变加速直线运动,加速度沿x 轴正方向 (D )变加速直线运动,加速度沿x 轴负方向4、一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s 为单位,则4秒末质点的速度和加速度为 ( B ) (A )12m/s 、4m/s 2; (B )-12 m/s 、-4 m/s 2 ; (C )20 m/s 、4 m/s 2 ; (D )-20 m/s 、-4 m/s 2;5.在一直线上相向运动的两个小球作完全弹性碰撞,碰撞后两球均静止,则碰撞前两球应满足:( D )。
(A )质量相等; (B) 速率相等;(C) 动能相等; (D) 动量大小相等,方向相反。
6. 以下四种运动形式中,加速度保持不变的运动是( A )。
A .抛体运动; B .匀速圆周运动; C .变加速直线运动; D .单摆的运动.。
7、一质点沿x 轴运动的规律是m t t x 3352+-=。
则第三秒时的加速度的大小是( A )2/s m 。
A . 10 B .50; C .15; D .12。
8、质点做半径为1m 的圆周运动,运动方程为θ=3+2t 2(SI 单位),则t 时刻质点的切向加速度的大小为t a =( C )m/s 2。
A . 1 B .3; C .4; D .8。
9、质点沿半径R 做圆周运动,运动方程为232t t θ=+(SI 单位),则任意时刻质点角速度的大小ω=(B )。
A .31t +B .62t +;C .42t +;D .62t +。
10、质点在OXY 平面内运动,其运动方程为210,t y t x +==,质点在任意时刻的加速度为( B )。
A .jB .j2;C .3j ;D .4j 。
三、一质点沿半径为R 的圆周按规律2021bt t v s -= 运动,b v ,0都是常量。
(1) 求t 时刻质点加速度的大小; (2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈? (1)由2021bt t v s -=可知bt v v -=0 ()R bt v R v a t 202-== b dtdv a n -== ()R bt v b R a a a t n402222-+=+=(2)()b Rbt v b R a a a t n =-+=+=402222 即00=-bt v bv t 0=(3)b v t 0=带入2021bt t v s -= b v bt t v s 2212020=-= bR v n π420=四、质点P 在水平面内沿一半径为1m 的圆轨道转动,转动的角速度ω与时间t 的关系为2kt =ω,已知t =2s 时,质点P 的速率为16m/s ,试求t=1s 时,质点P 的速率与加速度的大小。
解:由线速度公式 221kt Rkt R ⨯===ωυ 得 421622===t k υP 点的速率为 24t =υ m/s t ta t 8d d ==υm/s 2 4222161)4(t t R a n ===υ m/s 2 t =1时:)/(414422s m t =⨯==υ )/(882s m t a t ==)/(1611616244s m t a n =⨯== )/(9.175********2s m a a a n t ≈=+=+=五、已知质点的运动学方程为:()()2283126810r t t i t t j =-++++. 式中r 的单位为米,t 的单位为秒,求作用于质点的合力的大小。
解: ()163(128)drv t i t j dt==-++ 1612dva i j dt==+ 六、一质点沿x 方向运动,其加速度随时间的变化关系为a = 3+2 t (SI) ,如果初始时质点的速度v 0为5m/s ,则当t为3s 时,质点的速率 v 为多大。
解:()2()3+2 3 +v a t dt t dt t tC ===+⎰⎰0t =时,05v = 可得积分常量5C =m/s速度为23+5v t t =+ 当3t =时,()233+523v t t =+= m/s七、一质点在OXY 平面内运动,其运动方程为22,10x t y t ==-,求(1)质点运动的轨迹方程;(2)质点在任意时刻的速度和加速度矢量。
(1)4102x y -=(2) j t i22-=ν,j a2-=八、已知一质点的运动方程为22r at i bt j =+(a 、b 为常数,且不为零),求此质点运动速度的矢量表达式、加速度的矢量表达式和轨迹方程。
22drv ati btj dt==+ 22dva ai bj dt==+ 2x at = 2y bt =则将2x t a =代入y 的表达式可得到质点运动的轨迹方程为by x a= 九、已知质量为3kg 的质点的运动学方程为:()()22321468r t t i t t j =+-+-+. 式中r 的单位为米,t 的单位为秒,求任意时刻的速度矢量和加速度矢量表达式。
解: ()62(86)drv t i t j dt==++- 68dva i j dt==+ (2) 226810m s a a -==+=⋅31030N F ma ==⨯=十、一质点在OXY 平面内运动,其运动方程为24,82x t y t ==-,求(1)质点运动的轨迹方程;(2)质点在任意时刻的速度和加速度矢量。
(1)288x y =-(2) 44i tj ν=-,4a j =-十一、已知质量为10kg 的质点的运动学方程为:()()2283126810r t t i t t j =-++++.式中r 的单位为米,t 的单位为秒,求作用于质点的合力的大小。
解: ()163(128)drv t i t j dt==-++ 1612dva i j dt==+ 221220m s a a -==+=⋅1020200N F ma ==⨯=十二、有一质点沿 x 轴作直线运动, t 时刻的坐标为 x = 5t 2 - 3t 3 (SI). 试求(1)在第2秒内的平均速度;(2)第2秒末的瞬时速度;(3)第2秒末的加速度.第四章 刚体的转动一、填空题1. 刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成_____正比___,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)2. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为0J ,角速度为0ω;然后将两手臂合拢,使其转动惯量变为02J ,则转动角速度变为032ω.(1) /6m/s x t =∆∆=-v 2(2) d d 109,x/t t t ==-v t 216 m/s ==-v 1018,t =-(3) d /d a t =v 2t 226 m/s a==-3.某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变 大 ;转动惯量变 小 。
4、均匀细棒质量为m ,长度为l ,则对于通过棒的一端与棒垂直的轴的转动惯量为(32ml),对于通过棒的中点与棒垂直的轴的转动惯量(122ml )。
5、长为L 的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。
如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为(L g23 ),细杆转动到竖直位置时角加速度为( 零 )。