沪科版七年级数学上册基础知识点总结

合集下载

沪科版七年级上数学知识点总结

沪科版七年级上数学知识点总结

沪科版七年级上数学知识点总结研究必备欢迎下载沪科版七年级上数学知识点总结(一)2014年10月第一章:有理数一、有理数的意义1-1正数和负数1、为什么初中数学要引入负数?答:正数和负数是在实际需要中产生的,我们可以用正数和负数来表示相反意义的量。

2、在生产和生活中,相反意义的量主要有哪些?请列举:答:常见的有:(1)温度高于度记作“+”,低于度记作“-”。

(2)高度高于海平面记作“+”,低于海平面记作“-”。

(3)高于正常水位记作“+”,低于正常水位记作“-”。

(4)超过标准重量记作“+”,低于标准重量记作“-”。

(5)储蓄中存入为正,取研究必备欢迎下载出为负。

(6)收入为正,支出为负。

(7)盈余为正,亏损为负。

(8)上升为正,下降为负。

(9)进为正,出为负。

(10)增加为正,减少为负。

(11)向东为正,向西为负。

……3、你了解以下各种数的界说和规模吗?并举例。

正数:大于的数,叫做正数。

分为正整数和正分数。

(a >)负数:小于的数,叫做负数。

分为负整数和负分数。

(a <)既不是正数,也不是负数。

整数:正整数。

负整数统称整数。

分数:正分数、负分数统称分数。

有理数:整数和分数统称有理数。

有理数又分为正有理数。

负有理数。

非负数:通常又把和正数称为非负数。

(a≥)非正数:和负数称为非正数。

(a≤)4、有理数的两种分类方法是什么?研究必备欢迎下载1-2数轴、相反数和绝对值1-2-1数轴1、什么是数轴?你能画好一条数轴吗?答:规定了原点、正方向、和单位长度的直线。

所有的有理数都可以用数轴上的点表示。

但数轴上的点并不是都表示有理数)。

2、数轴的三要素是什么?数轴的三要素有什么规定?答:原点(任意、标)、正方向(向右、箭头)和单位长度(合适)3、观察数轴,回答下列题目。

1)有无最大的正数?(没有)。

有无最小的正数?(没有)。

有无最小的正整数?(有,是1)。

2)有无最小的负数?(没有)。

有无最大的负数?(没有)。

第一章复习知识点(沪科版七年级数学)

第一章复习知识点(沪科版七年级数学)

第一章 复习知识点一、负数及负数分类 1、 负数意义①意义相反:后退,下降,支出,零下等具有相反意义的量 ②具有一定大小:例:支出100元记为-100元,+300元表示_________。

运入100吨煤碳记记作+100吨,用负数叙述上面一句话:_________________. 有理数的构成:整数(正数,0,负数)、分数(正分数,负分数) 小学我们学过非负数(0及正数(正整数,正负数)) 初中引入的负数(负整数及负分数) 2、 绝对值、相反数绝对值的意义:在数轴上,表示数a 到原点的距离,叫做数a 的绝对值。

一个正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是它的相反数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ⎪⎩⎪⎨⎧<---=->--=-)0)(()0(0)0(b a b a b a b a b a b a(1)、任何一个数的绝对值都小于等于它本身(2)距离不可能为负,所以任何一个数的绝对值都是非负数(0和正数),0是绝对值最小的数(3)绝对值是同一正数的数有两个,它们互为相反数(4)两个互为相反数的绝对值相等;反之,绝对值相等的两个数相等或互为相反数,即如果b a =,那么b a b a -==或例题:的值。

,求)。

(求)()。

(,求)(b a b a x x x x +=-+-=-=021341-241相反数的意义:互为相反数的两个数在数轴上所表示的点在原点的两旁,并且与原点的距离相等。

求法:求一个数的相反数只需在这个数的前面加一个“-”号即可。

(1) 互为相反数的两个数的和为0,即互为相反数,b a ,0=+b a 即互为相反数。

,则反数,即,那么这两个数互为相反之两个数的和为b a b a ,00=+(2) 相反数是它本身的数只有一个,是0 例:}{));(());(()多重符号化简:()]7([-33-231----+- 二、有理数的加、减、乘、除及乘方运算原则:减化加,除化乘;先定符号,后算结果。

沪科版七年级数学上最全的知识点和方法总结

沪科版七年级数学上最全的知识点和方法总结

七年级数学(上)最全的知识点第1章有理数一、知识框架二、知识概念1、有理数:2、数轴:数轴是规定了原点、正方向、单位长度的一条直线(三者缺一不可);注意:①在数轴上到定点距离等于定长的点有两个。

(例如到原点距离等于2的点有两个:±2)②在数轴上,右边的表示的数大于左边的点表示的数;③原点左侧的为负数,原点右侧的为正数;④在数轴上的距离:右边的点表示的数-左边的点表示的数;或者两点表示的数差的绝对值.3、相反数:(1)只有符号不同的两个数互为相反数;0的相反数还是0;(2)相反数的和为0 ↔ a+b=0 ↔ a、b互为相反数.4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:在数轴上表示数a的点到原点的距离,叫做a的绝对值.(2) 绝对值可表示为:绝对值的问题经常分类讨论;5、有理数比大小:(1)数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大;(2)正数大于0,0大于负数,正数大于负数;(3)两个负数比较大小,绝对值大的反而小;(4)大数-小数>0,小数-大数<0;(5)正数大于一切负数.6、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是;若ab=1 a、b互为倒数.7、有理数加法法则:(1)同号两数相加,取与加数相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8、有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因数为0,积为0;几个不为0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

沪教初一上数学知识点归纳总结

沪教初一上数学知识点归纳总结

沪教初一上数学知识点归纳总结初一上学期数学知识点归纳总结
第一章:数与式
数与算式、数的分类与表示、数与有序数对、约分与有序整数对第二章:代数式与方程
代数式的认识、代数式的运算、代数式的应用、方程式的认识、方程式的解和分类
第三章:图形的认识
点与直线、角与线段、集合与图形、平面图形的认识
第四章:几何变换
平移、翻转、旋转、变形与拼合
第五章:数据的使用
统计的认识、简单统计图、其他统计图、四则运算与数据的应用第六章:比例与数学语言
比例的认识、比与比例、比例的性质、比例的运用、数学语言与写作
第七章:常用分数
分数的认识、分数与几何图形、比例与分数、分数的简便计算
第八章:百分数
百分数的认识、百分数与分数、百分数的运算、百分数的应用
第九章:实数
实数的认识、带有根号的实数、实数的性质
第十章:运算与法则
加法与减法的规律、乘法与除法的规律、取整与四舍五入、小数和分数的加减、乘法和除法运算
第十一章:一步一步
一步法运算、等式的应用、一次方程的解、一次方程的应用
第十二章:三角形
三角形的认识、等边三角形、等腰三角形、直角三角形、其他三角形
第十三章:角的性质
垂直线与直角、锐角和钝角、相交线与内角和
第十四章:面积与体积
平面图形的面积、正方体和长方体的体积
初中数学知识点归纳总结到此结束。

接下来,我们将逐一详细介绍每个章节,并提供一些例题和解析,以帮助同学们更好地理解和掌握
这些知识点。

同学们在学习过程中,可以结合课本上的知识点进行复习和练习,提高自己的数学水平。

希望本篇总结对您有所帮助。

沪科版七年级上册数学知识点三篇

沪科版七年级上册数学知识点三篇

沪科版七年级上册数学知识点三篇【导语】学习是每个一个学生的职责,而学习的动力是靠自己的企图,也能够这样说没有自己的企图就是对自己的一种不责任的表现,也就和人失走肉没啥两样,只是改变命运,同时知识也不是也不是随便的摘取。

要通过自己的努力,要把我自己生命的钥匙。

以下是作者为您整理的《沪科版七年级上册数学知识点三篇》,供大家学习参考。

沪科版七年级上册数学知识点篇一单项式与多项式1、没有加减运算的整式叫做单项式。

(数字与字母的积---包括单独的一个数或字母)2、几个单项式的和,叫做多项式。

其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

说明:①根据除式中有否字母,将整式和分式区分开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单唯一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

沪科版-数学-七年级上册--基础知识-有理数的加减

沪科版-数学-七年级上册--基础知识-有理数的加减

1.4有理数的加减1.有理数的加法(1)有理数的加法法则①同号两数相加,取与加数相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时和为零;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与零相加,仍得这个数.(2)两个有理数相加的步骤第一步:有理数的加法法则分三种情况,进行有理数加法时,要先区别是哪种情况;第二步:确定和的符号;第三步:求每个加数的绝对值;第四步:根据具体的法则计算两个数的绝对值的和或差;第五步:写出最后的计算结果.析规律有理数的加法运算规律(1)有理数的加法法则是进行有理数运算的依据,进行加法运算时要先确定用哪条法则.(2)小学学过的加法中,和一定大于每一个加数,在数的范围扩大到有理数以后,这个结论就不成立了,只有两个正数的和必定大于每一个加数,而两个负数的和要小于每一个加数,一个非零数与零相加,得到的和等于非零加数.(3)如果两个数的和为0,那么这两个数互为相反数.即:如果a+b=0,那么a=-b.例如:(-3)+a=0,则a=3.(4)进行有理数的加法运算要遵循“一定二求三和差”的步骤,即第一步先确定和的符号,第二步再求加数的绝对值,第三步要分析确定是绝对值相加还是相减.【例1】计算:(1)(+8)+(+5);(2)(+2.5)+(-2.5);(3)(-17)+(+9);(4) (-4)+0.分析:根据有理数的加法法则,两数相加,只要确定它适合有理数加法法则的哪一种情况,再根据法则确定和的符号,然后根据法则求出和的绝对值.解:(1)(+8)+(+5)(同号两数相加)=+(8+5)(取与加数相同的符号,并把绝对值相加)=13.(2)(+2.5)+(-2.5)(异号两数相加,绝对值相等)=0(和为0).(3)(-17)+(+9)(异号两数相加,绝对值不等)=-(17-9)(取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)=-8.(4)(-4)+0(一个数与零相加)=-4(仍得这个数).2.有理数的减法(1)有理数的减法法则减去一个数,等于加上这个数的相反数.用字母表示为a-b=a+(-b).(2)有理数减法运算的基本步骤①将减法转化为加法;②按有理数的加法法则运算.(3)法则理解①有理数的减法,不像小学里的那样直接减,而是把它转化为加法,借助于加法进行计算.其关键是正确地将减法转化为加法,再按有理数的加法法则计算.②学习有理数减法运算,关键在于处理好法则中两个“变”字,即注意两个符号的变化:一是运算符号——减号变为加号,二是性质符号——减数变成它的相反数.③其含义可以从以下两方面理解:(a)(b)④并不是所有的减法运算都要转化为加法运算.一般来说,当减数或被减数为负数,或两数“不够减”时才运用法则转化为加法运算.解技巧 有理数的减法运算技巧(1)可用口诀记忆法则:“减正变加负,减负变加正.”(2)带分数减法运算,可把带分数拆成整数和分数和的形式后再进行计算.(3)特别注意减法没有交换律.【例2】 计算:(1)3-(-5);(2)(-3)-(-7);(3)⎝ ⎛⎭⎪⎫-213-516; (4)5.2-(+3.6).分析:有理数减法运算,按照减法法则,将减法转化为加法,然后按有理数加法进行计算.在做减法转换为加法时,一定要注意符号的变换.解:(1)3-(-5)=3+(+5)=8;(2)(-3)-(-7)=(-3)+(+7)=4;(3)⎝ ⎛⎭⎪⎫-213-516=⎝ ⎛⎭⎪⎫-213+⎝ ⎛⎭⎪⎫-516=-712; (4)5.2-(+3.6)=5.2+(-3.6)=1.6.3.有理数加法的运算律(1)加法交换律:两数相加,交换加数的位置,和不变.用字母表示为:a +b =b +a .(2)加法结合律:三数相加,先把前两个数相加或先把后两个数相加,和不变.用字母表示为:(a +b )+c =a +(b +c ).【例3】 计算:(1)(-8)+⎝ ⎛⎭⎪⎫-212+2+⎝ ⎛⎭⎪⎫-12+12; (2)⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫+12+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫+45+⎝ ⎛⎭⎪⎫-12. 分析:进行三个以上的有理数加法运算时,常常运用加法的交换律和结合律,把同号的数相结合,把互为相反数的两个数相结合,把同号的数中的同分母的分数相结合,以达到计算简便、迅速的目的.解:(1)原式=(2+12)+⎣⎢⎡⎦⎥⎤(-8)+⎝ ⎛⎭⎪⎫-212+⎝ ⎛⎭⎪⎫-12=14+(-11)=3; (2)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-23+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫+12+⎝ ⎛⎭⎪⎫-12+45=-1+0+45=-15. 4.有理数的加、减混合运算(1)加减法统一成加法①有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5).②在和式里,通常把各个加数的括号省略不写,写成省略加号的和的形式.如:(-12)+(-8)+(-6)+(+5)=-12-8-6+5.③和式的读法:一是按这个式子表示的意义,读作“负12,负8,负6,正5的和”,即把各个数中间的符号作为后面的这个数的性质符号来读;二是按运算意义读作“负12减8减6加5”,即把各个数中间的符号作为运算符号来读.(2)有理数加、减混合运算的方法和步骤由于减法可以转化为加法,所以在进行有理数的加减混合运算时,首先要将混合运算的式子写成省略括号的和式的形式,然后按加法法则和运算律进行简便运算.第一步:用减法法则将减法转化为加法;第二步:运用加法法则、加法交换律、加法结合律进行简便运算.(3)进行有理数的加减混合运算的注意事项①交换加数的位置时,一定要连同加数前的符号一起移动;②如果需要添括号,一定要连同加数前的符号一起括进括号内,并将原来已省略的括号写出来;③省略加号和括号的“和”与小学里的“和”是有区别的,小学里的“和”是一个具体的数,并且和一定不小于任何一个加数,而这里的“和”则是表示的是有理数的加法运算,也表示相加的结果.有理数的“和”可以大于任何一个加数,也可以小于任何一个加数,和可能是正数、负数或零.【例4-1】 把下列各式写成省略加号的和的形式:(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3.(2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.【例4-2】 计算:(1)0-327-6+1167-537;(2)⎝ ⎛⎭⎪⎫-12-⎝ ⎛⎭⎪⎫-16+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-45;(3)(-5)-(-21)+(-12)+8-(-4)-18;(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5.分析:(1)本题是省略括号和加号后的和的形式,在五个加数中,考虑到-327,1167,-537三个加数分母都是7,便于运算,所以把这三个加数放在一起;(2)把加减混合运算统一成加法运算后结果为⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫+16+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-45,考虑到⎝ ⎛⎭⎪⎫-12,⎝ ⎛⎭⎪⎫-23,⎝ ⎛⎭⎪⎫+16便于通分,把它们结合起来,可使计算较为简便;(3)统一成加法后,可采用同号结合法,即把正数与正数、负数与负数分别相加;(4)统一成加法后,可采用凑整结合法,即把相加得整数的加数先结合.解:(1)0-327-6+1167-537=(0-6)+⎝ ⎛⎭⎪⎫-327+1167-537 =-6+⎝ ⎛⎭⎪⎫+317=-267. (2)⎝ ⎛⎭⎪⎫-12-⎝ ⎛⎭⎪⎫-16+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-45 =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫+16+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-45 =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫+16+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-45 =(-1)+⎝ ⎛⎭⎪⎫-45 =-145. (3)(-5)-(-21)+(-12)+8-(-4)-18=-5+21-12+8+4-18=(21+8+4)+(-5-12-18)=33-35=-2.(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5 =10.4-7.5+12.7+3.6-1.7-2.5=(10.4+3.6)+(12.7-1.7)+(-7.5-2.5)=14+11-10=15.。

沪科版数学七年级上册 第1章 小结与复习

沪科版数学七年级上册  第1章 小结与复习

3.5>|
-2
|>0.5>0>
1 3

1
3 5
>-2>-3.5
针对训练
6. 某日零点,北京、上海、重庆、宁夏的气温分别是
﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中气温最
低的是 ( D )
A.北京 B.上海 C.重庆 D.宁夏
考点七 科学记数法 例7 将数 13 445 000 000 000 km 用科学记数法表示
考点九 有理数的运算
例9
计算
(1)
0.125
3
1 4
3
1 8
11
2 3
0.25;
(2)
7 12
3 4
5 6
5 18
(36);
3
2
1 12
1 12

(4)
(24
)
2
2 3
2
5
1 2
1 6
(0.5)2.
解:(1)
0.125
3
1 4
3
1 8
11
2 3
0.25
(1) 一个数在数轴上对应的点到原点的距离叫做这个 数的绝对值
(2) 一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数. 0 的绝对值是 0.
6. 有理数大小的比较 (1) 数轴上表示的两个数,右边的总比左边的大. (2) 正数大于 0,0 大于负数,正数大于负数;
两个负数,绝对值大的反而小.
5 8
-3
2
绝对值 3.5 3.5 0
2
2
13 5
1 3 0.5
针对训练
4.
-1
的倒数是
-3
;-1 1

七年级数学上知识点沪科版

七年级数学上知识点沪科版

七年级数学上知识点沪科版七年级数学上知识点概览对于初中阶段的学生来说,数学学科是十分重要的,其中七年级数学是初中数学学科的一个重要组成部分。

本文将为大家概括沪科版七年级数学上的知识点,帮助学习者更好地掌握数学学科。

一、整数整数是数学中的基础概念,七年级数学主要涉及整数的四则运算,以及分数的概念和应用。

在整数的学习中,学习者需要掌握正数、负数和零的概念,以及它们之间的关系。

同时,要掌握加、减、乘、除四则运算的定义和性质,能够进行简单的整数的混合运算。

此外,学生还需要了解字符运算的概念和应用,例如字符加法、减法等。

二、分数分数是七年级数学的另一个重要知识点。

学习者需要了解分数的定义和基本性质,能够将分数化为最简形式,进行分数的加、减、乘、除等基本运算,并且能够应用到实际生活中的问题中。

三、代数式代数式也是七年级数学的一个重要组成部分,它是初中阶段从算术向代数过渡的关键环节。

学生需要了解代数式的概念,能够识别各种类型的代数式,并且能够进行代数式的加、减、乘、除等基本运算。

同时,学生还需要熟练掌握代数式的展开和因式分解的方法。

四、方程式方程式在数学中是一种基本的问题解决方法。

学生需要了解方程式的基本概念与形式,并能够利用代数式的相关知识解决简单的一元一次方程和一元一次方程组。

此外,学生还需要学习实际问题转化为方程式的方法和技巧,这对其后续的数学学习非常重要。

五、几何基础几何基础也是七年级数学中必要的内容。

学习者需要了解线段、角、三角形、四边形等几何概念,以及它们的相互关系和性质。

同时,学生还需要熟练掌握几何图形的绘制方法,物理实验的图形绘制方法,以及基本的几何结论。

六、统计学最后,统计学也是七年级数学的一部分,包括频率、概率等概念。

学生需要掌握频率和概率的基本概念,提高其数据分析和判断能力。

学生还需要掌握各种图表的绘制和解读,并能够将在实际生活中遇到的问题转化为数据进行处理。

总之,以上是七年级数学上知识点沪科版的一个概览,仅是对各知识点的简单介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪科版七年级数学上册知识总结第一章有理数1.1正数与负数①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2数轴①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

④只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2 ;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作。

从几何意义上讲,数的绝对值是两点间的距离。

(绝对值等于本身的有:正数和0,绝对值等于其相反数的有:负数和0)⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

⑦两个负数,绝对值大的反而小。

⑧倒数:如果两个数的乘积为1,则这两个数互为倒数。

倒数等于其本身的有1和-11.3有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。

②负数小于零,零小于正数,负数小于正数。

③两个负数的比较大小,绝对值大的反而小。

1.4有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

1.5 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

1.6有理数的乘方①求n个相同因数的积的运算,叫乘方,乘方的结果叫幕。

在a的n次方中,a叫做底数,n叫做指数。

负数的奇次幕是负数,负数的偶次幕是正数。

正数的任何次幕都是正数,0的任何次幕都是0。

(负奇负,负偶正)(如:-22= -4,(-2)2 =4②有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

③把一个大于10的数表示成I- I的形式,使用的就是科学计数法,注意a的范围为1W — <10。

④从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。

比如: 3.5449精确到0.01就是3.54而不是3.55.(再如:0.0020100有5个有效数字、2.40万:精确到百位,有3个有效数字:2、4、0; 6.5 X 104精确到千位,有2个有效数字:6、5)第二章整式的加减2.1用字母表示数1、偶数:能被2整除的整数叫偶数(如:-4、-2、0、2、4、)2、奇数:不能被2整除的整数叫做奇数(如:-5、-3、-1、1、3、5)2.2代数式1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。

(注:单独一个数字或字母也是代数式)2、代数式的写法:数学与字母相乘时,“X”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幕的形式;数字与数字相乘时,“X” 号不能省略;式中出现除法时,一般写成分数形式。

3、单项式:由数字和字母乘积组成的式子。

单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.单项式的系数:是指单项式中的数字因数;单项数的次数:是指单项式中所有字母的指数的和.4、多项式:几个单项式的和。

判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数;多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。

注意单项式和多项式的每一项都包括它前面的符号。

5、单项式和多项式统称为整式。

2.3整式的加减同类项:所含字母相同,并且相同字母的指数也相同的项。

(简称“二同”)合并同类项:把多项式中的同类项合并成一项。

可以运用交换律,结合律和分配律。

合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,所含字母部分不变,相同字母的指数不变(称为“两不变”)字母的升降幕排列:按某个字母的指数从小(大)到大(小)的顺序排列。

如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。

第三章一次方程与方程组3.1 一元一次方程及其解法方程是含有未知数的等式。

方程都只含有一个未知数(元)X,未知数x的指数都是1 (次),这样的整式方程叫做一元一次方程。

注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是 1.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等).2)等式两边同时乘以或除以同一个不为零的数,等式不变注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数去括号T移项T合并同类项T系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:①去分母,在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号;③移项把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;④不要丢项合并同类项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑤把方程化成=b (0)的形式字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒3.2二元一次方程组:由两个一次方程组成的,并含有两个未知数的方程组叫做二元一次方程组3.3消元法解方程组:1、二元一次方程组的解:使二元一次方程组中每个方程都成立的两个未知数的值,叫做~2、代入消元法:从一个方程中求出某一个未知数的表达式,再把它“代入” 另一个方程,进行求解,这种方法叫做代入消元法,简称代入法。

3、加减消元法:把两个方程的两边分别相加或相减消去一个未知数的方法,叫做加减消元法,简称加减法3.4用一次方程(组)解决问题:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系,②设出未知数(注意单位),③根据相等关系列出方程,④解这个方程,⑤检验并写出答案(包括单位名称).⑵一些固定模型中的等量关①数字问题:-: 个三位数,则有②行程问题:基本公式:路程二时间X速度甲乙同时相向行走相遇时:甲走的路程+乙走的路程二总路程甲走的时间二乙走的时间;甲乙同时同向行走追及时:甲走的路程一乙走的路程二甲乙之间的距离③工程问题:基本公式:工作量二工作时间X工作效率各部分工作量之和二总工作量;④储蓄问题:本息和二本金+利息;利息二本金X利率⑤商品销售问题:商品利润二售价—进价二进价X(1+利润率)—进价;商品利润率二(售价—进价)I进价⑥火车过桥问题:火车完全通过桥所走路程二桥长+火车长火车完全在桥上所走路程二桥长-火车长⑦人在火车上人行走方向与火车行走方向相同,则人的实际速度二人速+车速人行走方向与火车行走方向相反,则人的实际速度二车速-人速⑧水流问题逆流速度二船速-水速顺水速度二船速+水速⑨熔断前后物体的体积、质量不变,⑩含有杂质的两个物体熔断前后两个不变:(1)、总质量不变;(2)、所含有的物质的总质量不变(例如:含铜百分率不同的两个铁块的融合,融合后的质量等于融合前两块铜块的质量之和,融合有含有铜的质量等于融合前两块铜块含铜质量之和)(二)、思想方法(本单元常用到的数学思想方法小结)⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形, 不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为的形式.体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.第四章直线与角4.1多姿多彩的几何图形形状:方的、圆的等几何图形大小:长度、面积、体积等位置:木相交、垂直、平行等几何体也简称体。

包围着体的是面常见的立体图形:圆柱、圆椎、圆台、球、长方体、四面体、三棱柱(各部分不都在一个平面内,在一个平面内就是平面图形。

点线面体:是组成几何图形的基本元素;点动成线,线动成面,面动成体。

4.2 直线、射线、线段1、特点与表示方法:直线没有端点,向两方无限延伸,可用两个字母或小字字母表示;射线只有一个端点,向一方无限延伸,用端点和延伸方向中的任意一点表示;线段有两个端点,用两个端点来表示。

2、连接两点间的线段的长度,叫做这两点之间的距离。

3、经过两点有一条直线,并且只有一条直线。

(两点确定一条直线)。

4.3线段的比较:叠合法或度量法;中点:将一条线段分成两条相等的线段的点称这条线段的中点;两点的所有连线中,线段做短(两点之间,线段最短)。

4.4 角的度量1、定义:有公共端点的两条射线组成的图形叫角。

角的端点为顶点,两条射线为角的两边。

2、1度=60分 1 分=60秒1 周角=360度1 平角=180度;钟表上分针每分钟走6°,时针每分钟走0.5 °4.5角的比较与运算角的平分线:角平分线把一个角分成两个相等的角,角平分线是一条射线。

相关文档
最新文档